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Abstract
This study evaluates the accuracy of a computer-aided detection (CAD) application for pulmonary nodular lesions (PNL) in
computed tomography (CT) scans, the ClearReadCT (Riverain Technologies). The study was retrospective for 106 biopsied
PNLs from 100 patients. Seventy-five scans were Contrast-Enhanced (CECT) and 25 received no enhancer (NECT). Axial
reconstructions in soft-tissue and lung kernel were applied at three different slice thicknesses, 0.75 mm (CECT/NECT n = 25/6),
1.5 mm (n = 18/9) and 3.0 mm (n = 43/18). We questioned the effect of (1) enhancer, (2) kernel and (3) slice thickness on the
CAD performance. Our main findings are: (1) Vessel suppression is effective and specific in both NECTand CECT. (2) Contrast
enhancement significantly increased the CAD sensitivity from 60% in NECT to 80% in CECT, P = 0.025 Fischer’s exact test. (3)
The CAD sensitivity was 84% in 3 mm slices compared to 68% in 0.75 mm slices, P > 0.2 Fischer’s exact test. (4) Small lesions
of low attenuation were detected with higher sensitivity. (5) Lung kernel reconstructions increased the false positive rate without
affecting the sensitivity (P > 0.05 McNemar’s test). In conclusion, ClearReadCT showed an optimized sensitivity of 84% and a
positive predictive value of 67% in enhanced lung scans with thick, soft kernel reconstructions. NECT, thin slices and lung kernel
reconstruction were associated with inferior performance.
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Highlights
• ClearReadCT performs vessel subtraction in both contrasted and
non-contrasted scans

• The optimized CAD sensitivity was 84% with a PPV of 67% in thick
slab, soft kernel, contrast-enhanced images

• ClearReadCT is designed for the detection of small lesions with low
attenuation values
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Abbreviations
16xDEF Somatom definition AS 16-row CT scanner
16xEMO Somatom emotion 16-row CT scanner
64xDEF Somatom definition AS 64-row CT scanner
CAD Computer-aided detection
CECT Contrast-enhanced computed tomography
CT Computed tomography
FN False negative
FP False positive
HU Hounsfield Units
NECT Non-enhanced computed tomography
PACS Picture archiving and communication system
PNL Pulmonary nodular lesions
PPV Positive predictive value
TN True negative
TP True positive
TPR True positive rate (sensitivity)
V1 CAD version 1
V2 CAD version 2

Introduction

Pulmonary nodular lesions (PNL) are focal, round or oval
areas of increased lung opacity smaller than 30 mm that are
not associated with pneumonia, atelectasis or lymphadenopa-
thy [1]. The increasing popularity of the computed tomogra-
phy (CT) in lung diagnostics augments the amount of PNL
detections either as incidental findings or as part of cancer
screening programs, which are widely supported by many
recent international thoracic community positioning state-
ments [2–4]. Not only the first detection [5] but also the rig-
orous PNL follow-up process are issues of immense public
health interest due to the malignant or premalignant PNL-
potential in up to 4% of the cases [2, 6].

Computer-aided Detection (CAD) software applications
adapt the technological advances in image analysis to the
expanding needs and challenges of the quantitative radiology.
Various, custom-made or commercially available CAD sys-
tems are implemented in the clinical practice, aiming to reduce
the reading time, increase the PNL detection sensitivity and
objectify the PNL volumetry [7].

In this study, we evaluate the diagnostic accuracy of
ClearReadCT (ClearRead™CT, Riverain™ Technologies,
Miamisburg, OH, USA) in a retrospective database with a
histological ground truth. ClearReadCT implements a pre-
trained machine learning algorithm for the PNL segmentation
in lung CT scans and was reported to detect 80% of all lung
cancers [8]. The segmentation process is facilitated by a back-
ground reduction algorithm that subtracts (Bsuppresses^) the
vascular structures in both contrast-enhanced (CECT) and
non-enhanced (NECT) CTscans [9]. This study aims to define
(1) the CAD diagnostic accuracy and the detection rate of

malignant lesions, (2) the scanning parameters that optimize
the CAD-performance and (3) the fidelity of the background
reduction method.

Materials and methods

Patient selection and study design

The study was retrospective for the time range between
6.6.2007 and 9.2.2016. 1042 patients received a lung CTwith
the clinical indication Btumor^ and/or Bpulmonary nodule^. A
histological ground truth was the single inclusion criterion to
select 100 patients aged 63.50 ± 10.05 years with 106 biopsied
nodules. Fifty patients were confirmed as bronchial cancer
and 11 patients had a metastatic disease of various origin;
the rest 39 patients were diagnosed with a benign lesion.
Patients with a second or a third, non-biopsied nodule re-
ceived follow-up CT-scans. Thirteen such additional nodules
without histological identity were included in the study as
well. The flow of participants is illustrated in Fig. 1. The single
exclusion criterion was the technical incompatibility of some
datasets with the CAD-software for unknown reasons
(detailed reported in Supplementary Table 1). Two different
CAD-versions were tested, V1 and V2. Both tested versions
were release candidates and the V2 is currently available as
commercial software. The scans that were incompatible with
only one of the two CAD-releases have been included for the
evaluation of the compatible version but excluded from the
paired tests between versions.

Image acquisition

Lung CT-imaging was performed using multi-slice spiral
scanners: a Somatom Definition AS plus 64-row CT-scanner
(64xDEF, N = 82), a Somatom Emotion 16-row CT-scanner
(16xEMO,N = 15 patients) and a SomatomDefinition 16-row
CT-scanner (16xDEF, N = 3), all purchased from Siemens
(Siemens Healthcare GmbH, Erlangen, Germany). The scan-
ning protocols are reported in detail in (Table 1). Seventy-five
lung CT scans were Contrast-Enhanced (CECT) with
Ultravist 300® (Bayer Vital GmbH, Leverkusen, Germany),
1 ml/kg i.v. at 3 ml/min flow rate followed by 30 ml of saline
chaser. The bolus was tracked in the ascending aorta with a
threshold of 100 Hounsfield Units (HU). Twenty-five patients
received no contrast enhancer (Non-Enhanced CT, NECT).

Image analysis

The observational image analysis was performed by two
radiologists: an assistant with two to five years of experi-
ence and a consultant with more than 15 years of experi-
ence in analyzing lung CT-scans. Due to lack of access to
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the separate observer’s results, the evaluation was based
on the common report. PNLs were thoroughly described

and at least one PNL-per-patient was subjected to biopsy
within three months from the diagnosis. ClearReadCT was
coupled to the SECTRA Picture Archiving and
Communication System (PACS) Version 15.1.22.2
(Sectra AB, Linköping, Sweden) and the dedicated
Sectra Radiological Information System (RIS) Version
4.3.1.27 (Sectra AB). The CAD has an integrated back-
ground subtraction step that recognizes and Bsuppresses^
the vascular tree in non-enhanced (Fig. 2a-d) and contrast-
enhanced scans (Fig. 2e-h). A descriptive report of the
PNL diameter, volume, and mean density is integrated
into the graphical report (Fig. 2c, d, g, h). The maximum
diameter was kept as a PNL-size metric in order to con-
form to the widely accepted guidelines [10].

For estimating the diagnostic accuracy, CAD segmenta-
tions were classified as follows:

Table 1 CT Imaging technical characteristics

Scanner model 64xDEF 16xEMO 16xDEF

Tube voltage (kV) 120-130 120-130 120-130

Pitch factor 1.2 1.25 1.25

Collimation 38.4 19.2 19.2

Soft tissue kernel B31f B41f/s B41f/s

Lung kernel B70f B70f B70f

Image size (pixel) 512 × 512 512 × 512 512 × 512

Siemens scanner models: 64-row Somatom Definition AS (64xDEF), 16-
row SomatomEmotion (16xEMO) and a 16-row SomatomDefinition AS
(16xDEF). The preoperative imaging protocol included homogeneous
scanning parameters and a standard contrast enhancer type, dose and flow
rate wherever applicable

Fig. 2 Vessel suppression with and without contrast enhancer. Sample
images of non-enhanced conmputed tomography (NECT) lung scan raw
data reconstructed in soft-tissue (a) and lung (b) kernel. In (c) and (d)
sample images after vessel suppression. For all segmented areas
ClearReadCT provides a volumetric and densitometric report (lower
right corner in c and d). Sample images of contrast-enhanced computed
tomography (CECT) lung scan raw data reconstructed in soft-tissue (e)
and lung (f) kernel. In (g) and (h) sample images after vessel suppression

Fig. 1 Standards of Reporting of Diagnostic Accuracy (STARD) flow
diagram. Note that the STARD diagram summarizes all available
patients/nodules. Deviations between STARD and the Btotal PNL^
number in Supplementary Table 1 reflect the patients/lesions that were
not processed for technical reasons (Bpatient not readable^)
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1. True Positives (TP) were the segmentations with a malig-
nant or benign ground truth validated by histology or by
consecutive scans

2. False Positives (FP) were the unspecific segmentations
that did not correspond to PNLs. FP received an observa-
tional post-hoc identity by two radiologists with interme-
diate and large experience in interpreting lung scans, both
blinded to the initial report.

3. False Negatives (FN) were the non-segmented PNLs with
a malignant or benign ground truth.

4. Additional PNLs (oversights) were segmented by the
CAD system. These were retrospectively confirmed by
two radiologists with intermediate and large experience
in interpreting lung scans, both blinded to the initial
report.

Unremarkable scans were not included in the current study.

Statistical analysis and graphics

For the statistical analysis, we used the Statistical Package
for Social Sciences (SPSS, IBM Corporation, NYC, USA).
The chi-squared test and Fischer’s exact test were applied
for non-parametric data. ClearReadCT V1 and V2 and dif-
ferent kernels were processed pairwise with the
McNemar’s test. The linear regression model, Pearson’s
and Spearman’s algorithm were applied for correlation
analysis of parametric data. Parametric data differences
were tested with one-way ANOVA or with a Mann-
Whitney rank-sum test. Receiver Operative Curve (ROC)
analysis was used to assess the CAD sensitivity in relation
to the PNL volume and opacity. Statistics are powered to
80% for α = 0.05. Normality was proofed using the
Shapiro-Wilk method. The unweighted Cohen’s kappa co-
efficient was used to evaluate the inter-rater agreement be-
tween CAD versions. Box plots illustrate the median and
inner quartiles, error bars include the 5th-95th percentile
and dots correspond to outliers. Graphical work and half-
tones were processed with the freeware platform Inkscape
0.92.

Results

ClearReadCT is a commercially available CAD system with a
pre-trained, machine learning classifier for PNL detection in
CT scans with or without contrast enhancement. In this retro-
spective diagnostic accuracy study, we aimed to (1) proof the
fidelity of two CAD releases (V1 and V2) and (2) define the
scanning and image reconstruction parameters for optimal
CAD-performance, such as the slice thickness, kernel and
contrast-enhancement.

Vessel suppression is efficient in contrast-enhanced
and non-enhanced images

ClearReadCT implements a background subtraction algorithm
that detects and subtracts the vascular tree from CECT and
NECT, soft and lung kernel reconstructions, referred to as
Bvessel suppression^ (Fig. 2). We asked whether vessel sup-
pression could Bsuppress^ pulmonary nodules as well, hence
jeopardizing the detection of potential cancers. From a total of
53 non-segmented (FN) nodules (V1, V2 and not readable
scans), only one was eliminated during the vessel suppression
step – the rest was detectable in the background-suppressed
images (Fig. 2c, d, g, h) and the segmentation failed for other
reasons. Interestingly, most FNs were localized juxtapleural
(29/53, 54.72%), 11 FN were juxtahilar (20.76%), 10 FN
juxtavascular (18.87%) and only in a small FN proportion
was adjacent to scar tissue (3/53, 5.67%).

ClearReadCT versions reveal a low inter-rater
agreement

The retrospective dataset of this study derives from three CT-
scanners (Siemens) with different technical features: a 64-row
model (64xDEF) and two different 16-row models (16xEMO
and 16xDEF). Patients were distributed as 82/15/3 amongst
64xDEF/16xEMO/16xDEF. In order to merge data from dif-
ferent scanners we compared the PNLs for attenuation and
volume, finding no apparent differences between different
scanner (P > 0.05 Kruskal-Wallis ANOVA on ranks).

V1 and/or V2 segmented toge ther 387 PNLs
(Supplementary Table 2), albeit with a poor overlap.
Cohen’s statistic reveals no significant agreement between
ClearReadCTV1 and V2 (55.97%) with an unweighted kappa
coefficient of −0.02. The character of the non-overlapping
segmentations between versions was independent of the scan-
ner type, contrast enhancement, volume or attenuation.

CAD-assisted volumetry

The maximum diameter (Dmax in mm) was favored as a
PNL-size metric in order to conform to the clinical guidelines
for risk stratification and PNL follow-up [10]. However,
CAD-implementation allows for a volumetric analysis that
might be beneficial towards the classical metrics. A volume-
maximum diameter regression study (Supplementary Fig. 1 a)
reveals a highly significant volume-diameter correlation for
both software versions, which supports that the Dmax-based
statistics correlate well to the volume-based statistics in this
database, P < <0.001, ANOVA. Nevertheless, the low good-
ness of fitting (Supplementary Fig. 1 a) for both V1 and V2
(R2 0.525 and 0.607, respectively) points towards PNL shape
irregularities which might convey relevant information. A
shape analysis revealed that the distribution of the CAD-
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detected PNLs did not differ between the tested Versions
(Supplementary Fig. 1 b and 1c), P > 0.05, Mann-Whitney
rank-sum test between V1 and V2.

CAD sensitivity is optimal in thick-slab, soft-tissue
kernel reconstructions of contrast-enhanced CT scans

We opted to analyze how the slice thickness, contrast enhance-
ment and reconstruction kernel could influence the diagnostic
accuracy of ClearReadCT. For this we compared volume data
reconstructed with soft or lung kernel at 0.75mm, 1.5 mm and
3.0 mm slabs in CECT and NECT (Supplementary Table 1).
Technically incompatible scans are referred to as Bpatient not
readable^.

The sensitivity (true positive rate, TPR) of V1 in soft-
tissue CECT was 68/74/84% for a slice thickness of 0.75/
1.5/3.0 mm respectively. The performance of V2 in CECT
was comparable to V1, with a TPR of 86/68/83% for the
corresponding slice thickness. The TPR was significantly

reduced in NECT, 33/75/63% for V1 and 67/38/63% for
V2, P = 0.025, Fischer’s exact test with Yates correction
(Supplementary Table 1 and Fig. 3a). Despite the positive
trend, the slice thickness did not significantly influence the
TPR, P > 0.05 Fischer’s exact test (Supplementary Table 1
and Fig. 3 a). Overall there was no statistically significant
benefit of the optimized V2 towards V1, P > 0.05
McNemar’s test for CECT, NECT, and all slice thicknesses
(Supplementary Table 1).

Thick slabs (3.0 mm) were reconstructed in both soft-
tissue and lung kernel. The TPR in CECT scans was
inferior in the lung- (maximum 63%) compared to the
soft-tissue kernel (maximum 84%). However, the lung
kernel allowed for a better PNL segmentation in NECT
scans (TPR approximately 83% in lung versus 63% in
soft-tissue NECT). The increased TPR in NECT lung
kernel data was achieved, however, at the cost of an
increased false positive rate (Supplementary Table 1,
Fig. 3b).

Fig. 3 a ClearReadCT sensitivity and positive predictive value. Tornado
plot for the true positive rate (TPR, blue) and positive predictive value
(PPV, green) of ClearReadCT for PNL segmentation in soft-tissue kernel
reconstructed CT scans. We compared different slice thickness (0.75, 1.5
and 3.0 mm) reconstructions with (CECT, right-handed bar plots) and
without (NECT, left-handed bar plot) contrast-enhancement. Across
different slice thickness, the difference was not statistically significant
in CECT and NECT, P > 0.05, Fischer’s exact test. Versions V1 and V2
performed equally when tested in similar conditions (kernel, slice
thickness), P > 0.05, McNemar’s test. Comparison between CECT and
NECT (all slice thickness merged) revealed a significant sensitivity
advantage of V2 upon contrast application, P = 0.025, Fischer’s exact
test. V1 showed only a mild trend with no statistical significance for

better sensitivity in CECT scans (P = 0.137, Fischer’s exact test). b
Lung kernel increases the segmentation rate of false positives without
influencing the sensitivity. Tornado plot for the TPR (blue) and PPV
(green) of ClearReadCT for PNL segmentation in soft-tissue and lung
kernel reconstructed CT scans of 3.0 mm slice thickness. We compared
CECT (right-handed bar plots) and NECT (left-handed bar plot). Versions
V1 and V2 performed equally when tested in similar conditions (image
contrast, kernel), P > 0.05, McNemar’s test. The kernel comparison
revealed no statistically significant advantage of the soft-tissue over the
lung kernel, P > 0.05, McNemar’s test. Reconstruction in lung kernel
increased the false positive rate thus negatively influencing the PPV
especially in NECT (Supplementary Table 1). V1, CAD version 1; V2,
CAD version 2
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Summarizing the above, PNL detection can be optimized
to a TRP of 84% and a PPVof 67% by using ClearReadCT in
thick, soft-tissue reconstructed CECT scans. While the TPR
was positively influenced by the contrast-enhancement, the
slice thickness was no significant modulator. Lung kernel
was not beneficial in CECT but increased the CAD sensitivity
in NECT at the cost of an increased false positive rate. Both
CAD versions were implemented with equal results.

Oversight detection

ClearReadCT segmented many overlooked PNLs. Oversights
were retrospectively verified by two radiologists blinded to
the original report. The dignity of oversights is unknown;
therefore they are dealt with as Badditional PNLs^
(Supplementary Table 1). In the thin slab (0.75 and 1.5 mm)
soft kernel reconstructions, ClearReadCT segmented approx-
imately 40-50% and 20% oversights in CECT/NECT.
Increasing the slice thickness to 3.0 mm reduced the additional
PNLs to 6-14%, which might partly reflect the increased PNL
conspicuity and the consecutive improved observer’s sensitiv-
ity in thicker reconstructions [11]. The lung kernel increased
the proportion of oversights in thick slabs to approximately 20
– 30% (compared to 6-14% in the soft-tissue kernel of the
same patients) in both CECT and NECT (Supplementary
Table 1). Interestingly, the oversights (abbreviated as ADD
in Fig. 4a and b) were significantly smaller in diameter and
less opaque compared to the PNLs detected by both the

observer and CAD (TP). Moreover, a shape analysis reveals
that oversights were rather irregular PNLs (Supplementary
Fig. 1b and c, Table 2).

Consecutively, CAD is advantageous as a second-read
method for the detection of small, irregular, subsolid and
ground-glass oversights, especially in thin slice and lung ker-
nel reconstructions. The distinction between oversights and
FP segmentations remains however a critical process that
should be carefully reviewed by a qualified radiologist.

ClearReadCT selectively detects small nodules
with attenuation values lower than 0 HU

CAD-classifiers might show different sensitivities for partic-
ular lesion sizes and opacities [12]. In order to reveal a possi-
ble volume-class predilection of the ClearReadCT classifier,
we analyzed the CAD sensitivity and specificity for different
nodule volumes. As a convention and for compatibility rea-
sons with the existing literature, we used the maximal diame-
ter as an indirect volume indicator. Regardless of the CAD
version applied, the median FN-diameter was above 30 mm
(Fig. 4a), the median FN-opacity around 0 HU (Fig. 4b) and
both were significantly higher compared to the corresponding
TP-segmentations, P < 0.0001 Mann-Whitney rank-sum test.
Accordingly, ClearReadCT is sensitive for the detection of
small nodules with attenuation values lower than 0 HU
(Table 2).

Fig. 4 ClearReadCT segments
small nodules with low
attenuation values. Box plots for
the maximal diameter (a) and
opacity (b) of the segmented (true
positive, TP), non-segmented
(false negative, FN) and
additionally detected (ADD)
nodules by ClearReadCT V1 and
V2. In panel (b), a custom lung
window (width 1500 HU, level −
600 HU) and soft tissue window
(width 350 HU, level 50 HU) are
illustrated as dark and light grey
zones next to the y-axis,
respectively. The asterisk (*)
denotes statistical significance,
P < 0.001 one-way ANOVA and
P < 0.05, Dunn’s pairwise post-
hoc test. Receiver operating
curves for opacity and maximal
diameter for V1 (c) and V2 (d)
reveal that both features are
negative modulators of the CAD
diagnostic accuracy. A, Area
under the curve; HU, Hounsfield
Units; V1, CAD version 1; V2,
CAD version 2
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ROC illustrate that large PNL diameter and high attenuation
values are negative modifiers of the CAD sensitivity with Areas
Under Curve (AUC) significantly below 0.5 (Fig. 4c and d). For
PNLs with a maximum diameter around 5 mm the sensitivity/
specificity was 90/7% for V1 and 99/3% for V2. For 10 mm
lesions, the sensitivity of V1/V2 was 57/78% and the specificity
in both cases lower than 15%, reflecting the high FP-rate. The
high FP-rate is a major drawback that should be addressed in
future versions.

The character of false positives

An important withdrawal of ClearReadCT is the high FP-rate
especially in thin, lung kernel slabs (Fig. 3a, b, Supplementary
Table 1). FP segmentations (red crosses and pink dots in Fig. 5a)
are significantly less opaque compared to the TP ones regardless
of their size (P < 0.05, 2-tailed t-test or Mann-Whitney rank-sum
test) for almost all protocols and CAD-versions (Fig. 5b). The FP
segmentations were classified into three groups: (1) infiltration/
scar/atelectasis, (2) vessel or (3) no correlate (Fig. 5c). All cate-
gories showed similar opacity values and shared a similar distri-
bution between lung (Fig. 5c, lower panel) and soft-tissue kernel
(Fig. 5c, upper panel),P = 0.52 OneWayANOVA. Note that the
detection of vessel fragments reflects a leaking activity of the
vessel suppression algorithm (Fig. 5 c, middle column in both
panels). Consequently, FP segmentations occur preferentially at
lower attenuation values and their character, predominantly scars,
dystelectasis and infiltrates, is not significantly affected by the
slice thickness, contrast enhancement or kernel selection.

Discussion

In this retrospective study, we evaluate the diagnostic accuracy of
ClearReadCT (Riverain). Our main finding is that the CAD

sensitivity can be optimized to 84%with a PPVof 67% by using
contrast-enhanced scans with thick slabs and soft-tissue kernel.

ClearReadCT performance is comparable to similar, com-
mercially available CAD applications. In a previous study of
diagnostic accuracy in low-dose CT scans [5], Lung VCAR
(General Electric Deutschland Holding GmbH, Frankfurt am
Main, Germany), ImageChecker® CT lung System (R2
Technology Inc., Sunnyvale, CA, USA), Syngovia Via Va20
(Siemens) and Cornell Via (Cornell University, Ithaca, NY,
USA) showed sensitivities between 56 and 70% for 5 mm
PNLs and 74-82% for PNLs with a maximal diameter of ap-
proximately 11 mm. The optimized sensitivity of
ClearReadCT for 5 mm and 10 mm lesions was 98/78%,
however at the cost of a very low specificity (5% and 15%).
Prakashini et al. [13] evaluated the CT Lung Nodule
Assessment (LNA) and Comparison Option (Philips GmbH,
Hamburg, Germany) in 1.4 mm slabs from a 64-row scanner
and found a TPR/PPV of approximately 91/67%. It is worth
noticing that the cumulative TPR/PPVof ClearReadCT for an
equal slab thickness was 75/45%.

The high FP-rate and the low PPV in the current and pre-
viously published CAD metrics bring into attention the
persisting and challenging problem of the FP detections by
CAD systems [7]. The tested CAD software (ClearReadCT,
Riverain) implements a pre-processing step for vascular tree
subtraction to increase the signal-to-noise ratio and thus facil-
itate the effectiveness of the classifier. The background sub-
traction algorithm showed precise results in both contrast-
enhanced and non-contrasted scans without suppressing the
juxtavascular PNLs. Although some Bvessel remnants^ were
detected as a low Bleaking^ activity of the background sup-
pression algorithm, ClearReadCT FPs were in the vast major-
ity unspecific, small size atelectasis or scars with low attenu-
ation values. Many research groups suggest innovating algo-
rithms for increasing the CAD specificity while preserving the

Table 2 Characteristics of detected nodules, CAD and observer’s oversights

True positive nodules (TP) False negative nodules (FN) = CAD
oversights

Additional nodules (ADD) detected by
CAD = observer’s oversights

V1 (n = 120) V2 (n = 119) V1 (n = 45) V2 (n = 40) V1 (n = 30) V2 (n = 28)

Size, Dmax (mm) 3.17/24.7,
11.14 ± 0.44

4.45/39.23,
15.68 ± 0.72

0.01/122,
36.27 ± 4.07

5.00/122.0,
39.35 ± 4.68

3.03/15.0,
6.07 ± 0.58

4.93/20.37,
7.46 ± 0.75

Opacity (HU) −604/813,
−23.68 ± 13.62

−598/148,
−47.33 ± 12.07

−236/62,
−0.56 ± 11.34

−236/1013, 40.45 ± 27.43 −657/−54,
−222.7 ± 36.57

−567/−55,
−178.07 ± 31.85

Shape index (mm−2) 0.6/145.16,
14.71 ± 2.00

1.5/1531.8**,
32.96 ± 12.89

n.a. n.a. 1.65/136.67,
47.73 ± 5.56

7.3/192.5,
68.08 ± 8.25

Summary table of all nodules detected in soft tissue and lung kernel, with and without enhancer. Nodule features: size as maximal diameter (Dmax) in
mm, average opacity in HU and shape index (Dmax/volume in mm−2 ). For all metrics: P < 0.001, one-way ANOVA and P < 0.05, Dunn’s post-hoc test
between TP and TN, TN and ADD, TP and ADD. Between V1 and V2, P> > 0.05 for all metrics, Mann-Whitney rank sum test. CAD, Computer-aided
Detection; HU, Hounsfield Units; V1, CAD version 1; V2, CAD version 2

* All metrics provided in (min/max, average ± SEM)

** Outlier
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high sensitivity [14–16]. Deep learning solutions, 2D and 3D
convolutional neuronal networks [17–19] and radiomic ap-
proaches [20] are independently suggested to achieve sensi-
tivities above the 95th percentile for pulmonary lesion seg-
mentation in reference, big-data databases. The plethora of
suggested solutions and the exponentially rising number of
publications signify the refractoriness of the problem and the
abundance of open challenges in the CAD field. Some authors
recognize individualities in different nodule size-groups and
suggest combinations of classifiers, each one dedicated to a
particular size-group [12]. An interesting approach for follow-
up scans was recently published by the group of Terasawa
et al. implementing temporal subtraction of consecutive scans
as a solution for background subtraction and automated cal-
culation of the VDT [21]. This method was effectively imple-
mented for the detection of vertebral metastasis [22], the re-
silience of the lung parenchyma and its high shape-
dependence on the respiratory movements might, however,
perplex the applicability of temporal subtraction in PNL de-
tection [21].

The current approach reveals some important features
of ClearReadCT that might improve its cl inical

implementation. By using biopsied PNLs we eliminated
the ground truth bias. The acquired level of evidence is
nevertheless hampered by the retrospective character of
the study and relatively low number of patients in some
subg roup s (NECT, t h i n s l ab r e con s t r u c t i on s ,
Supplementary Table 1). The main results of this study
are powered to 80% and support a clinically meaningful
result. Within the disadvantages of the current study one
should mention the lack of iterative image reconstruction
which could improve the CAD metrics [23, 24].
Moreover, this study does not include low-dose lung
scans. Since the low-dose lung CT defines a new trajec-
tory in the field of lung cancer screening [25–28] the
diagnostic accuracy of ClearReadCT should be tested in
a corresponding database in a future study. Finally, a
withdrawal of the current study is the unbalanced distri-
bution of the PNL size with the opacity, dignity and
neighboring structures. The team of Kobayashi et al. ap-
proaches this problematic by suggesting a uniform ran-
domized nodular lesion injection model into unremarkable
scans [29]. This standardization allows for a more precise
and unbiased quantification of different CAD classifiers.

Fig. 5 Character and features of false positives a Scatter plot of the
maximum diameter (mm) and opacity (HU) for True Positive (TP) and
False Positive (FP) PNLs of mixed dignity as segmented by
ClearReadCT V1 and V2. FP lesions show a lower density compared to
the TP ones and are scattered across lower attenuation values regardless
of their size, P < 0.001, Mann-Whitney rank-sum test. b Box plot for the
opacity of FP (pink) and TP (grey) lesions in the soft-tissue kernel (left-
handed panel) and lung kernel (right-handed panel). FP segmentations
reveal significantly lower opacity compared to TP ones in the soft-tissue
kernel and CECT lung kernel reconstructions, *P < 0.05 Mann-Whitney

rank-sum test. In NECT, no significant opacity difference was detected
between TP and FP, P > 0.05 Mann-Whitney rank-sum test; n.s., non-
significant. c The character of FP lesions was determined by
observation. Vertical scatter plot for FPs in soft-tissue (upper panel) and
lung kernel (lower panel) for CECT (green) and NECT (blue) scans. P =
0.52 One Way ANOVA, power < 0.80. Note that some vessels Bescape^
the vessel suppression algorithm and are segmented as FP lesions in both
soft-tissue and lung kernel. CECT, Contrast-Enhanced Computed
Tomography; NECT, Non-Enhanced Computed Tomography; HU,
Hounsfield Units; V1, CAD version 1; V2, CAD version 2
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Conclusions

ClearReadCT showed a sensitivity of 84% with a positive
predictive value of 67% when applied to contrast-enhanced
CT scans with thick slab, soft kernel reconstructions. The im-
plemented classifier is sensitive for small nodules with atten-
uation values lower than 0 HU and was efficient in oversight
detection especially in thin slab reconstructions. The major
withdrawal is the universal CAD-problem of a high FP rate
[7]. The need for a post-hoc observer evaluation restricts the
CAD applicability to a second read mode. Similar clinical
studies shall provide the developers with an unbiased feed-
back towards CAD-optimization and promote the smooth in-
tegration of machine learning applications into the clinical
practice.
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