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Abstract
The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image
analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent
advances in the field of biomedical engineering have made medical image analysis one of the top research and development
area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical
images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically
learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection
and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are
actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality
detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current
state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of
these techniques are also highlighted.

Keywords Convolutional neural network · Computer aided diagnosis · Segmentation · Classification · Medical image
analysis

to those areas, where a large amount of data needs to be
analyzed and human like intelligence is required. The use
of deep learning as a machine learning and pattern recog-
nition tool is also becoming an important aspect in the
field of medical image analysis. This is evident from the
recent special issue on this topic [1], where the initial impact
of deep learning in the medical imaging domain is inves-
tigated. According to an MIT technological review, deep
learning is among the top ten breakthroughs of 2013 [2].
Medical imaging has been a diagnostic method in clinical
practices for a long time. The recent advancements in hard-
ware design, safety procedures, computational resources
and data storage capabilities have greatly benefited the field
of medical imaging. Currently, major application areas of
medical image analysis involve segmentation, classification,
and abnormality detection using images generated from a
wide spectrum of clinical imaging modalities.

Medical image analysis aims to aid radiologist and clini-
cians to make diagnostic and treatment process more effi-
cient. The computer aided detection (CADx) and computer
aided diagnosis (CAD) relies on effective medical image
analysis making it crucial in terms of performance, since it

Introduction

Deep learning (DL) is a widely used tool in research domains
such as computer vision, speech analysis, and natural lan-
guage processing (NLP). This method is suited particularly
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would directly affect the process of clinical diagnosis and
treatment [3, 4]. Therefore, the performance of important
prameters such as accuracy, F-measure, precision, recall,
sensitivity, and specificity is crucial, and it is mostly desir-
able that these measures give high values in medical image
analysis. As the availability of digital images dealing with
clinical information is growing, therefore a method that is
best suited to big data analysis is required. The state-of-the-
art in data centric areas such as computer vision shows that
deep learning methods could be the most suitable candidate
for this purpose. Deep learning mimics the working of the
human brain [5], with a deep architecture composed of mul-
tiple layers of transformations. This is similar to the way
information is processed in the human brain [6].

A good knowledge of the underlying features in a data
collection is required to extract the most relevant features.
This could become tedious and difficult when a huge
collection of data needs to be handled efficiently. A major
advantage of using deep learning methods is their inherent
capability, which allows learning complex features directly
from the raw data. This allows us to define a system
that does not rely on hand-crafted features, which are
mostly required in other machine learning techniques. These
properties have attracted attention for exploring the benefits
of using deep learning in medical image analysis. The future
of medical applications can benefit from the recent advances
in deep learning techniques. There are multiple DL open
source platforms available such as caffe, tensorflow, theano,
keras and torch to name a few [7]. The challenges arise due
to limited clinical knowledge of DL experts and limited DL
knowledge of clinical experts. A recent tutorial attempts to
bridge this gap by providing a step by step implementation
detail of applying DL to digital pathology images [8]. In
[9], a high-level introduction to medical image segmentation
task using deep learning is presented by providing the code.
In general, most of the work using DL techniques use an
open source model, where the code is made available on
platforms such as github. This allows researchers to come up
with a running model relatively quickly for applying these
techniques to various medical image analysis tasks. The
challenge remains to select an appropriate DL architecture
depending upon the number of available images and ground
truth labels.

In this paper, a detailed review of the current state-of-the-
art medical image analysis techniques is presented, which
are based on deep convolutional neural networks. A sum-
mary of the key performance parameters having clinical
significance achieved using deep learning methods is also
discussed. The rest of the paper is organized as follows.
“Medical image analysis”, presents a brief introduction to
the field of medical image analysis. “Convolutional neu-
ral networks (CNNs)” and “Medical image analysis using
CNN”, presents a summary and applications of the deep

convolutional neural network methods to medical image
analysis. In “Discussion”, the recent advances in deep learn-
ing methods for medical image analysis are analyzed. This
is followed by the conclusions presented in “Conclusion”.

Medical image analysis

Medical imaging includes those processes that provide
visual information of the human body. The purpose of
medical imaging is to aid radiologists and clinicians to make
the diagnostic and treatment process more efficient. Medical
imaging is a predominant part of diagnosis and treatment
of diseases and represent different imaging modalities.
These include X-ray, computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography
(PET), and ultrasound to name a few as well as hybrid
modalities [10]. These modalities play a vital role in
the detection of anatomical and functional information
about different body organs for diagnosis as well as for
research [11]. A typology of common medical imaging
modalities used for different body parts which are
generated in radiology and laboratory settings is shown
in Fig. 1. Medical imaging is an essential aid in modern
healthcare systems. Machine learning plays a vital role in
CADx with its applications in tumor segmentation, cancer
detection, classification, image guided therapy, medical
image annotation, and retrieval [12–18].

Segmentation

The process of segmentation divides an image in to multiple
non-overlapping regions using a set of rules or criterion
such as a set of similar pixels or intrinsic features such
as color, contrast and texture [19]. Segmentation reduces
the search area in an image by dividing the original
image into two classes such as object or background.
The key aspect of image segmentation is to represent
the image in a meaningful form such that it can
be conveniently utilized and analyzed. The meaningful
information extracted using the segmentation process in
medical images involves shape, volume, relative position
of organs, and abnormalities [20, 21]. In [22], an iterative
3D multi-scale Otsu thresholding algorithm is presented
for the segementation of medical images. The effects
of noise and weak edges are eliminated by representing
images at multiple levels. In [23], a hybrid algorithm
is proposed for an automatic segmentation of ultrasound
images. The proposed method combine information from
spatial constraint based kernel fuzzy clustering and distance
regularized level set (DRLS) based edge features. Multiple
experiments are conducted for evaluating the method on
real as well as synthetically generated ultrasound images. A
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Fig. 1 Typology of medical
imaging modalities

segmentation approach for 3D medical images is presented
in [24], in which the system is capable of assessing and
comparing the quality of segmentation. The approach is
mainly based on the statistical shape based features coupled
with extended hierarchal clustering algorithm and three
different datasets of 3D medical images are used for
experimentation. An expectation maximization approach
is used for tumor segmentation on brain tumor image
segmentation (BRATS) 2013 dataset. The method achieves
considerable performance, but is only tested on a few
images from the dataset and is not shown to generalize for
all images in the dataset [25].

Detection and classification of abnormality

Abnormality detection in medical images is the process of iden-
tifying a certain type of disease such as tumor. Traditionally,
clincial experts detect abnormalities, but it requires a lot of
human effort and is time consuming. Therefore, develop-
ment of automated systems for detection of abnormalities is
gaining importance. Different methods are presented in lit-
erature for abnormality detection in medical images. In [26],

an approach is presented for detection of the brain tumor
using MRI segmentation fusion, namely potential field seg-
mentation. The performance of this system is tested on a
publicly available MRI benchmark, known as brain tumor
image segmentation. A particle swarm optimization based
algorithm for detection and classification of abnormalities
in mammography images is presented in [27], which uses
texture features and a support vector machine (SVM) based
classifier. In [28], a method is presented for detection of
myocardial abnormalities using cardiac magnetic resonance
imaging.

Computer aided detection or diagnosis

A Computer Aided Diagnosis (CAD) system is used in radiol-
ogy, which assists the radiologist and clinical practitioners
in interpreting the medical images. The system is based on
algorithms which use machine learning, computer vision
and medical image processing. In clinical practice, a typ-
ical CADx system serves as a second reader in making
decisions that provides more detailed information about
the abnormal region. A typical CADx system consists of
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the following stages, pre-processing, feature extraction, fea-
ture selection and classification [29]. In literature, there are
methods proposed for the diagnosis of diseases such as fatty
liver [30], prostate cancer [29], dry eye [31], Alzheimer
[32], and breast cancer [33]. In [34], hybrid features are
used for the detection glaucoma in fundus images. The
optic disc is localized by employing support vector machine
trained using local features extracted from the vessels [35].
A hybrid of clinical and image based features are used
for multi-class classification of alzheimer disease using the
alzheimer disease neuro-image initiative (ADNI) dataset
with reasonable accuracy [36].

Medical image retrieval

Recent years have witnessed a broad use of computers and
digital information systems in hospitals. The picture archiv-
ing and communication systems (PACSs) are producing
large collections of medical images [37–39]. The hospitals
and radiology departments are producing a large number
of medical images, ultimately resulting in huge medical
image repositories. An automatic medical image classifica-
tion and retreival system is required to efficiently deal with
this big data. A speciliazed medical image retrieval system
could assist the clinical experts in making a critical decision
in disease prognosis and diagnosis. A timely and accurate
deceison regarding the diagnosis of a patient’s disease and
its stage can be mabe by using similar cases retrieved by the
reterival system [40]. Text based and content based image
retrieval (CBIR) methods have been commonly used for
medical image retrieval. Text based retrieval methods were
initially proposed in 1970s [37], where images were man-
ually annotated with a text based description. In case, the
textual annotation is done efficiently, the performance of
such systems is fast and reliable. The drawback of such sys-
tems is that they cannot perform well in un-annotated image
databases. Image annotation is not only a subjective matter
but also a time taking process [41]. In CBIR methods, tex-
ture, color and shape based features are used for searching
and retrieving images from large collections of data [42].

A CBIR system based on Line Edge Singular Value Pattern
(LESVP) is proposed in [43]. In [44], a CBIR system for skin
lesion images using reduced feature vector, classification
and regression tree is presented. In [40], an Bag of Visual
Words (BoVWs) approach is used along with scale invariant
feature transform (SIFT) for the diagnosis of Alzheimer
disease (AD). In [45], a supervised learning framework is
presented for biomedical image retrieval, which uses the
predicted class label from classifier for retrieval. It also uses
image filtering and similarity fusion and multi-class support
vector machine classifier. The use of class prediction eliminates
irrelevant images and results in reducing the search area for
similarity measurement in large databases [46].

Evaluationmetrics for medical image analysis
system

A typical medical image analysis system is evaluated by
using different key performance measures such as accuracy,
F1-score, precision, recall, sensitivity, specificity and dice
coefficient. Mathematically, these measures are calculated
as,

F1score = 2 × (P recision × Recall)

(P recision + Recall)
, (1)

where,

Precision = T P

(T P + FP)
, (2)

and

Recall = (T P )

(T P + T N)
, (3)

Accuracy = (T P + T N)

(T P + T N + FP + FN)
, (4)

Sensitivity = T P

(T P + FN)
, (5)

Specif icity = T N

(T N + FP)
, (6)

DiceScore = 2 × |P ∩ GT |
|P | + |GT | , (7)

where True Positive (TP) represents number of cases correctly
recognized as defected, False Positive (FP) represents number
of cases incorrectly recognized as defected, True Negative
(TN) represents number of cases correctly recognized as
non-defected and False Negative (FN) represents number
of cases incorrectly recognized as non-defected. In Eq. 7,
P denotes the prediction as given by the system being
evaluated for a given testing sample and GT represents the
ground truth of the corresponding testing sample.

Convolutional Neural Networks (CNNs)

Deep learning is a tool used for machine learning, where
multiple linear as well as non-linear processing units
are arranged in a deep architecutre to model high level
abstraction present in the data [47]. There are numerous
deep learning techniques currently used in a variety of
applications. These include auto-encoders, stacked auto-
encoders, restricted Boltzmann machines (RBMs), deep
belief networks (DBNs) and deep convolutional neural
networks (CNNs). In recent years, CNN based methods
have gained more popularity in vision systems as well as
medical image analysis domain [48–50].
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CNNs are biologically inspired variants of multi-layer
perceptrons. They tend to recognize visual patterns, directly
from raw image pixels. In some cases, a minimal pre-
processing is performed before feeding images to CNNs.
These deep networks look at small patches of the input
image, called receptive fields, by using multiple layer
neurons and use shared weights in each convolutional
layer. CNNs combine three architectural ideas for ensuring
invariance for scale, shift and distortion to some extent.
The first CNN model (LeNet-5) that was proposed for
recognizing hand written characters is presented in [51].
The local connections of patterns between the neurons of
adjacent layers of CNN i.e., inputs from hidden units of a
layer m are taken as a subset of units in the layer m−1, units
having spatially adjacent receptive fields for exploiting the
spatial local correlation. Additionally, in CNN each filter
hi is replicated around the whole visual field. These filters
share bias and weight vectors to create a feature map. The
gradient of shared weights is equal to the sum of gradients
of the shared parameters. When convolution operation is
performed on sub-regions of the whole image, a feature
map is obtained. The process involves convolution of the
input image or feature map with a linear filter with the
addition of a bias followed by an application of a non-linear
filter. A bias value is added such that it is independent of
the output of previous layer. The bias values allow us to
shift the activation function of a node in either left or right
direction. For example, for a sigmoid function, the weights
control the steepness of the output, whereas bias is used
to offset the curve and allow better fitting of the model.
The bias values are learned during the training model and
allows an independent variable to control the activation. At
a given layer, the kth filter is denoted symbolically as hk ,
and the weights Wk and bias bk determines their filters. The
mathematical expression for obtaining feature maps is given
as,

hk
ij = tanh

((
Wk ∗ x

)
ij

+ bk

)
, (8)

where, tanh represents the tan hyperbolic function, and ∗ is
used for the convolution operation. Figure 2 illustrates two
hidden layers in a CNN, where layer m − 1 and m has four
and two features maps respectively i.e., h0 and h1 named as
w1 and w2. These are calculated from pixels (neurons) of
layer m − 1 by using a 2 × 2 window in the layer below
as shown in Fig. 2 by the colored squares. The weights
of these filter maps are 3D tensors, where one dimension
gives indices for input feature maps, while the other two
dimensions provides pixel coordinates. Combining it all
together, Wkl

ij represents the weight connected to each pixel

of kth feature map at a hidden layer m with ith feature map
of a hidden layer m − 1 and having coordinates i, j .

Each neuron or node in a deep network is governed by
an activation function, which controls the output. There
are various activation functions used in deep learning
literature such as linear, sigmoid, tanh, rectified linear unit
(ReLU). A broader classification is made in the form of
linear and non-linear activation function. A linear function
passes the input at a neuron to the output without any
change. Since, deep network architectures are designed to
perform complex mathematical tasks, non-linear activation
functions have found wide spread success. ReLU and its
variations such as leaky-ReLU and parametric ReLU are
non-linear activations used in many deep learning models
due to their fast convergence characteristic. Pooling is
another important concept in convolutional neural networks,
which basically performs non-linear down sampling. There
are different types of pooling used such as stochastic,
max and mean pooling. Max pooling divides the input
image into non-overlapping rectangular blocks and for
every sub-block local maxima is considered in generating
the output. Max pooling provides benefits in two ways,
i.e., eliminating minimum values reduces computations
for upper layers and it provides translational invariance.
Concisely, it provides robustness while reducing the
dimension of intermediate feature maps smartly. On the
other hand, mean pooling replace the underlying block with
its mean value. In stochastic pooling the activation function
within the active pooling region is randomly selected. In
addition to down-sampling the feature maps, pooling layers
allows learning features for translational and rotational
invariant classification [52]. The pooling operation can also
be performed on overlapping regions. In circumstances
where weak spatial information surrounding the dominant
regions of an image is also useful, fractional or overlapping
regions for pooling could be beneficial [53].

There are various techniques used in deep learning to
make the models learn and generalize better. This could
include L1, L2 regularizer, dropout and batch normalization
to name a few. A major issue in using deep convolutional
network (DCNN) is over-fitting of the model during
training. It has been shown that dropout is used successfully
to avoid over-fitting [54]. A dropout layer drops certain unit
connections which are selected randomly. Dropout layer
is widely used for regularization. In addition to dropout,
batch normalization has also been successfully used for the
purpose of regularization. The input data is divided into
mini batches. It is shown that using batch normalization
not only speeds up the training but, in some cases, preform
regularization eliminating the need for using dropout layers
[55]. The performance of a deep learning method is highly
dependent on the data. In cases, where the availability of
data is limited, various augmentation techniques are utilized
[56]. This may include random cropping, colour jittering,
image flipping and random rotation [57].
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Medical image analysis using CNN

There is a wide variety of medical imaging modalities used
for the purpose of clinical prognosis and diagnosis and in
most cases the images look similar. This problem is solved
by deep learning, where the network architecture allows
learning difficult information. Hand crafted features work
when expert knowledge about the field is available and
generally make some strict assumptions. These assumptions
may not be useful for certain tasks such as medical
images. Therefore, with the hand-crafted features in some
applications, it is difficult to differentiate between a healthy
and non-healthy image. A classifier such as SVM does not
provide an end to end solution. Features extracted form
techniques such as scale invariant feature transform (SIFT)
etc. are independent of the task or objective function in
hand. Afterwards, sample representation is taken in term
of bag of words (BOW), Fisher vector or some other
mechanism. The classifier like SVM is applied on this
representation and there is no mechanism for the of loss to
improve local features as the process of feature extraction
and classification is decoupled from each other.

On the other hand, a DCNN learn features from the
underlying data. These features are data driven and learnt
in an end to end learning mechanism. The strength of
DCNN is that the error signal obtained by the loss function
is used/propagated back to improve the feature (the CNN
filters learnt in the initial layers) extraction part and hence,
DCNN results in better representation. The other advantage
is that in the initial layers a DCNN captures edges, blobs
and local structure, whereas the neurons in the higher layers
focus more on different parts of human organs and some of
the neurons in the final layers can consider whole organs.

Figure 3 shows a CNN architecture like LeNet-5 for
classification of medical images having N classes accepting
a patch of 32 × 32 from an original 2D medical image.
The network has convolutional, max pooling and fully
connected layers. Each convolutional layer generates a
feature map of different size and the pooling layers reduce
the size of feature maps to be transferred to the following
layers. The fully connected layers at the output produce
the required class prediction. The number of parameters
required to define a network depends upon the number
of layers, neurons in each layer, the connection between
neurons. The training phase of the network makes sure that
the best possible weights are learned, that would give high
performance for the problem at hand. The advancement
in deep learning methods and computational resources has
inspired medical imaging researchers to incorporate deep
learning in medical image analysis. Some recent studies
have shown that deep learning algorithms are successfully
used for medical image segmentation [58], computer aided
diagnosis [59–61], disease detection and classification
[62–65] and medical image retrieval [66, 67].

A deep learning based approach has been presented in [68],
in which the network uses a convolutional layer in place
of a fully connected layer to speed up the segmentation
process. A cascaded architecture has been utilized, which
concatenates the output of the first network with the input
of succeeding network. The network presented in [69] uses
small kernels to classify pixels in MR image. The use
of small kernels decreases network parameters, allowing
to build deeper networks, without worrying about the
dangers of over-fitting. Data augmentation and intensity
normalization have been performed in pre-processing step
to facilitate training process. Another CNN for brain tumor

Fig. 2 Hidden layers in a
convolutional neural network
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Fig. 3 A typical convolutional neural network architecture for medical image classification

segmentation has been presented in [70]. The architecture
uses dropout regularizer to deal with over-fitting, while
max-out layer is used as activation function. A two path
eleven layers deep convolutional neural network has been
presented in [71] for brain lesion segmentation. The network
is trained using a dense training method using 3D patches.
A 3D fully connected conditional random field has been
used to remove false positives as well as to perform multiple
predictions. The CNN based method presented in [72] deals
with the problem of contextual information by using a
global-based method, where an entire MRI slice is taken
into account in contrast to patch based approach. A re-
weighting training procedure has been used to deal with
the data imbalance problem. A 3D convolutional network
for brain tumor segmentation for the BRATS challenge
has been presented in [73]. The network uses a two-path
approach to classify each pixel in an MR image. In [58],
a deep convolutional neural network is presented for brain
tumor segmentation, where a patch based approach with
inception method is used for training purpose. Drop-out,
batch normalization and inception modules are utilized to
build the proposed ILinear nexus architecture. The problem
of over-fitting, which arises due to scarcity of data, is
removed by using drop-out regularizer. Table 1 highlights
the usage of CNN based architectures for segmentation of
medical images.

A method for classification of lung disease using a
convolutional neural network is presented in [62], which
uses two databases of interstitial lung diseases (ILDs)
and CT scans each having a dimension of 512 × 512.
A total of 14696 image patches are derived from the
original CT scans and used to train the network. A method
based on convolutional classification restricted Boltzmann
machine for lung CT image analysis is presented in [63].

Two different datsets containing lung CT scans are used
for classification of lung tissue and detection of airway
center line. The network is trained on 32 × 32 image
patches selected along a gird with a 16-voxel overlap.
A patch is retained if it has 75% of voxel belonging
to the same class. In [64], a framework for body organ
recognition is presented based on two-stage multiple
instance deep learning. In the first stage, discriminative
and non-informative patches are extracted using CNN. In
the second stage, fine tuning of the network parameters
is performed on extracted discriminative patches. The
experiments are conducted for the classification of synthetic

Table 1 The application of CNN based methods for medical image
segmentation

Method Dataset Dice

Complete Core Enhancing

InputCascade BRATS 0.88 0.79 0.73

CNN [68] 2013

Pereira [69] BRATS 0.84 0.72 0.62

2013

Lisa [70] BRATS 0.79 0.68 0.57

2013

Deep BRATS 0.89 0.75 0.72

medic [71] 2015

SegNet [72] BRATS 0.85 0.68 0.68

2015

3DNet 3 [73] BRATS 0.91 0.83 0.76

2015

Cascaded BRATS 0.86 0.87 0.90

neural networks [58] 2015
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dataset as well as the body part classification of 2D CT
slices. In [65], a locality sensitive deep learning algorithm
called spatially constrained convolutional neural networks
is presented for the detection and classification of the
nucleus in histological images of colon cancer. A novel
neighboring ensemble predictor is proposed for accurate
classification of nuclei and is coupled with CNN. A large
dataset having 20,000 annotated nuclei of four classes of
colorectal adenocarcinoma images is used for evaluation
purposes. In [66], a deep convolutional neural network
has been proposed to retrieve multimodal images. An
intermodal dataset having five modalities and twenty-four
classes are used to train the network for the purpose of
classification. Three fully connected layers are used at
the last part of the network for extracting features, which
are use for the retrieval. A content based medical image
retrieval (CBMIR) system based on CNN for radiographic
images is proposed in [67]. Image retrieval in medical
application (IRMA) database is used for the evaluation of
the proposed CBMIR system. In [60], a hybrid thyroid
module diagnosis system has been proposed by using two
pre-trained CNNs. The models differs in terms of the

number of convolutional and fully connected layers. A soft-
max classifier is used for diagnosis and results are validated
on 15000 ultrasound images. A semi-supervised deep CNN
based learning scheme is proposed for the diagnosis of
breast cancer[61], and is trained on a small set of labeled
data. In [66], a CNN based approach is proposed for diabetic
retinopathy using colored fundus images. The network
classify the images into three classes i.e., aneurysms,
exudate and haemorrhages and also provide the diagnosis.
The proposed architecture is tested on dataset comprising of
80000 images. In [74, 75], deep neural network including
GoogLeNet and ResNet are successfully used for multi-
class classification of Alzheimer’s disease patients using the
ADNI dataset. An accuracy of 98.88% is achieved, which
is higher than the traditional machine learning approaches
used for Alzheimer’s disease detection.

Table 2 highlights CNN applications for the detection
and classification task, computer aided diagnosis and
medical image retrieval. It is seen that CNN based
networks are successful in application areas dealing with
multiple modalities for various tasks in medical image
analysis and provide promising results in almost every

Table 2 Some recent clinical applications of CNN based methods

Application Method Dataset Number of images/
classes

Accuracy

Body Part Recogni-
tion

Two Stage Convolu-
tional Neural Network
[64]

CT Slices of 12 body
organs

6000 Synthetic 7489
Transversal slices 12
classes

92.23%

Lung Texture Classi-
fication and Airway
Detection

Convolutional
Restricted Blotzman
Machine [63]

ILD (interstitial lung
diseases ) CT scans

73 CT scans 5 classes 89%

Lung Pattern Classifi-
cation

Convolutional Neural
Network [62]

ILD (interstitial lung
diseases ) CT scans

109 high resolution
CT scans 7 classes

85.5%

Detection and Classi-
fication of Nuceli

Two architectures of
Convolutional Neural
Network[65]

histology images of
colorectal adenocarci-
nomas

100 histology images
4 classes

80.2%

Thyroid Nodule Diag-
nosis

Pre-Trained Convolu-
tional Neural Network
[59]

Ultrasound Images 15,000 ultrasound
images 2 classes

83%

Breast Cancer Diag-
nosis

Convolutional Neural
Network using semi
supervised learning
[60]

Mammographic
Images with ROIs

3158 ROIs 2 classes 82.43%

Diabetic Retinopathy Convolutional Neural
Network [61]

Kaggle Dataset 80,000 images 5
classes

75%

Medical Image Classi-
fication and Retrieval

Convolutional Neural
Network [66]

Multimodal Dataset
having 24 classes

7200 multi-modal
images 24 classes

99.77%

Radiographic Image
Retrieval

Convolutional Neural
Network [67]

IRMA Database 14,410 images 31
classes

97.79%

Multi-class Classifica-
tion of Alzheimer Dis-
ease

Convolutional Neural
Network [74]

ADNI database 38,024 images 4
classes

98.88%
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case. The results can vary with the number of images
used, number of classes, and the choice of the DCNN
model. Looking at these successes of CNN in medical
domain, it seems that convolutional networks will play a
crucial role in the development of future medical image
analysis systems. Deep convolutional neural networks have
proven to give high performance in medical image analysis
domain when compared with other techniques applied in
similar application areas. Table 3, summarises results of
different techniques used for lung pattern classification in
ILD disease. The CNN based method outperforms other
methods in major performance indicators. Table 4 shows
a comparison of the performance of a CNN based method
and other state-of-the-art computer vision based methods
for body organ recognition. It is evident that the CNN
based method achieves significant improvement in key
performance indicators.

Discussion

In this section, various considerations for adopting deep
learning methods in medical image analysis are discussed.
A roadmap for the future of artificial intelligence in medical
image analysis is also drawn in the light of recent success of
deep learning for these tasks.

Various deep learning architectures for medical
image analysis

The success of convolutional neural networks in medical
image analysis is evident from a wide spectrum of literature
that is recently available [79]. There are multiple CNN
architectures reported in literature to deal with different
imaging modalities and tasks involved in medical image
analysis [58–74]. These architectures include conventional
CNN, multiple layer networks, cascaded networks, semi-
and fully supervised training models and transfer learning.
In most cases, the data available is limited and expert
annotations are scarce. In general, shallow networks have
been preferred in medical image analysis, when compared
with very deep CNNs employed in computer vision

applications [80, 81]. In [82], a U shaped network is used
for the purpose of semi-automated segmentation of sparsely
annotated volumetric data. This architecture introduces
skip connections and use convolution, deconvolution in a
structured manner. A modification to U-Net is proposed
in [83], which is applied on a variety of medical datasets
for segmentation tasks. In [84], a W-shaped network
is proposed for 2D medical image segmentation task.
In [85], a volumetric solution is proposed for end to
end segmentation of prostate cancer. A convolutional-
deconvolutional network based on a capsule architecture
is proposed in [86] for lung image segmentation and is
shown to substantially reduce the number of parameters
required when compared to U-Net architecture. This
analysis shows that different DCNN network architectures
are adopted or proposed for medical image analysis.
These architectures focus on reducing the parameter space,
improve computation time, and handle 3D data. It is
generally found that DCNN based architectures have found
wider success in dealing with medical image data, when
compared to other deep learning frameworks.

3D imagingmodalities

A large amount of data produced in the medical domain
has 3-dimensional information. This is particularly true
for volumetric imaging modalities such as CT and
MRI. Medical image analysis can benefit from this
enriched information. Deep learning methods generally
adopt different methods to handle this 3D information. This
can involve converting 3D volume data into 2D slices and
combination of features from 2D and multi-view planes to
benefit from the contextual information [87, 88]. Recent
techniques are proposed using 3D CNN to fully benefit
from the available information [89, 90]. In [91], a fully 3D
DCNN is used for the classification of dysmaturation in
neonatal MRI image data. In [92], a two stage network is
used for the detection of vascular origin lacunes, where a
fully 3D CNN used in the second stage. The performance
of the system is close to trained raters. In [93], a 3D CNN
is used for the segmentation of cerebral vasculature using
4D CT data. In [94], brain lesion segmentation is performed

Table 3 A comparison of methods used for ILD classification

Method Features Classifier Precision Recall F1 Score

Yan et al. [64] Bag of Words (BoW) + SIFT Linear regression (LR) 62.21 63.37 62.78

BoW + SIFT SVM 63.72 64.63 64.17

Histogram of oriented gradients (HOG) LR 67.74 68.71 68.22

HOG SVM 76.39 76.75 76.57

CNN CNN 92.25 92.21 92.23
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Table 4 A comparison of CNN based method with other state-of-the-art methods for body organ recognition

Method Features Classifier Favg Accuracy

Gangeh [76] Intensity Texon SVM-radial basis function 0.7127 0.7152

Sorensen [77] Local binary pattern + Histogram K-nearest neighbour 0.7322 0.7333

Anthimopoulous [78] Local Discrete Cosine transform + Histogram Random forest 0.7786 0.7809

Anthimopoulous [62] CNN 0.8547 0.8561

using 3D CNN. A 3D fully connected conditional random
field (CRF) is used for post processing. A geometric CNN
is proposed in [95] to deal with geometric shapes in medical
imaging, particularly targeting brain data. The utilization
of 3D CNN has been limited in literature due to the size
of network and number of parameters involved. This also
leads to slow inference due to 3D convolutions. A hybrid
of 2D/3D networks and the availability of more compute
power is encouraging the use of fully automated 3D network
architectures.

Limitation of deep learning and future prospects

Despite the ability of deep learning methods to give better
or higher performance, there are some limitations of deep
learning techniques, which could limit their application
in clinical domain. Deep learning architecture requires a
large amount of training data and computational power. A
lack in computational power will lead to a need for more
time to train the network, which would depend on the
size of training data used. Most deep learning techniques
such as convolutional neural network requires labelled data
for supervised learning and manual labelling of medical
images is a difficult task. These limitations are being
overcome with every passing day due to the availability of
more computation power, improved data storage facilities,
increasing number of digitally stored medical images
and improving architecture of the deep networks. The
application of deep learning in medical image analysis also
suffers from the black box problem in AI, where the inputs
and outputs are known but the internal representations are
not very well understood. These methods are also affected
by noise and illumination problems inherent in medical
images. The noise can be removed using pre-processing
steps to improve the performance [58].

A possible solution to deal with these limitations is to
use transfer learning, where a pre-trained network on a large
dataset (such as ImageNet) is used as a starting point for
training on medical data. This typically includes reducing
the learning rate by one or two orders of magnitude (i.e.,
if a typical learning rate is 1e − 2, reduce it to 1e − 3 or
1e − 4) and increase the local learning rate of the newly

introduce layers by a factor of 10. Also, as an alternative
the DCNN model can be pretrained by converting ImageNet
data into gray scale images. However, it may require more
computation resources (such as GPUs) to train on the whole
ImageNet data. The best option would be to train DCNN
model on large scale annotated medical image data. This
underlying task for pre-training can be as simple as organ
classification [66] or binary classification task of benign or
malignant images. Different modalities e.g., X-ray, MRI,
and CT can be combined for this task. This pre-trained
model can be used in transfer learning for fine tuning a
network for a particular problem at hand.

In general, shallow networks are used in situations where
data is scarce. One of the most important factors in deep
learning is the training data. However, this is partially
addressed by using transfer learning. However, even in
the presence of transfer learning more data on the target
domain will give better performance. The use of generative
adversarial network (GAN) [96] can be explored in the
medical imaging field in cases where the data is scarce. One
of the main advantages of transfer learning is to enable the
use of deeper models to relatively small dataset. In general, a
deeper DCNN architecture is the better for the performance.

Conclusion

A comprehensive review of deep learning techniques and
their application in the field of medical image analysis
is presented. It is concluded that convolutional neural
network based deep learning methods are finding greater
acceptability in all sub-fields of medical image analysis
including classification, detection, and segmentation. The
problems associated with deep learning techniques due
to scarce data and limited labels is addressed by using
techniques such as data augmentation and transfer learning.
For larger datasets, availability of more compute power
and better DL architectures is paving the way for a higher
performance. This success would ultimately translate into
improved computer aided diagnosis and detection systems.
Further research is required to adopt these methods for
those imaging modalities, where these techniques are not
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currently applied. The recent success indicates that deep
learning techniques would greatly benefit the advancement
of medical image analysis.
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