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Abstract
Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed
Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization,
diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the
following fracture features, such as location of the fracture, number of pieces and deviation from the original location.
Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment
fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier.
Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the
removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data
(with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-
based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the
request.

Keywords CT images · Fractured bones · Contrast stretching · Histogram modeling · Connected component ·
Segmentation · Hierarchical structured labeling

Introduction

Complex bone injury, such as comminuted fracture1 is
the most common consequence of severe accidents (falling
from heights, for example) [3, 28]. Therefore, Computed

1A comminuted fracture happens when the bone breaks into several
pieces with possible dislocation.
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Tomographic (CT) images are crucial for such a study. To
analyze and diagnose the serious bone trauma that help
decide recovery plan, it requires a series of 2D X-ray
images [17]. Surgeons recommend CT stack – a set of
several CT slices – since it preserves the actual anatomic
structure of scanned organs [8, 13]. CT images are detailed
cross-sectional (tomographic) images. This means that it
provides anatomically accurate information about the area
under supervision without cutting.

It is not trivial to segment of bone tissues from sur-
rounded artifacts and to accurately identify fractured pieces
from CT images [16]. Further, the bone is made up of two
types of tissues: i) cortical tissue and ii) cancellous tissue.
Cortical tissues are present at the outer part of the bone.
They are dense and provide strength to the bone. Cancel-
lous tissues are present in the inner part of the bone and they
are spongy. We observe that both the tissues show intensity
variation over the slices. At the same time, exact same tis-
sue can have different intensity values over the slices. As
an example, Fig. 1 shows the intensity variation in cortical
tissues over the slices in the same CT stack. Near diaph-
ysis (i.e., at the shaft), the cortical tissues are brighter and
thicker as shown in Fig. 1a and therefore, the fractured
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Fig. 1 CT images from the
same patient having fractures: a
diaphysis b epiphysis

pieces can be easily identified. While, on moving nearer
to joints (i.e., at epiphysis), they become thinner and fuzzy
as shown in Fig. 1b. In some slices, they are invisible.
This means that the joint area is more fracture prone than
shaft. In such a context, fracture line detection can be a
tedious job. Like we have mentioned earlier, intensity val-
ues of cancellous tissues are lesser than CT range and as a
consequence, similarity with the values of surrounded soft
tissues can happen. Therefore, it is challenging to accurately
identify and locate fractured bone pieces in joint area [2].
Due to which, more often, we have over-segmentation or
incomplete segmentation.

Complex anatomical structure of bones, fuzzy fracture
line, arbitrary shape and size of fractured bone pieces,
dislocation and intensity variation are the few challenges in
the segmentation process. In addition, experts are required
to segment and label each fractured bone pieces since in
complicated fracture cases, bone pieces may get wrongly
connected due to dislocation or due to proximity and
resolution of CT images. To find a practical solution and to
minimize the expert’s intervention, orthopedics show their
interest towards the developing the automated tools that can
segment and label each fractured bone piece by considering
patient-specific bone anatomy.

The proposed work presents a reliable framework
that will automatically segment and label fractured bone
pieces by considering patient-specific bone anatomy. It is
composed of three steps. The first step is unwanted artifacts
removal. In this step, a robust CT image pre-processing
technique is devised that is based on contrast stretching and
histogram modeling. The technique effectively removes the
unwanted artifacts, such as soft tissue (flesh) surrounded
by bone tissue in addition to bone region enhancement.
In the second step, eight connected component-based
segmentation method is adapted to segment each fractured
bone. In the third step, an innovative tree structure-based

hierarchical labeling method is applied to assign a unique
label to each fracture piece by considering bone anatomy.

This paper is organized as follows. Other methods
developed to segment fractured bones are discussed in
the “Related works”. “Proposed framework” describes the
design and development of proposed framework and it
includes pre-processing, segmentation and label assignment
techniques that are respectively used to remove unwanted
artifacts such as flesh, to segment (healthy/fractured)
regions, and to assign unique label each segmented region.
“Results” provides a comparison of proposed technique
with other previous methods in addition to the clinical
ground truth. Further, it provides the results of a proposed
method on real patient-specific images. “Conclusions and
future work” concludes the paper.

Related works

In the literature, several successful researches have been
made to segment healthy as well as fractured bones from CT
images. However, type of bones and its anatomy, intensity
variation of the same tissues over the slices, resolution of
CT images are a few challenges to segment healthy bone
[28]. In addition, to segment fractured bone pieces, where
dislocation and wrong connection of dislocated pieces
can make problem more complicated [16]. The previous
solutions may not be generic enough so that it can work for
all cases. For a quick review, some segmentation techniques
that are used to segment medical images are enlisted in [17,
20].

Tomazevic et al. [27] proposed a manual and semi-auto-
matic method to segment bone tissue interactively. They
adapted thresholding-based segmentation technique to
detect bone tissue from CT images. Tanssani et al. [25]
used a global fixed threshold value to segment fracture bone
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tissue. However, identifying such value is hard due intensity
variation problem over the slices. A reasonable threshold-
based segmentation technique is adapted to perform bina-
rization of CT image having humerus bone [7]. Several
morphological operations and Gabor wavelet transform are
used to extract the cortical and trabecular tissues from the
studied image.

In addition to adapting different variations in threshol-
ding-based segmentation approaches, more often, authors
used 2D [3, 6, 16] or 3D [11, 12] region growing technique
to segment and label fracture bones. Paulano et al. [16]
used the 2D region growing approach to segment and label
fractured bone pieces from CT images. In their technique,
initially, curvature flow filter is applied to each CT slice
to enhance bone region boundaries. Several seeds (i.e., one
seed per fracture piece) are then accepted from user and
region growing algorithm is executed to segment and label
each fractured bone piece. Also, new seed is accepted to
separate erroneously connected fractured bone pieces. Lee
et. al. [14] used multi-region growing approach, where it
scans the entire image and identifies several pixels (one
pixel per region) as seed points whose intensity value
is above a specified threshold. If in case a multi-region
approach fails, manual region-segmentation is then used to
separate incorrectly joined fractured bone pieces and region
merging approach is used to combine over-segmented
regions.

To improve the accuracy and to minimize the user
interventions, few authors used a sheetness measure, which
is based on image enhancement technique for cortical
and cancellous bone identification (separately) [3, 6]. The
enhanced images are then segmented by applying 3D region
growing algorithm. Fornaro et al. [3] used an interactive
graph-cut method to improve weak edges and to separate
wrongly connected bone pieces. At the end, unique labels
are assigned using 3D connected labeling algorithm. Huang
et al. [9] adapted a constrained 3D region growing algorithm
to extract the bone regions with correct bone counters. To
avoid over-segmentation and to get proper bone boundaries,
an appropriate threshold value needs to be identified (via the
iteration process) for every slice, which is time consuming
and expensive. Other than this, deformable models [4,
21], probabilistic watershed transform [22, 23], registration-
based models [15] are used to segment the fractured bone
piecess from CT images.

In summary, the previously reported techniques used
thresholding and region growing-based segmentation algo-
rithms to segment and label the fractured bone pieces from
CT images. Commercially available medical image analy-
sis applications like 3D slicer, DICOMViewer, Dolphin and
InVesalius are also no exception to this. In such applications,
the bone region segmentation task is based on user-specified
threshold values [18, 24]. In addition, these applications

provide eraser and filler like tools to separate incorrectly
joined fracture bone pieces and to connect fuzzy boundaries
respectively. The commercial tools and most of the above-
discussed techniques require a lot of user interventions, such
as specifying threshold value or seed points, to achieve the
desired output. In the literature, no attempts were made to
provide online medical imaging dataset for computer aided
diagnosis (CAD) system development for bone fracture
detection and analysis. They have integrated with collabo-
rative environment: medical and engineering programs. In
addition, fewer attempts are made to develop an effective
pre-processing technique that will remove all unwanted arti-
facts like flesh, CT bed, cables, which will help to enhance
the bone regions and their boundaries. The labeling logic
also has a limitation, if certain CT slice contains more than
one bone region they may consider as fractured pieces.
To overcome these limitations, we developed a framework
which will segment and assigns a unique label automati-
cally and accurately by considering patient-specific bone
anatomy. In the next section, the design and development of
the proposed framework is described in detail.

Proposed framework

Data acquisition

Developing CAD system or a Virtual Reality (VR) -based
simulators for skill acquisition and training is an emerging
field in orthopedics. Patient specific data collection in
the form of medical images like X-ray, CT or Magnetic
Resonance Imaging (MRI) is the initial step in expert system
development [19]. Hospitals and radiology centers, due to
legal issues, cannot share data (even for research purpose,
which is not expected [26]. To overcome this difficulty,
in our study, twenty-eight patient-specific CT stacks were
collected from several radiology centers and hospitals:
PrismMedical Diagnostics lab, Chhatrapati Shivaji Maharaj
Sarvopachar Ruganalay and Ashwini Hospital (in India).
Also, we have collected CT data from different sources
(different CT scan machines) with different specifications
and have annotated by the experts. Such annotations help
measure the performance of the techniques/tools.

Each CT stack is a collection of hundreds of CT
slices (ranging from one hundred to six hundred). The
number of slices per stack depends upon the area under
supervision, the severity of the injury, the thickness of
each slice and distance between two slices. In total, 8000
DICOM2 images are collected. Each CT image is of
512 × 512 pixels size. DICOM file is made up of two
sections: i) header and ii) data. The header section contains

2DICOM: Digital Imaging and Communications in Medicine
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Fig. 2 CT images having
fracture at cortical tissue region
a ith and b i+10th slice

patient-specific information like a patient number, name,
and age whereas data section contains a scanned portion.
Following ethical laws like HIPPA3 laws and/or IRB4

protocol, we do not disclose patient-specific information.
We employed the MATLAB script discussed in [10] to
remove patient-specific information from CT image. This
means that the script uses pre-defined function dicomanon
(part of the MATLAB Image Processing Toolbox) to
remove confidential medical data from a DICOM file. Our
collection can be provided for research purpose (available
upon request).

Data annotation

In this study, expert orthopedic surgeons and radiologists
annotated every tenth slice in each CT stack. The primary
reason behind annotating every tenth slice is experts do not
find difference in CT images (especially fractured regions)
for at least ten slices. The observations are there was a
marginal change in size of fracture bones/components and
in their positions. The sample slices are shown in Figs. 2
and 3. Figure 2 shows ith and i+10th slice in cortical
tissue region, where we can observe that fractured bone
pieces remain in the same location. Whereas in Fig. 3, ith

and i+10th slice in cancellous tissue region shows little
growth in size of fractured components. During annotation
process, only outer cortex of bone regions is highlighted
because while dealing with fracture, experts are interested
in identifying dis-connectivity in bone outer cortex.

Flesh removal

Flesh i.e., soft tissues surround by bone tissue covers a
maximum portion in the CT image. To develop an efficient

3HIPPA: Health Insurance Portability and Accountability Act
4IRB: Institutional Review Board

fracture detection and segmentation, it is necessary to devise
a technique that can remove unwanted flesh from an image
without affecting the region-of-interest i.e., bone tissue. In
the proposed framework, we implement contrast stretching
and histogram modeling-based flesh removal technique to
remove unwanted flesh. Besides, our technique enhances
the bone tissue.

Contrast enhancement

We first convert an image into grayscale and plot the
histogram (see Fig. 4b for sample CT image Fig. 4a). In
Fig. 4b, we observe that the studied image is low contrast
image as maximum pixels fall under the narrow range (70-
150). To enhance the image, we perform contrast stretching,
where it shifts and stretches the gray level range of the input
image to occupy the entire dynamic range [5]:

Iout =((Iin − iil)/OriginalRange×DesiredRange)+iol (1)

OriginalRange = iih − iil

DesiredRange = ioh − iol

where

iil = ComputedLowIntensity;
iih = ComputedHighIntensity;
iol = DesiredLowIntensity (i.e.0);
ioh = DesiredHighIntensity (i.e.1)

The function accepts four parameters: i) actual (input
image specific) low-intensity value, ii) actual high-intensity
value, iii) desired low-intensity value and iv) desired high-
intensity value. To cover the entire dynamic range, desired
low and high-intensity values are set to 0 and 1 respectively
whereas actual low, and high-intensity values are computed
using intensity computation function. Figure 5 describes the
detailed procedure of intensity computation function.
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Fig. 3 CT images having
fracture at cancellous tissue
region a ith and b i+10th slice

To obtain actual (i.e., image specific) low and high-
intensity values using intensity transformation function, the
function accepts an input intensity value as a parameter and
starts scanning image to find the first pixel whose intensity
value is higher than the value of the parameter. A 5 × 5
square shaped window is then formed by considering that
pixel as the first pixel in the window and variance of that
window is calculated:

V ariance = HighIntensity − LowIntensity (2)

The difference (i.e., variance) must be as less as possible
because low variance indicates flesh or bone tissues are
evenly spread in that region. Such a region is more suitable
to identify resultant intensity value. Hence in our work,
the threshold is set to 20 to obtain a window with the
desired variance. If the variance is more than the predefined
threshold, the same process is repeated until getting the
window with variance less than the threshold. To obtain
the actual low and high-intensity values, an average of that
window is calculated and divided it by 255:

Histogram plots are observed to find the actual low-
intensity value. By inspecting histogram beans, we skipped
the first bean with the highest value as it represented
dark background pixels and considered the value associated
with the second highest bean is passed as a parameter for
predicting actual low-intensity value. To find out actual
high-intensity value, the parameter is set to 220 as cortical
bone tissue ranges from 220 to 255.

Mask formation

After contrast stretching, bone regions are enhanced and at
the same time, most of the artifacts get erased. However, in
a few images, wherein flesh part is a little bit brighter and
dense; some artifacts may remain even after pre-processing.
These are the borderlines between flesh and background. To
remove the remaining artifacts, the entire image is scanned
once by creating a 3 × 3 square mask. If the mask/window
has less number of non-zero pixels (we consider 4), then all
pixels in that window are reset to 0.

Fig. 4 a CT image and b its
histogram
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Fig. 5 Flowchart: intensity computation function

In Fig. 6, the image having a label (a) is the original CT
image. The image having label (b) is resultant image after
applying contrast stretching and label (c) is the resultant
image after applying mask. The proposed flesh removal
method (having contrast stretching, histogram modeling
and mask moving processes) requires 0.0160 seconds to
complete one CT image.

Segmentation

The result of the segmentation process largely depends
on the correct selection and application of pre-processing

technique. That is, how nicely the desired image contents
are enhanced (in our case bone regions) and how effectively
the unwanted artifacts are removed from the image after
applying preprocessing technique are important. The
proposed pre-processing technique exactly does the same.
It removes all unwanted artifacts and enhances the bone
regions. This helps come up with simpler segmentation
technique with precision. It accepts the enhanced CT
image and extracts the bone regions by using connected
component (CC)-based segmentation method. To extract
desired region from 2D image like CT slice, one of the
two: four and eight CC-based segmentation technique can
be applied. Initially, we opted four CC-based technique but
it did not provide optimal/expected results in the CT slices
containing very thin outer layer of cortical tissues. The
primary reasons behind this is, four CC-based technique
is sensitive to a small changes in the fractured regions.
Therefore, to consider all the neighboring pixels for the
accurate expansion of fractured bone pieces, eight CC-
based segmentation technique is preferred, which has been
designed empirically. The detailed segmentation procedure
is depicted in Fig. 7.

To extract and label the fractured bone pieces, the entire
image is scanned several iterations. The scanning process
starts from the top left corner, and the first pixel with
intensity value more than 220 is identified. The algo-
rithm will then inspect adjacent pixels which satisfy n8(p)

and have an intensity value of the pixels more than 70
(initial value cancellous tissue). The pixels that satisfy the
above two conditions are get added to the current segmented
region. If the size of currently segmented region is greater
than the segmented region in the previous slice (as discussed
in “Introduction”, the following situation may occur: two
or more fractured bone pieces may get disconnected due
to dislocation or proximity and resolution problem of CT
imaging). In the latter case, morphological opening opera-
tion is performed to separate wrongly connected regions.
The segmented regions are stored and the process is repea-
ted until no more fractured bone pieces (or components) are
identified.

Fig. 6 a Original image has been enhanced by applying b intensity transformation function and c mask
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Fig. 7 Flowchart: segmentation process

Label assignment

Sine the fracture starts from first slice, it is unusual
that the machine has to deal with it without having a-
priori knowledge about unfractured areas in that particular
location(s). However, it is an inherent practice for the
radiologists. The proposed tree structure-based hierarchical
labeling method assigns unique labels by considering bone
anatomy. This means that if current CT slice contains more
than one bones i.e., fractured into pieces, it then assigns
different labels to all bone pieces. Moreover, it assigns
appropriate labels for each fractured bone pieces of single
bone. The proposed labeling technique assigns the ith label
to each independent bone present in the CT image. As an
example, if any ith bone is broken into n pieces, we have
labels: ij , where j = {1, 2, . . . , n}. Figure 8 can help
understand the labeling process.

An iterative labeling process – an extension of segmen-
tation logic – starts its execution from the first CT slice.
For assigning an appropriate label to the currently extracted
region, labeling process consults the result of the previous

Fig. 8 Flowchart: label assignment process

slice. It randomly selects a pixel from the segmented region
and checks whether that pixel is present in pixel-list of the
previous slice. The value of variable n is incremented by 1
if the selected pixel is present in the list and the variable N is
incremented by 1, otherwise. The increment in N indicates
that new bone region is found in the current slice whereas
the increment in n specifies that fracture occurs in existing
bone region. After assigning a suitable label to the consid-
ered segmented region, that region is subtracted from the
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input image and temperately stored in a file. Subtraction is
done to consider the next region in the slice (if exists) and to
prevent some over-segmentation cases. If subtraction results
in the non-empty image, entire labeling process can then be
iterated again to assign a label for the remaining region. If
not, the segmented regions stored in separate temporary files
are collected to reform original image with assigned labels
and it will then proceed for next slice. CT slice iand i + 1
from same CT stack is shown in Fig. 9a and b respectively.
The result of the labeling process per iteration is shown in
Fig. 9c and d respectively.

Unlike other labeling methods, the proposed method
assigns specific labels by considering bone anatomy, i.e.,
by considering a number of individual bones and their
fractures (bone pieces). Other methods in the literature,
e.g., [16] accept several seeds from the user and propagate
those. While accepting a seed, the propagation logic does
not consider the number of individual bones nor do it
takes number of fractured bone pieces for label assignment
process.

Results

Our results

To validate the proposed method (for segmentation and
labeling the fractured bone pieces from real patient-specific
CT images), as discussed in the data acquisition section
512 × 512 sized, patient-specific CT images were used.
These data were collected from several radiology centers
in India. Even though we observe variations in resolution
of CT images, the bone under supervision (region-of-
interest), type of fracture, and fracture complexity, the
proposed method gives promising results. As promised,
it can segment and label each fractured bone piece by
considering specific bone anatomy. Figure 10a shows
the original CT image having healthy tibia and fibula.
Figure 10b shows the resultant image. Note that the lebels:
11 and 21 are assigned to tibia and fibula respectively. The
assigned labels can be interpreted as the CT image has
two bones without fracture. Figure 10c contains original

Fig. 9 CT slice (a) i, (b) i+1 and
(c) first, and (d) second fracture
piece of CT slice i+1 with label
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Fig. 10 Input images: a CT
image having healthy tibia and
fibula bones and c CT image
having fractured patella and
femur bones, and their
corresponding outputs
respectively in b and d

CT image having fractured patella and femur bone pieces.
Figure 10d provides segmented and labeled fractured bone
pieces, where it has two bones and each contains two
fractured bone pieces.

Expert-based decision

The ultimate users of CAD systems are the surgeons (and
technologies) in the respective domains. Therefore, we
follow clinical ground truth to make sure whether our
results are correct/accurate. By confirming literature for
segmentation of fractured bone(s), we have not found pre-
vious works that worked with clinical ground truth. In
this study, apart from the comparison with clinical ground
truth provided by expert orthopedic surgeons and radi-
ologists, we will make sure that our method has poten-
tial so that further comparison with state-of-art segmen-
tation techniques (see “Comparison with state-of-the-art
techniques”) is possible.

To visualize how accurate is the proposed method
(qualitatively speaking), we superimpose both images that
come from clinical ground truth (annotated image) and
result of our algorithm. The common pixels in the both
images are highlighted with yellow color which shows the
union of both images. More number of highlighted pixels
indicate that, the result of proposed method is same as
that of clinical ground truth. In our study, accuracy can be
calculated as

Accuracy = Number of pixels in union set

Number of pixels in annotation set
×100. (3)

Figure 11a shows the original CT image having fracture
at femur bone. Figure 11b and c respectively shows the
annotated image and output of proposed method. Figure 11d
shows the result of overlapping of output image and
annotated image. The pixels in yellow show the similarity.
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Fig. 11 Comparison with
clinical ground truth a Original
CT image b clinical ground
truth c result of proposed
method d overlapped image

In our experiment, we have used expert delineated patient-
specific CT images and have achieved an accuracy of 95 %.
Note that 1000 annotated images (of 8000 CT images) were
used for validation.

Comparison with state-of-the-art techniques

Apart from testing on real patient-specific CT images, the
performance of the proposed technique is compared with
other segmentation techniques. These techniques are suc-
cessfully implemented by other researchers to segment and
label healthy and fractured bones. In our comparison, three
well-known techniques are used: a) thresholding-based

[25, 27]; b) active contour-based [1]; and c) 2D region
growing-based [13, 16] segmentation techniques. Table 1
shows the comparison of several segmentation techniques.
Moreover, to visualize the results, all techniques, in Fig. 12,
we have shown the results from all techniques that are used
to segment fractured bone pieces in cortical and cancellous
bone tissue regions.

In Fig. 12, two different tissue regions are used to
demonstrate how different techniques work:

– Cortical tissue region (see first column of Fig. 12).
– Cancellous tissue regions (see second column of

Fig. 12)

Table 1 Comparison

Method Input Output Accuracy

Thresholding Threshold value Multiple regions 84.20%

Active contour Mask (define) Multiple regions 90.12%

Region growing Seed points A region per seed 92.32%

Proposed method − Fractured bone pieces 95.45%
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Fig. 12 The results obtained
after applying various
segmentation methods. First
row: CT images having fractures
in cortical tissue (left) and
cancellous tissue (right). In
other rows, output images are
shown: thresholding (second
row), active contour (third row),
region growing (forth row) and
proposed method (fifth row)
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Fig. 13 Labeling after
segmentation with the proposed
method. In the first image
(cortical tissue), there are three
different labels: 11, 12 and 13,
where the first number in any
pair refers to bone number in
that CT image and the second
number refers to fractured bone
pieces (if any). For example, 13
represents the label of the first
bone with third fractured bone
piece

In case of cortical tissue region segmentation, every
technique has satisfactory results. If we perform close
comparison, thresholding-based segmentation technique
provides better results to slices in which the presence of
cortical tissues are more. Also, it does not require any
user intervention. On the other hand, we have observed
that it is not appropriate for CT images having fractured
pieces in cancellous tissue regions since it is sensitive to
noise and therefore label assignment process does hold
expected output. As a consequence, it may not split wrongly
connected fractured bone pieces. The active contour-
based segmentation method gives promising results without
performing any preprocessing. However, it requires large
number of iterations (more than 1000) to achieve desired
results. The region growing approach is more suitable
for fracture bone segmentation and labeling. Again, like
before, it requires user intervention (i.e., use of seed points
to start the process). It is interesting to note that the
results are better when it combines with contrast-stretching
CT image enhancement. In contras, the proposed method
gives promising results for both tissue regions. Due to
the application of the flesh removal technique, all artifacts
are erased, and the image is enhanced. Further, it does
not require user intervention to segment and label fracture
bone pieces. Using the exact same input images (Fig. 12),
following the segmentation results, labels are shown in
Fig. 13.

Conclusion and future work

In this paper, we have a presented a segmentation fretwork
that involves three steps: flesh removal, segmentation
and labeling. A simple and precise, histogram modeling
and contrast stretching-based pre-processing technique has
been devised. It is responsible for removing unwanted
artifacts and/or flesh that covers bone tissues that ultimately
help enhance bone regions. A connected component-based
segmentation algorithm has been designed to extract and
label fractured bone pieces. In our labeling process, it has

assigned unique labels to fractured bone pieces while taking
bone anatomy into account. Unlike other methods in the
literature, it assigns labels in a hierarchal manner to several
fractured bone pieces of different bones so that it is easier
for the user to bifurcate several individual bones and their
fractured bone pieces independently. To comment on the
correctness of the proposed method, we have tested on real
patient-specific CT stacks. We have compared our results
with clinical ground truth, which is our primary concern
and have achieved an accuracy of 95.45%. Further, we have
compared with some other previous segmentation methods.

Besides, we plan to make CT database publicly avail-
able (for research purpose) along with clinical ground
truth (annotated images). In this study, since 1000 images
(of 8000 CT images) are annotated, for the complete
annotation, we aim to develop a machine learning-based
technique (semi-supervised). Also, we plan to employ
modern data-driven segmentation methods, such as Reti-
nanet and Mask-RCNN to automatically segment and label
fractured bone pieces.
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