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Abstract
Renal segmentation is one of the most fundamental and challenging task in computer aided diagnosis systems. In order to
overcome the shortcomings of automatic kidney segmentation based on deep network for abdominal CT images, a two-stage
semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combinedwith SIFT-flow
transformation is proposed in paper, which is divided into two stages: image retrieval and semantic segmentation. To facilitate the
image retrieval, a metric learning-based approach is firstly adopted to construct a deep convolutional neural network structure
using SCNN and ResNet network to extract image features and minimize the impact of interference factors on features, so as to
obtain the ability to represent the abdominal CT scan image with the same angle under different imaging conditions. And then,
SIFT Flow transformation is introduced, which adopts MRF to fuse label information, priori spatial information and smoothing
information to establish the dense matching relationship of pixels so that the semantics can be transferred from the known image
to the target image so as to obtain the semantic segmentation result of kidney and space-occupying lesion area. In order to validate
effectiveness and efficiency of our proposedmethod, we conduct experiments on self-establish CT dataset, focus on kidney organ
and most of which have tumors inside of the kidney, and abnormal deformed shape of kidney. The experimental results
qualitatively and quantitatively show that the accuracy of kidney segmentation is greatly improved, and the key information
of the proportioned tumor occupying a small area of the image are exhibited a good segmentation results. In addition, our
algorithm has also achieved ideal results in the clinical verification, which is suitable for intelligent medicine equipment
applications.

Keywords Renal segmentation . Deep learning . Semantic information . SIFT flow . ResNet network . Metric learning . Label
transfer

Introduction

With the continuous advancement of medical imaging
technology, the intelligent medical imaging processing
should be conducive to accurate determination of the con-
ditions including spatial position and size of focus, etc. as
well as the corresponding relationship between focus and
its surrounding tissues and helping the medical staffs to
make the accurate qualitative and quantitative analysis on
pathological tissues and organs so as to have a more accu-
rate diagnosis on the health condition and therapeutic
schedule of tissues and organs [1]. Hence, there will cer-
tainly be of great clinical value if a set of fast and accurate
image segmentation algorithm is designed to free the clin-
ical doctors from the tedious and boring task [2].
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The kidney and space-occupying lesion area segmentation
in medicine aided diagnosis system has achieved good results
in ideal conditions [3]. However, the semantic segmentation
effect of organ in abdominal CT scan image is not very good
in the case of the low contrast, irregular shape, uneven gray,
interference factors adjacent tissue. How to realize semantic
segmentation of CT images under complex conditions is an
problem to be solved in the development of intelligent diag-
nosis system and is the focus of this paper.

Kidney segmentation is a specific direction in the field
of abdominal medical imaging segmentation and mean-
while has its particularity. Currently, certain research re-
sults have been achieved in the full-automatic segmenta-
tion algorithm specific to kidney. But some problems de-
manding prompt solutions are still faced [4]. For example,
(1) The tissues and organs adjacent to kidney in the med-
ical imaging have the similar tissue density, which leads to
obscure boundary, as shown in Fig. 1; (2) The size and
shape of the kidney image of the same individual in differ-
ent tomography images may change; (3) There exist differ-
ences of size and shape of kidney among different individ-
uals; (4) The gray value of kidney in the sequence image
may fluctuate due to the influences of noise interference
and other factors;(5) In the CT sequence image, kidney
motion or deformation may occur due to breathing or ab-
dominal movement; (6) The differences of renal carcinoma
in size, position and gray, etc. may also influence the ac-
curacy of segmentation of kidney. In other words, the same
tissue has the problem of inconsistent intensity between
different patients, different modalities, and even different
frames in the same modality. In consequence, kidney im-
age segmentation is one of the most fundamental and chal-
lenging task in computer aided diagnosis systems.

The semantic comprehension of image cannot be separated
from the segmentation technology. The image is essentially
the two-dimensional matrix formed by a series of pixel while
semantic segmentation actually focuses on grouping these
pixels in image according to the different expressionmeanings
in the image [5]. It is usually called as segmentation. Aiming
at the problem of kidney segmentation, extensive and in-depth
research has been carried out, including various methods
based on level set, graph cut, feature abstraction, and deep
learning [6]. The kidney features mainly include artificial fea-
tures such as texture features, local feature, and word-bags
feature. [7] However, the distinguishability of artificial fea-
tures is limited, the generalization is relatively poor, and it is
difficult to select effective features. Deep learning, specially
convolutional neural networks, has outperformed the state of
the art in many image recognition and target detection tasks in
the field of computer vision. Also, CNN has excellent perfor-
mance in the semantic segmentation of natural images. This
provides a novel way to automatically and accurately segment
the kidney and space-occupying lesion area. [8]

Before deep learning isn’t applied in the field of semantic
segmentation yet, most of researchers of semantic segmenta-
tion conduct modelling and calculation by adopting the graph
method in accordance with the image pixel’s own low-level
visual cues. Training isn’t required, thus the computation
complexity is lower. However, these methods cannot be ap-
plied in the complicated abdominal CTscan image. Especially
in the case that the artificial aided information cannot be pro-
vided, the segmentation effect is unsatisfactory. After deep
learning enters the field of computer vision, the semantic seg-
mentation technology also steps into a new era. The training
method based on convolutional neural network (CNN) can
greatly improve the accuracy of semantic segmentation [9].
The excellent algorithms including the fully convolutional
neural network, Dilated Convolution and the post-processing
operation represented by conditional random fields [10] etc.
are proposed. SegNet based on Caffe framework, modifies
VGG-16 to generate the network structure model of open-
source semantic segmentation on the basis of FCN [11].
DeepLab conduct processing on the basis of FCN. Its seman-
tic segmentation process can be divided into two steps: a
rough category fraction is obtained through FCN and the size
of original image is obtained through linear/nonlinear interpo-
lation; the detail optimization is conducted on the segmenta-
tion results of step 1 by utilizing full-connection CRF. On the
basis of FCN, PSPNet [12] introduced Spatial Pyramid
Pooling to expand the feature pixel-level into the special
Spatial Pyramid Pooling designed in the paper, and mean-
while combines local feature with global information so as
to provide the relatively accurate prediction results specific
to the semantic scene segmentation. The practice also draws
lessons from the method adopted for acquiring global scene
features during extraction of complicated scene features. In

Fig. 1 The axial CT image of the bilateral kidneys showed that the right
kidney was tumour bearing
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addition, a type of optimization method based on deep super-
vision Loss is also proposed in the paper.

The tissues and organs adjacent to kidney in the medical
imaging have similar tissue density, which causes obscure
boundary and greater differences of individuals and furthers
a very difficult for semantic segmentation. Accordingly, in
order to solve the problem that it is not accurate to conduct
direct semantic segmentation, it is necessary to propose a se-
mantic transfer model through seeking the matched images of
known segmentation results and establishment of close con-
nection. If it is needed to retrieve the corresponding known
image through the unknown image, features extraction of im-
age is required. In this paper, feature extraction is conducted
by using deep convolutional neural network SCNN and
ResNet, and meanwhile metric learning is added to make sure
that features can better describe image, where the images at
different imaging angles are divided into the same category,
and the images at the identical angle are partitioned into dif-
ferent categories. After image retrieval is completed, the pixel
matching method based on SIFTflow transformation is pro-
posed. Under the premise of registration parameters between
two known images, how to make the abdominal CT image
pixels of different individuals correspond to known image
pixels is the research contents in our paper. Hence, we uses
MRF to integrate pixel information, spatial prior information
and smoothing information to obtain the relationship between
target image and known image so as to transfer semantic
meanings of known image into the target image to gain an
exact segmentation of kidney and space-occupying lesion area
under different conditions.

Related works

Essentially our proposed model is based on a metric learning
approach to construct a deep convolutional neural network
structure using SCNN and ResNet network so as to extract
image features and minimize the impact of interference factors
on features. Thus, we will only discuss the most related SCNN
and ResNet model [13] .

Siamese convolutional neural network

Siamese convolutional neural network (SCNN) is a type of
similar measurement methods in essence, and is relatively
suitable for being used for recognition and classification under
the circumstance that there are more data categories but less
sample data of each category. SCNN focuses on learning a
similarity measurement from datasets and then using the mea-
surement to make comparisons and alignment on the samples
of unknown category. The method aims at mapping input to a
target feature space through a function and using the relatively
simple distance function to make the similarity comparison in

the space. During training, the loss function values of a pair of
samples coming from the same category (label = 1) is mini-
mized (making samples of the same category closer) while the
loss function values of a pair of samples coming from different
categories (label = 0) is maximized (making samples of differ-
ent categories farther).

Similarity measure function for Siamese convolutional
neural network can be written as

EW X 1;X 2ð Þ ¼ ‖GW X 1ð Þ−GW X 2ð Þ‖ ð1Þ
where GW(X1) is a differentiable mapping function, and its
parameter isW. The goal of the optimization process is to find
a group ofW, which makes the function value is smaller when
X1 and X2 belong to the same category; the function value is
bigger when X1 and X2 do not belong to the same category;
that is to say, we can get min(EW(X1, X2)) for the paired train-
ing data when X1 and X2 belong to the same category; we can
get max(EW(X1, X2)) if X1 and X2 are from different class.

To sum up, the main difference between SCNN and prior
traditional CNN lies in that the paired samples will be input
instead of the single sample. Meanwhile, each sample isn’t the
label with the category mark any longer but one label will be
given to each sample [14] . The label will indicate whether this
pair of samples belongs to the same category or not. Two
images in the samples input into network respectively enter
the identical network. Two networks share weight W, and
meanwhile the similarity measurement is conducted on output
so as to get Loss function to direct network learning through
back-propagation [15] .

In comparison to other algorithms, SCNN fades the label
and the category never trained may also be classified through
the network structure [16] . Thus it has a very good expansi-
bility. Moreover, in terms of the datasets with a smaller data
volume, it can also show a very good effect while many other
algorithms cannot achieve.

Siamese network structure is as shown in Fig. 2. For two
different input X1 and X2, the corresponding low-dimensional
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Fig. 2 SCNN network structure
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space feature vector GW(X1) and GW(X2) are obtained through
CNN. After it is substituted into equation, a comparison will
be made through energy function EW(X1, X2). The samples are
input in pair, so the network structure is symmetrical if the
same two mapping functionsGare used and the equal weight
W is shared. Therefore, it is called Siamese architecture.

Essentially, SCNN is a type of dimensionality reduction
method. There is an assumption that Loss function is only
related to input data and weightW. Then, loss function can
be defined as:

L Wð Þ ¼ ∑p
i¼1L W ; Y ;X 1;X 2ð Þi� � ð2Þ

where p is the training sample number. X1 and X2 indicate a
pair of images. Y is denoted as the corresponding label. (Y, X1,
X2)

i formed by a pair of pictures and the corresponding label is
denoted as the sample i. When Y is 0, the right side of the
equation is LG(EW(X1, X2)

i). In addition, the loss value is the
loss function of image sample with the same category LG,
otherwise it is represented as LI. The goal focuses on reducing
the loss function value and the energy EW of image sample of
the same category asmuch as possible andmeanwhile increas-
ing the energy of image sample of different categories, thus it
is necessary to design LG into monotone increasing function
and LI into monotone decreasing function so as to achieve the
performance.

ResNet model

The key idea of Resnet network is to introduce the residual
block, where it superimposes the constant mapping layer on
the basis of a shallow network to carry out residual learning,
improves the precision of deep feature extraction, and solves
the problem of vanishing gradient. Assume that the original
input samples of the Resnet network are obtained after multi-
layer network mapping [16] . Therefore, the residual function
is shown in Fig. 3. It can be seen that after an identity map-
ping, the input is superimposed on the convolution output to
form a jump connection that can skip one or more layers,
eliminating the vanishing gradient problem, and the network
deep can be made into hundreds of layers.

The identity mapping is superimposed on the network, and
even increasing the number of layers of the network does not
degrade the performance of the network [17] . The structure of
Fig. 3 can simply cause the weights of multiple nonlinear
layers to be zero to approximate an identity mapping, whose
output can be expressed as

y ¼ H x;Wið Þ þ x ð3Þ

The x and y are denoted as the input and output result of the
sub-block,respectively; H(x,Wi) is the residual mapping. The
introduced path xin the above equation neither introduces ad-
ditional parameters nor increases computational complexity.

The simulation results show that the Resnet network is easier
to converge than a simple network of the same scale, and can
obtain better output results without being affected by the net-
work deep.

Improved SCNN network combined
with ResNet-18

In this paper, a SCNN structure integrated with ResNet-18
CNN is proposed. By combining two ResNets to form a net-
work with shared weights W [18], the data is input into the
network in a pairwise manner, and finally the network training
is guided by a relative loss function [19] .

The partial structure of the adopted ResNet-18 is shown in
Fig. 4(a), and then the network structure integrated with
SCNN is shown in Fig. 4(b). Compared to the network struc-
ture of ResNet-18, the following improvements are made in
this paper:

1. The data input of ResNet-18 data is that one sample cor-
responds to one label. In this paper, a pair of sample of
data image and data image_p are respectively input, and
also labeled with BWhether this pair of samples belong to
the same category or not^. As inputting is divided into
two parts, a contact layer (The layer’s name is data all)
is needed to integrate them.

2. ResNet is connected with a fully-connected layer fc1000
for feature extraction after the fifth convergence layer. In
the network structure of this paper, the layer is removed,
and meanwhile is replaced with a slice layer (Named feat
each). Data needs to be segmented once on this layer into
two corresponding features through network output due to
use of single network. Finally, the label of this pair of
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Fig. 3 Identity mapping
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feature and input data are substituted into the contrastive
loss function to generate Loss so as to direct or guide
network training [27].

Analysis of SCNN loss function

SCNN uses a contrastive loss function to supervise the net-
work training:

L f i; f j; yij; θl
� �

¼
1

2
f i− f j

�� ��2
2
; if yij ¼ 1

1

2
max 0;m− f i− f j

�� ��2
2

� �
; if yij ¼ −1

8><
>: ð4Þ

where fi and fj are the normalized feature, and ‖fi − fj‖ is a
measurement of similarity between fi and fj.If fij = 1, it means
fi and fj belong to the same class, the loss function value was
their Euclidean distance. The larger the distance, the larger the
Loss value, so that the network can be controlled by back
propagation so as to adjust the network parameters, making
the features more similar [20] .

When fij = − 1, it means fi and fj don’t belong to the same
category, there is a hyper-parameter [23] m that can be set by
itself, indicating the minimum distance among features of dif-
ferent categories. When the distance between two features is

greater than m, this shows that network already can differen-
tiate these two features. Thus the value of max is 0 and Loss
function value is 0; when the distance between two features is

less thanm, Loss value is m− f i− f j

�� ��2
2
and Loss function val-

ue isn’t 0. Thus back-propagation is needed to constrain net-
work parameters so as to make the distance between two fea-
tures greater.

Establishment of metric learning and loss function

The tissues and organs adjacent to kidney have the similar
density, which leads to burred boundary. Moreover, there exist
huge differences in imaging individual. Accordingly, the ro-
bustness must be considered during feature representation of
abdominal CT image. In this paper, SCNN contrastive loss
function is improved, metric learning is conducted on data
features of abdominal image under various imaging condition,
and then alignment is made in the metric learning space [28].

The classical metric learning focuses on dimensionality
reduction of training data through PCA [29]. However, PCA
cannot retain the information of data structure well. PLS re-
gression technology [24] can not only realize dimensionality
reduction but also map the training data to a relatively com-
pact space.

There is an assumption that the data space where kidney
image is is A under a normal condition and the data space
where kidney image is is B under the fuzzy noise condition.
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Fig. 4 Comparison of deep
network

J Med Syst (2019) 43: 2 Page 5 of 12 2



Suppose that A containsnfeature vectors withddimensions

X að Þ ¼ x að Þ
1 ;⋯; x að Þ

n

h i
,

and the corresponding training data labels

Y að Þ ¼ y að Þ
1 ;⋯; y að Þ

n

h i
; B contains m feature vectors with the

d dimensions X bð Þ ¼ x bð Þ
1 ;⋯; x bð Þ

n

h i
, and the corresponding

training data labels Y bð Þ ¼ y bð Þ
1 ;⋯; y bð Þ

n

h i
. When y að Þ

i ¼ y bð Þ
j ,

x að Þ
i and x bð Þ

j belongs to the same class, which is called the

positive sample pair; When y að Þ
i ≠y bð Þ

j , x að Þ
i and x bð Þ

j are not in

the same class,which is called a negative sample pair.
Next, PLS can be applied into two data space mappings.

Firstly, define a matrix P with d × p(d < p) whered is the di-
mension of the original data, p is the data dimension in trans-
formation space. Then the trained data from PLS can be
mapped to the subspace, where we assume that the data is

X
að Þ

和X
bð Þ

in the new space, and X
að Þ ¼ PTX að Þ,

X
bð Þ ¼ PTX bð Þ. In the new subspace, we define a positive

semidefinite matrix W with dimension p × p, and W = VVT

where V ∈ Rp × q and q < p. In this space, the distance between
feature samples of training data can be defined as:

f ‖~x
að Þ
−~x

bð Þ
‖;W

� �
¼ ~x

að Þ
−~x

bð Þ� �T

W ~x
að Þ
−~x

bð Þ� �

¼ VT~x
að Þ
−VT~x

bð Þ����
����
2

2

ð5Þ

In order to facilitate comparison and analysis, the Loss
function is defined as follows:

lw ~x
að Þ
i ;~x

bð Þ
j

� �
¼ log 1þ e

θij f ‖~x
að Þ

i −~x
bð Þ

j ‖;W

� �
−c

� �0
B@

1
CA ð6Þ

where θij=1 if y að Þ
i ¼ y bð Þ

j ; θij= − 1 if y að Þ
i ≠y bð Þ

j ; c is a constant.
It is assumed that the number of positive sample pairs in

training data is N+, the number of negative sample pairs in
training data is N−. Thus, the objective function based on
metric learning can be described as:

min
V

∑
n

i¼1
∑
m

j¼1
αijlVVT ~x

að Þ
i ;~x

bð Þ
j

� �
ð7Þ

where αij = 1/N+ if θij = 1; αij = 1/N−, if θij = − 1. Finally, It
can be shown that Accelerated Proximal Gradient algorithm
[21] can be used to solve the above objection function. When
the objective function converges to a minimum value, the
corresponding optimal value V∗ is applied to the test set.

There are two matrices in above metric learning results
where the mapping matrix P is used to preserve the Latent
Structure, and the optimal mapping matrix V∗ is for making

the metric learning distance more adaptable. If there are s test
samples in space A, the test sample can be represented as

Z að Þ ¼ z að Þ
1 ;⋯; z að Þ

s

h i
; if there are t test samples in space B,

the test sample can be represented asZ bð Þ ¼ z bð Þ
1 ;⋯; z bð Þ

t

h i
.

These two mapping matrices V∗ and P are applied into the test
dataset.

~Z
að Þ
¼ VT

* P
TZ að Þ ð8Þ

~Z
bð Þ
¼ VT

* P
TZ bð Þ ð9Þ

where the dimensions of test samples in space A and B are all
d.

In order to further reduce the difference between the test
data features in spaces A and B, it is necessary to register the

test subspace ~Z
að Þ
in A and the test subspace ~Z

bð Þ
in B. Thus,

the bregman matrix divergence is minimized to obtain the
registration matrix R:

min
R

Q að ÞR−Q
ðÞ
b

bð
��� ���2

F
ð10Þ

where Q(a) ∈ Rq × k and Q(b) ∈ Rq × k respectively represent the

left singular matrix of ~Z
að Þ

and ~Z
bð Þ
, ‖‖F denotes Frobenius

norm [22]. So the closed solution R* ¼ QT
að ÞQ bð Þ of R can be

obtained by calculation.

Similarly, R∗ can be adopted to map ~Z
að Þ

and ~Z
bð Þ

into a
sub-space.

C að Þ ¼ RT
*Q

T
að Þ~Z

að Þ
ð11Þ

C bð Þ ¼ RT
*Q

T
bð Þ~Z

bð Þ
ð12Þ

where C(a) ∈ Rk × s and C(b) ∈ Rk × t represent the test data fea-
tures in spaces A and B, respectively.

Finally, k dimension feature descriptions of the testing im-
age are obtained after the mapping on a testing abdominal CT
image in the given space B through above features. According
to the descriptions, the most matched kidney and space-
occupying lesion area can be found in the space A so as to
conduct subsequent semantic segmentation and label transfer.

Semantic segmentation model

Despite the recent success of deep-learning based semantic
segmentation, deploying a pre-trained abdominal CT segmen-
tation model to a renal whose images are not presented in the
training set would not achieve satisfactory performance due to
dataset biases [23]. Instead of collecting a large number of
annotated images of each renal of interest to train or refine
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the segmentation model, we propose a two-stage semantic
segmentation of kidney and space-occupying lesion area
based on SCNN and ResNet models combined with SIFT-
Flow transformation. Next, we will analyze the details of the
model.

The image in known database assumed to have been la-
beled with semantic meanings. Meanwhile SCNN is adopted
to have realized image retrieval and correspondence of known
semantic meanings and the pixel region on unknown image.
Next, it is needed to conduct semantic segmentation on new
unknown abdominal image, establish dense matching of pixel
between two CT images [24], and transfer the known semantic
meanings of kidney to the image to be segmented so as to
complete semantic segmentation of kidney or its space-
occupying lesion area.

SIFT Flow is adopted to realize dense matching in this
paper. As to the method, histogram intersection kernel is first-
ly used to find the most similar image to the input image from
database, and then dense feature sampling is conducted in two
images to construct dense matching [25].

SIFT-flow fusion model

Due to the known space information of organs and viscera in
abdominal image, kidney and space-occupying area studied in
this paper have stronger spatial prior information; further-
more, there shall be a smooth transition among data label
information of image. Hence, Markov Random Field (MRF)
model is integrated with spatial prior information, smooth
transition and dense matching information to form transfer
model.

SIFT-Flow describes the matching degree according to es-
timation of objective function. Intuitively, SIFT descriptions
need to be aligned on both ends of flow. In addition, flow shall
be a set of smooth vectors except for the part of object edge
(Disorderly and unsystematic condition as well as serious in-
tersection each other are not allowed). Essentially, it focuses
on finding the differential displacement w(p) = (u(p), v(p)) of
all pixels to form dense matching pair. Given original pixelsp-
= (x, y), target pixels p1 = (x1, y1), p1 = (x1, y1), then we can get
∣u(p) ∣ = ∣ x − x1∣ and ∣v(p) ∣ = ∣ y − y1∣.

Based on above situation, the target transition energy func-
tion of SIFTflow is defined as:

E wð Þ ¼ ∑
p
min s1 pð Þ−s2 pþ w pð Þð Þk k1; t

� �þ
∑
p
η ju pð Þj þ jv pð Þjð Þ þ ∑

p;qð Þ∈ε
min α ju pð Þj−ju qð Þjð Þ; dð Þ−

∑
p;qð Þ∈ε

min α jv pð Þj−jv qð Þjð Þ; dð Þ

ð13Þ

where ε includes the spatial neighborhood of all pixels, and q
¼ ~x;~yð Þ indicates the points within neighborhood of p.

Above energy functions totally include 3 items, respective-
ly representing data item, displacement item and smooth item.
The data item in formula includes transfer vector. Whether the
label on both ends of w(p) is matched or not; the significance
of displacement item lies in that displacement value should be
ensured smaller as far as possible in the case that no other
information can be compared; Smooth item requires that the
vector w(p) of adjacent pixels shall be similar to the greatest
extent. In terms of the objective function, the paradigm L1 is
used in data item and smooth item, and t and d are used as the
threshold.

Finally, the algorithm based on dual-layer loopy belief
propagation is used to solve the objective function in terms
of SIFT-flow. Accordingly, the energy transfer function can be
defined as:

E wð Þ ¼ ∑
p

s2 pð Þ−s1 pþ w pð Þð Þk k2þ λ ∑
p;qð Þ∈ε

w pð Þ−w qð Þ
���� ���2

2

ð14Þ
where ε includes the spatial neighborhood of all pixels, q
¼ ~x;~yð Þ indicates the points within neighborhood of p. λ is
the regularization parameter. Belief propagation method is
utilized to minimize energy function E(w) so as to obtain the
optimal solutionw.

Multi-feature semantic integration

In this paper, the structure and principle of Convolutional
Neural Networks and ResNet are investigated deeply, the
SCNN training network structure model integrated with
ResNet is proposed, and themetric learningmethod is adopted
to learn features. Through the improved SIFT-Flow semantic
transfer model, the penalty items of label matching, spatial
prior information and smoothing information, etc. are integrat-
ed with MRF to finally get the objective function.

Label matching

In terms of target SIFT figure I1, each point (Pixel) has its
SIFT value. These values constitute SIFT field s1 of I1; vice
versa. Currently, SIFT field s1 of I1, label field L1 and SIFI
field S2 of I2 have been known. The target of semantic seg-
mentation is to speculate the label field L2 of I2 based on above
formula.

In order to speculate the label field L2 of I2, the dense
matching relationship of I1 and I2 is utilized and the spatial
structure prior information of current kidney image and spatial
smoothing information of I2 are combined so as to obtain the
label field L2of I2. According to the dense correspondence, the
punishment formula is defined as:
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Φ Γ I2; pð Þð Þ ¼
s2 pð Þ−s1 pþ w* pð Þð Þk k2; Γ I2; pð Þ ¼ Γ I2; pþ w* pð Þð Þ

max s2 pð Þ−s1 pþ w* pð Þð Þk k2
� �

; Γ I2; pð Þ≠Γ I2; pþ w* pð Þð Þ
�(

ð15Þ
where Γ(I2, p) indicates the labeling result of pixel p on CT
image I2.

Spatial prior information

In order to utilize the spatial prior information, the penalty
function of spatial prior information shall be firstly set up
and then Log is added for smoothing so as to obtain:

θ Γ I2; pð Þð Þ ¼ log Η pð Þð Þ ð16Þ
where H(p) is the prior probability that the pixel pbelongs to a
certain kind. The prior probability is obtained through training
of centralized pictures. The author makes a statistics of posi-
tion information of spatial histogram on each semantic cate-
gory by utilizing labeling image of training set so as to obtain
the spatial histogram distribution of each semantic category.
Each figure indicates the spatial position distribution of one
semantic category in all training sets. The deeper the color, the
higher the probability that the semantic category occurs at the
position.

Smoothing information

In order to integrate smoothing information, the smoothing
information penalty function is established and a penalty item
of smoothing information Ψ(Γ(I2, p), Γ(I2, q)) is defined.
Among it, Γ(I2, p) and Γ(I2, q) are the corresponding label of
the pixels in two adjacent fields.

Ψ Γ I2; pð Þ;Γ I2; qð Þð Þ

¼ e−r I2 pð Þ−I2 qð Þk k22 ; Γ I2; pð Þ≠Γ I2; qð Þ
0 Γ I2; pð Þ ¼ Γ I2; qð Þ

	
ð17Þ

where r is a constant not related to image. It is only used for
regulating to ensure that the index item in the function can
adapt to different contrasted conditions.

Semantic integration

In order to realize accurate segmentation of kidney and space-
occupying lesion, the above dense label’s corresponding in-
formation, spatial prior information and smoothing informa-
tion are integrated by utilizing Probabilistic Markov Random
Field Model to finally constitute the objective function of
semantic label transfer:

min
Γ I2ð Þ

∑
p
φ Γ I2; pð Þð Þ þ α∑

p
θ Γ I2; pð Þð Þþ β ∑

p;qð Þ∈ε
Ψ Γ I2; pð Þ;Γ I2; qð Þð Þ

ð18Þ

Experimental analysis

In this section, we report the characteristics and the segmen-
tation results of the proposed semantic deepmodel qualitative-
ly and quantitatively. For the evaluation metrics, we employ
the dice ratio (DR) score, and the Kappa index (KI). Large DR
and KI indicate high segmentation accuracy. In addition, we
also use Centroid Distance indicates the distance between the
central pixels of the new method segmentation result and the
manual result, and we adopt and compute the precision-recall
(PR) curves for additional comparisons, which have been
widely used for object detection and segmentation problems
on general image.

Data and experimental setup

Medical CT scan images from the French IRCAD
International Medical Center database and self-built database
are adopted as training images, where 15,500 CT images of
363 subjects with kidney tumors are used to implement and
test our proposed model. In addition, the data of 128 patients
with a single unilateral renal tumour between January 2011
and December 2017 were retrospectively analyzed and col-
lected form Changzhou No.1 People’s Hospital. This study
satisfied the requirements of the institutional review board
for a retrospective study. 1130 kidney images and correspond-
ing kidney labels in the space-occupying lesion area are got by
adopting manually-labeling method. Except for the target ar-
ea, the rest is marked as the background, that is to say that the
datasets labeled can be used in training and testing process for
semantic segmentation.

To illustrate the proposed segmentation method more clear-
ly and fully demonstrate the performance gains from the com-
bination of SCNN and ResNet, the proposed method is com-
pared with five state-of-the-art methods which include BK-
CNN [24], K-ResNet [25], and ConvNet [26]. Except K-
ResNet algorithm, all the results are based on the source codes
or executables released by the original authors. The default
parameters are employed in the comparison algorithms. We
try to realize K-ResNet. Unfortunately, our results are incon-
sistent with the original literature. To make a fair comparison,
all the evaluation indexes of K-ResNet are from the literature
[25].

The Abdominal CT image studies used in our study were
axially acquired by a Siemens CT Scanner. Each image has
isotropic in-plane resolutions. The slice thickness varies from
0.8 mm to 2.0 mm. In our study, we applied a dual-plateaus
histogram equalization to each image to standardize the
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intensity scale. The training platform is the Keras framework
under Ubuntu 14.04.5with an Intel Core i7 8100 at 3.06 GHz,
1080 Ti GPU and 256 GB memory. Training takes approxi-
mately 60 h on a 1080 Ti GPU.

Implementation details

In this work, all the abdominal CT scanning images are pro-
duced by utilizing the open source Keras framework, and the
codes will be released upon acceptance. In order to eliminate
the interference of the difference in imaging angle, the image-
based registration was computed using the Advanced
Normalization Tools (ANTS) software [26]. The registration
sequentially optimized an affine transform and a deformable
transform between the pair of images, using theMattes mutual
information metric [27].

In the following deep-structure experiments, we use mini-
batch size 16 and the Adam optimizer with learning rate of
5 × 10−6, β1 = 0.9, β2 = 0.98 to optimize the network.
Moreover, the rest training parameters are the initial teaming
rate is 0.05. At intervals of a certain iterative times, learning
rate is decreased. Due to the limited server memory capacity,
batch size is set to be 32. In consideration of characteristic of
SCNN, a pair of image needs to be input once. Thus the batch
size inputted into network every time is actually 2×32 = 64.
After about 300,000 times of loop iteration, the obtained net-
work model is regarded as the experimental network model.

Comparison of quantitative evaluation

We apply our proposed model to segment these images in our
self-build Dataset. In Table 1, we list average values of dice
ratio (DR) score, and the Kappa index (KI) of all test images
using different methods. As shown in Table 1, there is a severe
performance drop in the four images compared to its original
performance on images. Interestingly, we observe a trend that
the farther the distance between the unknown image and the

known image, the severer the performance degradation. This
implies that different visual appearances from different angle
due to semantic differences would dramatically impact the
accuracy of the segmentation algorithm. It also justifies the
necessity of an effective image retrieve method for the renal
segmentation which can alleviate the discrimination.

The experiment result shows that our algorithm had higher
Dice scores than other algorithms, and lower mean boundary
distance than K-ResNet and ConvNet. Although partially at-
tributable to higher variability due to similar tissue density,
the observed differences in median accuracy metrics are gener-
ally smaller than for other organs. Finally, the experimental data
show that the result of automatic segmentation through our
proposed network is more accurate than comparison segmenta-
tion algorithms. Therefore, the model also has more robustness.

It is not surprising that our method shows outstanding per-
formances for the test image containing some tumor. Tables 1
and 2 show a comparison of different segmentation deepmod-
el for renal and lesion segmentation in abdomen CT scans.
The experiment results show the normal or abnormal kidney
segementation performance for the multi-organ methods have
huge different. Importantly, compared to most of these
existing method, our proposed framework doesn’t rely on
any atlas nor detection stage for the segmentation. We note
also that the ConvNet needs to adopt the lots of semantic
remark so as to compute a segmentation,and these model can-
not better adapt and segment the space-occupying lesion area
in complex CT background. Next, we will briefly analyze the
evaluation indicators.

As for Dice index, our proposed method outperforms the
K-ResNet, BK-CNN and ConvNet, and on average it is supe-
rior to BK-CNN by 0.1~0.2, to K-ResNetby 0.03~0.13 and to
ConvNet by 0.1~0.23 in Table 1. For Kappa index, the pro-
posed method outperforms the K-ResNet and ConvNet, and it
is superior to K-ResNet by 0.04~0.3 in Table 2. It is obvious
that our proposed semantic deep model outperforms other
methods in terms of the higher dice ratio score, the Kappa

Table 1 Segmentation results for
different methods in Dice index Methods CT 1 (Left) CT 2(Left) CT 3(Left) CT 4 (Right) CT 5 (No)

ConvNet 0.763 0.636 0.771 0.686 0.690

K-ResNet 0.891 0.783 0.779 0.701 0.709

BK-CNN 0.891 0.779 0.800 0.689 0.671

Proposed 0.913 0.783 0.806 0.713 0.721

Table 2 Segmentation results for
different methods in Kappa index Methods CT 1 (Left) CT 2(Left) CT 3(Left) CT 4 (Right) CT 5 (No)

ConvNet 0.817 0.712 0.798 0.791 0.661

K-ResNet 0.831 0.724 0.859 0.799 0.769

BK-CNN 0.889 0.699 0.861 0.807 0.779

Proposed 0.893 0.725 0.868 0.812 0.779
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index, and the smallest value of distance measurements which
reflect high quality segmentation.

Figures 5, 6 and 7 show the PR curves of our method and
its comparison algorithms for further comparison. It shows
that the deep semantic learning can improve the segmentation
performance for each specific class: the normal abdominal CT
image and abnormal renal CT images with space-occupying
lesion where Fig. 5 is quantitative value of segmentation re-
sults for all test CT images, while Figs. 6 and 7 are normal
renal CT images or abnormal renal CT images with space-
occupying lesion. Our proposed algorithm performed better
for renal segmentation studies and that the deep semantic
based step-wise integration approach improved upon the re-
sults produced by any of the deepmodels. We observe that our
proposed deep semantic renal segmentation is surprisingly
accurate when imaging differences lead to inconsistent gray
levels. And the Dice scores and recall for our segmentation
models are in fact higher than the fine existing comparison
algorithms; however, the precision is slightly lower. We be-
lieve this effect arises from the fact that kidneys are relatively
smooth organs, which our semantic technique is able to yield
very high-quality segmentation performance.

Therefore, the experimental results that our proposed deep
semantic segmentation method achieved the best overall per-
formance across all the measurement and improved upon the
existing methods with a large margin for both normal renal
and abnormal renal.

Visual comparisons

The kidney and space-occupying lesion area segmentation are
the least accurate for all existing algorithms and all metrics. In
addition, since the structure, shape, size of different kidneys
are quite different, and the available slices of deep network
training are less, the learned knowledge is not enough to cope

with the variability of the kidney and space-occupying lesion
area, and the obtained model is trained on some data, and then
tested on other data, resulting in poor recognition ability when
segmenting renal area. Therefore, we propose a deep semantic
model to improve the segmentation performance. Sample
slices are illustrating the results of the framework for kidney
segmentation in Fig. 8.

For ease of analysis, the segmentation results are mapped
directly into the original CT image, where the red represents
space-occupying lesion area, and blue is for the kidney area.
The qualitative results of different methods on three abdomen
images are shown in the Fig. 5, where Fig. 5(a) is the original
kidney CT image; Fig. 5(b) is the ground-truth image ap-
proved by experts; Fig. 5(c) is the segmentation result of the
our proposed network structure in this paper; Fig. 5(d) is the
segmentation results from BK-CNN deep model; Fig. 5(e) is
the segmentation result of ConvNet model; Obviously, our
proposed segmentation is similar to the ground truth in most
cases. For tumors with simple texture, such as the first row in

Fig. 6 PR curves of our method at different stages for normal renal CT
images

Fig. 7 PR curves of our method at different stages for abnormal renal CT
images with space-occupying lesionFig. 5 PR curves of our method at different stages for overall data-set
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Fig. 5, ConvNet works well. However, in other cases,
ConvNet cannot achieve appealing performance. BK-CNN
does not achieve competitive results especially in the small
tumor cases. In addition, it can also be seen that the segmen-
tation effect of the deep semantic model proposed in this paper
from the perspective of complete tumor analysis is better, and
the tumor area and the normal tissue area can be clearly dis-
tinguished, which are closer to the ground-truth label value,
while the segmentation result of BK-CNN is smoother at the
boundary, and the segmentation within the tumor is relatively
unsatisfactory compared with the ConvNet network. This may
also be why BK-CNN is not sensitive enough to the details.

Despite these promising results, there are still limitations in
our algorithm. First, deep semantic segmentation-based algo-
rithms are inferior for detecting dim -small structures, which
may lead to inaccurate segmentation of some thin and low-
contrast objects (the third row in Fig. 8. Second, tumors with
heterogeneous intensities or small sizes residing at the kidney’s
edge might be under-segmented. This is mainly caused by the
high boundary term effect generated by the improved SIFT-
flow semantic transfer mode. Third, false segmentation of the
initial slice would increase the overall segmentation error. In
the future, we will be committed to solving these problems and
evaluate our algorithm with more clinical datasets.

Conclusion

In this paper, we propose a unified framework utilizing a two-
stage semantic segmentation of kidney and space-occupying
lesion area based on SCNN and ResNet models combined with
SIFT-flow algorithm, which performs joint global and class-

wise alignment by leveraging soft labels from source and
target-domain data. In addition, our method uniquely identifies
and introduce static-object priors, which are retrieved from
known images. The metric learning method is adopted to learn
features. Through the improved SIFT-flow semantic transfer
model, the penalty items of label matching, spatial prior infor-
mation and smoothing information, etc. are integrated with
MRF to finally get the objective function. The experimental
results qualitatively and quantitatively show that the accuracy
of kidney segmentation is greatly improved, and the key infor-
mation of the proportioned tumor occupying a small area of the
image are exhibited a good segmentation results.
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