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Abstract
Operating room (OR) utilization is a significant determinant of hospital profitability. One aspect of this is surgical scheduling,
which depends on accurate predictions of case duration. This has been done historically by either the surgeon based on personal
experience, or by an electronic health record (EHR) based on averaged historical means for case duration. Here, we compare the
predicted case duration (pCD) accuracy of a novel machine-learning algorithm over a 3-month period. A proprietary machine
learning algorithm was applied utilizing operating room factors such as patient demographic data, pre-surgical milestones, and
hospital logistics and compared to that of a conventional EHR. Actual case duration and pCD (Leap Rail vs EHR) was obtained at
one institution over the span of 3 months. Actual case duration was defined as time between patient entry into an OR and time of
exit. pCD was defined as case time allotted by either Leap Rail or EHR. Cases where Leap Rail was unable to generate a pCD
were excluded. A total of 1059 surgical cases were performed during the study period, with 990 cases being eligible for the study.
Over all sub-specialties, Leap Rail showed a 7 min improvement in absolute difference between pCD and actual case duration
when compared to conventional EHR (p < 0.0001). In aggregate, the Leap Rail method resulted in a 70% reduction in overall
scheduling inaccuracy. Machine-learning algorithms are a promising method of increasing pCD accuracy and represent one
means of improving OR planning and efficiency.
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Introduction

Up to 60% of hospitalized patients will eventually require
surgical intervention, making the operating room (OR) simul-
taneously a significant source of revenue and overhead [1, 2].

One factor that contributes to a significant overhead cost is the
inefficient use of OR time [3]. OR utilization is a metric that is
often used to determine the efficiency of OR use and com-
pared against known benchmarks [4]. Inadequate estimation
of case duration can lead to both under- and overutilization of
the OR time.

The process of surgical scheduling begins by compiling a
list of cases and their predicted durations. If cases consistently
run longer than anticipated, OR overutilization will result in
costly overtime pay and staff dissatisfaction. Even worse, if
case times are consistently shorter than expected, OR under-
utilization will result in increased staff idle time, which is
associated with up to a 60% higher cost [5]. Furthermore,
scheduling inefficiencies often have downstream effects on
various performance metrics (i.e., length of hospital stay, pa-
tient satisfaction), which can have large ramifications on pa-
tient outcomes and hospital reimbursement.

One common approach to predicting case duration places
the responsibility upon the surgeon, who personally reserves a
block of OR time based on surgical approach, patient
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comorbidities, and clinician expertise. With this method, sur-
geons overestimate case duration up to 32% of the time, and
underestimate 42% of the time [6]. Another common ap-
proach uses the electronic health record (EHR) to calculate a
case duration based on historical data for a given procedure
and/or surgeon. When comparing these two approaches,
EHR-generated case times have been shown to have a mod-
estly higher accuracy [7]. However, commercially available
EHRs only generate case durations for the average patient –
it does not take patient factors (e.g. age, sex, body mass index,
allergies, ASA Physical Status classification and associated
comorbidities), procedure-specific considerations (e.g. im-
plant type, use of invasive monitoring, anesthesia type), hos-
pital logistics (staff, equipment, time of day, day of the week),
or prior milestones (e.g. case delays, cancellations, turnover
times) into account, despite studies showing that these factors
can have up to a 30% impact on total case duration [8, 9].

A third approach that is rarely employed is to combine the
first two approaches by combining clinician input with EHR-
generated predicted case duration (pCD), defined as the pre-
dicted time between a patient’s entry into the OR and their
exit. A more novel approach to this would be to utilize
machine-learning with natural language processing to lever-
age pre-existing data in the EHR in order to tailor pCD to each
patient. Our study compares the performance of one such
novel algorithm to the conventional methods of using histor-
ical means. We hypothesized that there will be a significant
improvement in pCD accuracy. If this is the case, this new
approach to predicting case duration may represent an addi-
tional means of improving OR efficiency and facilitating
scheduling of cases.

Methods

Feature selection

Formation of the algorithm began with feature selection. To
do so, data at the institutional level were pushed through a
series of Extraction, Transformation, and Loading processes
(ETL) in order to correlate and optimize data for consumption
by the machine-learning engine. The original dataset going
through this ETL process for each case included patient infor-
mation, providers involved in the case, facility details, proce-
dure being performed, as well as prior events in the surgical
suite. Table 1 summarizes some of the information processed
in this step. All of the data points that are input into the model
came from existing documentation about surgical cases in an
EHR system. Given that these data can be in different formats
across different EHR systems (or even different versions of
the same EHR system), the Leap Rail platform is designed
such that it is capable of extracting this information from a
variety of different input formats and systems. These raw data

are then staged and transformed into a tab-separated values
file format and fed into the machine learning model. The out-
put is a simple numeric prediction for the length of surgical
cases which can be published in a variety of formats, depend-
ing on the needs of the consuming system.

Appropriate numeric representations were assigned to non-
numeric informative attributes such as free text surgeon com-
ments in the EHR. This information was analyzed in order to
build a corresponding set of relevant individual measurable
properties: features [10]. Choosing informative, discriminat-
ing and independent features is a crucial step for an effective
algorithm. This is an iterative process and the resulting fea-
tures can vary by the dataset being used for training. For the
machine-learning algorithm used in this study, over 1500 fea-
tures were identified and subsequently fed into various
machine-learning algorithms such as gradient-boosted tree re-
gression, decision trees, and random forests [11–13].

Model development and training

The proprietary Leap Rail® engine uses a combination of
supervised learning algorithms. A supervised learning algo-
rithmmakes predictions based on a set of examples [14]. Each
example used for training is labeled with the value of interest.
For this study, the examples given to the supervised learning
algorithms were historical surgical cases performed at the in-
stitution (n ~15,000), and the value of interest was the actual
case duration.

A supervised learning algorithm looks for patterns in those
labels. It can use any information that might be relevant
among all the provided features in training data. Each algo-
rithm looks for different types of patterns. After the algorithm
finds the best patterns it can, it uses that pattern in making
predictions for future cases.

In order to select the best algorithm for the cases performed
at the institution, historical case data were split into training
and test sets. The Leap Rail engine was exposed to the training
data in order to create multiple models using different algo-
rithms and feature sets, and their performance was subse-
quently measured against unseen surgical cases using the test
set. Model performance was objectively compared, and the
most accurate model was selected for use at the institution.

The winning model was deployed and used for predicting
duration of unseen future surgical cases. In this study, we have
evaluated the accuracy of pCD generated by the Leap Rail
engine on these unseen cases compared to the EHR pCD
predictions.

Study data/variables collected

All data were received from Leap Rail, Inc. (San Francisco,
CA, USA). All potential patient or clinician identifiers were
removed prior to data transmission and analysis. For this
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study, we examined all operative cases performed at
NorthBay Healthcare, a Level II Trauma center located in
Solano County, California from January to March 2018.
Raw data were collected and subsequently provided by
Leap Rail, Inc., the developer of the machine-learning algo-
rithm used for this study. Variables collected from each case
included primary procedure, subspecialty, EHR-predicted
duration, and actual case duration. EHR-predicted case times
were generated using the Cerner System (North Kansas
City, MO, USA) currently used at the study facility, which
did so by using historical means. Actual case duration was
defined as the patient in-room time to patient out-of-room
time. Each procedure name was determined by its corre-
sponding ICD-10 code, while the primary specialty for each
case was determined by recording the booking surgeon’s
credentials. Performing surgeons were aware of Leap Rail
pCD as well as the pCD generated by the existing EHR
(Cerner).

Surgical cases were excluded from the study if the Leap
Rail engine was unable to generate a predicted case time
due to insufficient training data. There were no further
exclusion criteria for this study. Microsoft Excel 2016
(Redmond, WA, USA) was used for table and figure
production.

Statistical methods

The primary outcome was the absolute difference between
the actual duration and the predicted value (i.e. prediction
error). It was summarized using median value and interquar-
tile range (Q1-Q3), and was compared using Wilcoxon rank-
sum test between Leap Rail and EHR groups. Additionally,
for each subspecialty, the prediction error was compared
using the same test and unadjusted p values were reported.
When defining having prediction error ≤ 15 min as accept-
able, a Chi-square test was performed to compare whether
there was a significant difference of the number of accept-
able predictions in each group. All analyses were performed
using R software version 3.4.1. Statistical tests were two-
sided with α = 0.05.

Results

A total of 1059 surgical cases were performed at NorthBay
Healthcare during the study period of three months. Leap Rail
was able to generate a predicted time for 990 of these cases,
which represented approximately 93.5% of total surgical vol-
ume. No further cases were excluded. The most heavily rep-
resented subspecialties were Gastroenterology (n = 207,
20.9%), General Surgery (n = 240, 24.2%), and Orthopedics
(n = 166, 16.8%). The least represented were Pulmonary (n =
1, 0.1%), Oral/Maxillofacial (n = 2, 0.2%), and Interventional
Radiology (n = 4, 0.4%).

For all cases, the median absolute difference between actual
and predicted case times was 20 min for Leap Rail (Q1-Q3, 9–
40) and 27 min (Q1-Q3, 13–50) for EHR (Cerner) (Table 2),
demonstrating a 7-min improvement for Leap Rail predictions
(p value<0.0001). A density distribution plot (Fig. 1) compar-
ing the frequency of pCD error by group further illustrates this
improvement. Here, the curve for Leap Rail predictions is
shifted towards the left, indicating both an increased likelihood
of smaller error and a decreased likelihood of larger error when
compared to the EHR. Fig. 2 and Fig. 3 graph these data in a
scatterplot, with the straight line representing a theoretical per-
fect relationship between predicted and actual case durations.
Here, Leap Rail had a higher Pearson correlation compared to
the EHR, again indicating increased accuracy. There is also see
the tendency of EHR pCD to fall within the same time groups
despite their actual durations, indicating a level of inflexibility
in generated case times.

When broken down by subspecialty, Leap Rail was more
accurate for 14 of the 16 subspecialties; however, of those
14 subspecialties, only the findings for Gastroenterology,
General Surgery, Orthopedics, and Urology were statistically
significant (Table 2). Subsequently, Fig. 4 shows the box plot
of prediction error for these four specialties as well as all cases.
Here, the median absolute differences are consistently higher
in the EHR group when compared to the Leap Rail group.
However, both groups still had significant amount of outliers,
indicating intra-operative variability that was difficult to ac-
count for regardless of prediction modality.

Table 1 Examples of OR case-related factors (patient, providers, facility/room, procedure, prior events) included in the machine-learning algorithm

Patient Providers Facility / Room Procedure Prior Events

Age, sex Surgeon(s) Hospital bed census Procedure Type Last food/drink intake

Height, weight Anesthesiologist(s) Equipment Surgeon comments Timing of prior perioperative
milestones

Allergies Scrub nurse(s) and technicians(s) Staff Procedure modifiers Case delays

Medical conditions Circulator nurse(s) and technicians(s) Day of the week Anesthesia type Cancellations

ASA physical status
classification

Whether the assigned group has worked
on this type of case before

Time of day Implants / tissues used Room turnover time

OR= operating room; ASA = American Society of Anesthesiologists
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For a single case pCD, predictions were 31.2% and 41.1%
accurate for EHR and Leap Rail, respectively, when defining
the threshold for a clinically significant prediction error for a
single case as 15 min (p < 0.0001) (Table 3). When looking at
case duration in aggregate over a 3-month period, the 990
observed cases amounted to 110,130 min of operating room
time. EHR-predicted total surgery time was 79,435 min com-
pared to the Leap Rail predicted time of 98,554 min. Overall,

this resulted in a 70% reduction in scheduling inaccuracy for
the operating suite (Table 4).

Discussion

In this study, we compared the accuracy of Leap Rail surgical
case time prediction to that of conventional EHR approach.
When examining all cases during the study period, our results
showed a statistically significant improvement of approxi-
mately 7 min per case. When broken down by subspecialty,
the most prominent improvements were seen in cardiology
(although this effect was not significant), followed by ortho-
pedics and urology, which had up to a 15-min improvement in
accuracy. Conventional EHR outperformed Leap Rail for two
subspecialties (neurology and maxillofacial), but these differ-
ences were not statistically significant.

There is a difference between statistical and clinical signif-
icance that needs to be addressed. In fact, one may be skeptical
about the clinical significance of a 7-min improvement in
accuracy per case. However, even when setting a threshold
of 15 min as a clinically significant error (a more typical unit
of time used in OR scheduling), Leap Rail still represented a
10% improvement in accuracy over conventional means.
Furthermore, as some ORs can have up to 6–7 cases per
day, the cumulative effect may ultimately represent a signifi-
cant financial advantage if it is possible to schedule an addi-
tional case [15]. This is best reflected by looking at the
compounding effect of total OR cases through the 3-month

Table 2 Median value of
absolute difference, with
interquartile ranges, between
predicted values and actual values
by groups

Service # of cases EHR: Absolute Median
(Q1-Q3) Difference

Leap Rail: Absolute Median
(Q1-Q3) Difference

P value

Cardiovascular 19 79.0 (31.0–143.5) 28.0 (7.0–111.0) 0.0558

Otorhinolaryngology 11 37.0 (28.0–50.5) 26.0 (15.5–48.0) 0.4299

Gastroenterology 207 22.0 (11.0–35.0) 17.0 (7.5–28.0) 0.0039

General Surgery 240 25.0 (13.0–47.5) 17.0 (8.5–35.5) 0.0002

Gynecology 65 29.0 (14.0–55.0) 24.0 (11.0–50.0) 0.1582

Interventional Radiology 4 22.5 (15.8–28.8) 7.5 (4.8–11.5) 0.1143

Neurosurgery 19 14 24 0.7812

Oral/Maxillofacial 2 23.0 (20.0–26.0) 23.5 (22.8–24.3) 1

Orthopedics 166 35.0 (14.0–74.0) 25.0 (13.0–48.0) 0.0088

Plastic Surgery 37 28.0 (13.0–59.0) 26.0 (9.0–55.5) 0.9010

Podiatry 51 18.0 (6.5–36.5) 15.0 (8.0–27.0) 0.7126

Interventional
Pulmonology

1 25 5 1

Spine Surgery 29 58.0 (11.0–87.0) 43.0 (22.0–76.0) 0.9380

Thoracic Surgery 6 72.0 (36.8–75.8) 34.0 (18.8–51.5) 0.1488

Urologic Surgery 85 27.0 (14.0–44.0) 12.0 (7.0–33.0) 0.0022

Vascular Surgery 48 27.0 (17.0–44.5) 26.5 (14.8–41.3) 0.7195

All 990 27.0 (13.0–50.0) 20.0 (9.0–39.8) <0.0001

EHR = electronic health record; Q3 - Q1 = Interquartile range

Fig. 1 Density plot of the absolute difference of actual values and
predictions by groups
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study period: Leap Rail represented a ~19,000 min, or a 70%
reduction in scheduling inaccuracy overall.

Previous studies have estimated the cost per OR minute to
the hospital to be between $22 and $133 per minute [16].
Therefore, by appropriately utilizing the ORs, this would re-
sult in a significant reduction in costs over the course of
3 months of this pilot study. This estimate represents a direct
savings through OR staffing costs, and actually likely under-
estimates the cumulative effect seen downstream throughout
the hospital system, which includes decreased length of hos-
pital stay due to delays/cancellations, etc. Therefore, despite a
seemingly insignificant time savings per case, the cumulative
effect could certainly lead to a significant increase in revenue.

While this study focuses on total OR case duration, it is
notable that Leap Rail is able to sub-categorize each case into

different surgical, anesthesia, and turnover times. This ability
to account for variance within each sub-segment is one of
Leap Rail’s biggest advantages over current scheduling mo-
dalities. However, we did not directly assess Leap Rail’s per-
formance in this capacity, as the EHR did not generate discrete
values for each of these sub-segments. Furthermore, it is ulti-
mately total case duration that is the main determinant of sur-
gical scheduling. Nonetheless, we expect this capability to be
reflected in this study via the improvements seen with Leap
Rail’s pCD accuracy.

With this inmind, we believe that future studies are warranted
to further validate our results. In particular, it would be reason-
able to apply the Leap Rail algorithm more broadly among sev-
eral institutions, and for a longer period of time. The benefits of
this would be twofold – one could expect to see more

Fig. 2 Scatterplot of actual
duration versus Leap Rail
prediction, with Pearson
correlation and the correlation = 1
line added

Fig. 3 Scatterplot of actual
duration versus EHR prediction,
with Pearson correlation and the
correlation = 1 line added
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generalizability as Leap Rail is exposed to a wider array of cases,
and one could also expect to see more accurate predictions as
additional training data are incorporated into the machine learn-
ing process. Furthermore, future studies could further investigate
the accuracy of Leap Rail predictions for anesthesia and turnover
time. By doing so, one may be able to determine additional
avenues in which OR inefficiency can be minimized.

There have been several prior studies investigating poten-
tial means of optimizing surgical scheduling. Many of these
studies have established the use of historical means as a supe-
rior method of predicting surgical case duration [7, 8]; other
studies have investigated using mathematical modeling to im-
prove case sequencing [17, 18] or predicting cases durations
when having sparse historical data [19]. However, none of
these studies utilized a similar multi-modal approach towards
predicting surgical case durations. Furthermore, none of these
models were built utilizing a machine-learning algorithm that
would be expected to improve with the incorporation of addi-
tional training data.

There are some limitations to our methodology. A potential
weakness of the Leap Rail engine is that it relies on a training
set in order to generate a predicted case time. Therefore, it may
be unable to do so for procedures that are rare or difficult to
classify (multi-specialty surgeries, or combined procedures).
Nonetheless, these types of procedures are the minority within
any hospital system and are unlikely to represent a significant
proportion of OR utilization. Furthermore, these weaknesses
are also applicable to conventional EHR case time prediction,
which also relies on historical case data. This is best reflected
in the 93.5% total utilization rate of Leap Rail, which shows
that it is largely applicable to a significant portion of surgical
volume.

Another weakness of the designed study was a relatively
small sample size. While there was statistically significant
improvement in many subspecialties, there were others where
the benefit of using Leap Rail was less validated. This was
particularly magnified in specialties such as Pulmonary,
Oral/Maxillofacial, or Interventional Radiology, which had
very few available cases for comparison. However, this study
was not intended to be an exhaustive comparison between
EHR and Leap Rail generated surgical case times; rather, this

Fig. 4 Box plot of the absolute
differences by subspecialty and
all cases

Table 3 A 2-by-2 table demonstrating when prediction error ≤ 15 min
was defined as acceptable

Leap Rail Prediction
Error > 15 min

Total

Yes No

EHR Prediction
Error > 15

Yes 472 209 681 (68.8)

No 111 198 309 (31.2)*

Total 583 (58.9) 407 (41.1)* 990

*p< 0.0001; EHR = electronic health record

Table 4 Cumulative differences between predicted vs actual case times
(in minutes)

Actual EHR Leap Rail

Total Minutes 110,130 79,435 98,554

Inaccurate Minutes 30,695 11,576

Inaccuracy Percent 38.6% 11.7%

EHR = electronic health record
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study was designed as a Bproof of concept^ to demonstrate the
potential value of taking a more multimodal approach to case
time prediction.

Machine learning models are by definition biased towards
their training data which in the case of the model in this study
includes information about patients, procedures, healthcare
providers, and the facility itself. This model is designed to
be able to make high accuracy predictions for many new pa-
tients. Leap Rail regularly re-trains their models at each facil-
ity with the addition of new case data, so that the new models
can account for new team members or even changes in phys-
ical topology of the facility or clinical workflows. Also, the
model reviewed in this study was custom made for a given
organization using training data about its patients, procedures,
physicians, nurses, and the facility itself. Therefore, the same
exact model is not meant to, and will not perform well if
simply applied to a different organization. However, the same
methodology and the Bknow-how^ can be applied to training
data from other organizations with the expectation of achiev-
ing similar results.

In summary, our study compared the accuracy of pCDs
generated by an EHR with that of a novel machine-learning
algorithm. Our results were statistically significant, and indi-
cated that the algorithm had an average improvement of 7 min
per case. This represented an aggregate 70% reduction in
scheduling inaccuracy over a three-month period. In trialing
this approach, we found that the Leap Rail engine represents a
significant improvement in reducing prediction error for sur-
gical case duration. Application of such an algorithm could
potentially lead to significant savings for the hospital.
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