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Abstract
The fields of medicine science and health informatics have made great progress recently and have led to in-depth analytics that is
demanded by generation, collection and accumulation of massive data. Meanwhile, we are entering a new period where novel
technologies are starting to analyze and explore knowledge from tremendous amount of data, bringing limitless potential for
information growth. One fact that cannot be ignored is that the techniques of machine learning and deep learning applications
play a more significant role in the success of bioinformatics exploration from biological data point of view, and a linkage is
emphasized and established to bridge these two data analytics techniques and bioinformatics in both industry and academia. This
survey concentrates on the review of recent researches using data mining and deep learning approaches for analyzing the specific
domain knowledge of bioinformatics. The authors give a brief but pithy summarization of numerous data mining algorithms used
for preprocessing, classification and clustering as well as various optimized neural network architectures in deep learning
methods, and their advantages and disadvantages in the practical applications are also discussed and compared in terms of their
industrial usage. It is believed that in this review paper, valuable insights are provided for those who are dedicated to start using
data analytics methods in bioinformatics.
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Introduction

Revolutionary changes and improvements have been
witnessed in the research areas of biomedicine during the sev-
eral past decades. As well known, biomedicine is a frontier
and interdisciplinary subject derived from the theories and

methodologies of comprehensive medicine, life science and
biology. The basic task is to apply biology and engineering
techniques to study and solve the problems in life science,
especially in medicine [1, 2]. Biomedicine is the base of aca-
demic research and innovation of biomedical information,
medical imaging technology, gene chip, nanotechnology,
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new material and so on. With the evolution of the social-
psycho-biomedical model, the development of systems biolo-
gy has formed the modern system of biomedicine. It is closely
related to formation and biotechnology industry in the twenty-
first century, and is an important engineering field associated
with improving the level of medical diagnosis and human
health [3–8]. And for bioinformatics, a new promising disci-
pline which emerges and develops rapidly because of the con-
tribution of biotechnology and data analysis methods, is prob-
ably regarded as a considerable component of traditional hu-
man health informatics for the interdisciplinary combination
of biomedical information and computer science. The com-
plete works and jobs done in bioinformatics show that from all
kinds of aspects or views, great importance of bioinformatics
is obtained and acquired to effectively analyze and extract
valuable knowledge from increasingly massive biomedical
information.

On the other hand, since the fast development of biotech-
nology has been accumulated within the historical period of
time, the exponential increase rate of biomedical data gener-
ated by various research and application areas can range from
micro molecular level (gene functions, protein interactions,
etc.), biological tissue level (brain connectivity map,
Magnetic resonance images, etc.), clinical patient level (inten-
sive care unit, electronic medical record, etc.) and whole pop-
ulation level (medical message board, social media, etc.)
[9–11]. The unneglectable fact is that growth speed and het-
erogeneous structure make it much more challenging to han-
dle biomedical data with such properties than conventional
data analysis methods as usual [12]. Therefore, there is a de-
sirable need to create more powerful theoretical methodolo-
gies and practical tools for analyzing and extracting meaning-
ful information from above mentioned complex bio-data. The
key points behind those numerous efficient and scalable
methods and tools include but not limited to classification,
prediction, clustering, outlier detection, sequential processing,
frequent item query, deep network architecture construction,
spatial/temporal data analysis and visualization. To transfer
useful knowledge from original raw data, data mining ap-
proach with core methodology called machine learning is
proved to be a successful way and has been widely applied
by building models, making predictions, doing classifications
and clustering, finding associated rules, and finally
uncovering wanted patterns. Meanwhile, deep learning is a
more recent concept and framework, and has much better
ability of feature representation in abstract level than general
machine learning.

The problem appears under the circumstance of how to
combine advanced data analysis methods and bioinformatics
together for the purpose of bridging the two fields systemati-
cally and mining biological data successfully. As far as the
contribution of this paper is concerned, the general overview
is presented with sophisticated data analysis methods

represented by data mining and deep learning techniques that
have been utilized in the wide range of bioinformatics.

Data mining in bioinformatics

Behind the incremental datasets there are many important
things, which require large capacity data storage devices and
high capacity analysis tools. From a technical point of view,
machine learning or data mining approach is also very neces-
sary. It is features of abstract data representations that guaran-
tee data mining can achieve the goal of accurate and reliable
performance. However, human analysis and abstraction are
not suitable for massive data with both high dimensional at-
tributes and tremendous number of instances. In addition, the
growth rate of data is much faster than that of the traditional
manual analysis technology. And when we do not have the
ability to translate the information into a more understandable
representation to provide users with original data, the meaning
of existence is also lost. So in order to make better use of this
type of data to help clinical diagnosis and determine the clin-
ical effects of drugs on experimental data, it is urgent to pro-
vide an automatic data analysis method for analyzing the high-
level data. With the years of exploring and progressing in
bioinformatics, there are many machine learning tools used
for data investigation and analysis nowadays [13]. Data min-
ing is involved in many biomedical study areas, such as bio-
logical electronics and nervous system, bioinformatics and
computational biology, biological materials, biomedical imag-
ing, image processing and visualization, biomedical model-
ing, gene engineering, medical cell biology, nano biological
analysis, nuclear magnetic resonance/CT/ECG, physiological
signal processing, etc.

Data preprocessing

Data preprocessing is a procedure dealing with the data before
the main process. In the real world, some kinds of data are
generally raw, noisy, incomplete and inconsistent, and cannot
be directly used for data mining, or even their subsequent
mining results are unsatisfactory. In order to enhance data
mining performance, a preprocessing step is introduced as
an important step in the whole process. It usually contains
following methods: data cleaning, integration, transformation,
reduction and so on [13]. These preprocessing techniques are
applied before data mining, which greatly improves the qual-
ity of patterns and reduces the time required for actual mining.

Data cleaning

Data cleaning routines clean up data by filling in missing
values, smoothing noise, identifying or deleting outliers, and
resolving inconsistencies. Generally speaking, a set of criteria
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are introduced to evaluate the quality of data itself, they are
validity (confirmation of whether each data is consistent with
the original schema, such as data type, missing value, unique
field, range, regular expression, constraints...), accuracy(the
value indicated by the data is reasonable and correct, requires
verification via other data), completeness (needs to verify
through other data), consistency (there is an association be-
tween data fields about whether they are consistent with each
other, and no contradiction occurs) and uniformity(the agree-
ment of measuring unit used in the same field for each piece of
data). After that, a number of actions are token to perform the
cleaning produce such as data auditing, workflow specifica-
tion, execution of plan and manually post-correction. Brazma,
Alvis, et al. established a standard for recording and reporting
microarray-based gene expression data, which is Minimum
Information About a Microarray Experiment (MIAME) that
format standardization, abnormal data removal, error correc-
tion, duplicate data removal [14]. Antonie, Maria-Luiza, et al.
investigated the use of neural networks (NNs) and association
rule mining, for anomaly detection and classification, which
automatically sweeps through the medical image and cutting
horizontally and vertically the image into those parts with the
mean less than a certain threshold [15].

Data integration

Data integration routines combine data from multiple sources
(flat files, databases, data cubes, data warehouses, etc.), store
them together and provide users with a unified view of data.
The process of building a data warehouse is in fact equal to
data integration. Such works have been achieved by several
researchers. Five common and initial types of integration
methods for combining data into the valuable format, namely
data consolidation (collecting various data into one consoli-
dated storage), propagation (copying data between the source
and destination synchronously or asynchronously),
virtualization (a unified view is shown through real-time in-
terface from multiple data models), federation (a virtual data-
base on heterogeneous data sources) and warehouse (a storage
repository for disparate data). The benefits offered by data
integrations make pieces of anecdotal data together and give
the users actionable insights and informative perspectives on
data preprocessing. Dasu, Tamraparni, et al. developed such a
system of high efficiency, Bellman that performs data integra-
tion on the structural database [16]. Raman, Vijayshankar, and
Joseph M. Hellerstein presented a quick identifying similar
values and estimating join directions and sizes [17]. Becker,
Barry, et al. gave a simple Bayesian classifier (SBC) based on
a conditional independence model for attribute processing
[18]. In Zhang J., et al. and Xu, Xiaowei, et al.’s work, a
clustering data processing approach called DClust that pro-
vides multi-resolution view of the clusters and generates arbi-
trary shapes clusters in the presence of noise [19, 20].

Data transformation

Data can be transformed into a specific form that is suitable for
mining through smooth aggregation, data generalization and
normalization. The nature of transformation is the replacement
of latent pattern distribution shape or relationship for the pur-
pose of computational convenience. Besides, easy but com-
prehensive visualization can be obtained via normalization of
different scales of data in transformation step, and high inter-
pretability is enhanced by aggregation and generalization op-
erations on hierarchical data concepts, which enables the data
usable and facilitates the efficiencies of data storage, manage-
ment and computation. The entire workflow of data transfor-
mation involves the data discovery (understand the form of
data that needs to be transformed), data mapping (it deter-
mines the rules of how data is extracted, filtered, revised and
merged during the conversion),data execution (applying tech-
nical tools to implement the transformation) and data review
(checking whether the output achieves the requirements).Han,
Jiawei, et al. proposed a seven-step model that consists of
many machine learning methods to implement data cleaning
and preprocessing, data reduction and transformation [21].
Daubechies, Ingrid used coefficients of the Mallat transforma-
tion to capture the directions and spatial distributions [22].
The principal component analysis (PCA) model has simple
construction via singular value decomposition (SVD), provid-
ing the best low-dimensional linear approximation of the data,
and the time lag shift [23–25].

Data reduction

The data reduction technique can be used to obtain a reduced
representation of the dataset, which is much smaller but still
close to preserving the integrity of the original data and pro-
ducing the same or nearly the same results as the pre-reduction
ones. The effective range of data reduction is well-known as
reducing the storage capacity for a given dataset, and this
includes eliminating invalid instances in a data archive and
producing the summarized statistical aggregation of data attri-
butes in the columns of data. Technologies like compression
(decreasing the space required to store a block of data),
deduplication (eliminating the redundant data from multiple
data sources), thin provisioning (a dynamic strategy for allo-
cating storage address while removing the previous location
of unused data) and efficient snapshots (using some synopsis
data structure containing time copies of data and changes of
blocks) are employed in the strategies to deal with reduction
problems. Andrews, H., and C. Patterson gave the combina-
tion of SVD and clustering for reducing the data dimensions
[26]. Shearer Colin proposed CRISP-DM (cross industry stan-
dard process for data mining) project to distinction of generic
and special process model structures for reducing the high
dimensionality [27]. Glas, Annuska M., et al. demonstrated
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the reproducibility and robustness of the small custom-made
microarray as a reliable diagnostic tool [28]. Yoshida, Hisako,
et al. created the algorithm according on radial basis function-
sparse partial least squares (RBF-sPLS) by creating sparse,
linear combinations of explanatory variables so that can con-
currently perform feature selection and dimensionality reduc-
tion [29].

Classification

In data mining, classification is one of the most popular tools
for understanding relationship among various conditions and
the features of different objects. Classification methods can
help identify a new observation belonging to which particular
part of categories (sub-populations), on the basis of a training
set of data containing observations (or instances) whose cate-
gory membership is known in advance. In this section, we
demonstrate some typical classification techniques, such as
k-nearest neighbor (KNN), Naïve Bayes (NB), decision tree
(DT), support vector machine (SVM), neural network (NN),
and ensemble (EM).

K-nearest neighbor

As a type of lazy learning methods based on instances, the
unclassified data point is discovered and assigned to particular
label according to the formerly known k nearest neighbor
(KNN) points and a voting mechanism is utilized during the
determination of the target object belonging. KNN together
with linear discriminate analysis (LDA) and sequential for-
ward selection (SFS) were used as main body of classification
by Jen, et al. to study the relationships among critical factors
between both health people and those with chronic illnesses
based on characteristic value determination. Early warning
system was then followed to classify and recognize the chron-
ic class [30]. Weighted KNN, proposed by Bailey and Jain
[31], was improved with strengths of non-uniform distribution
through assigned weights to k neighbors when each distance
of data point calculated. Keller, et al. developed a fuzzy ver-
sion of KNN to give unequal importance to the predicted
samples in determining the classified memberships of certain
typical patterns [32]. An enhanced fuzzy KNNmodel for clas-
sifying thyroid disease was presented by Liu, et al. [33]. It
used one kind of metaheuristics, namely particle swarm opti-
mization (PSO), to specify the neighborhood size k and the
fuzzy strength parameter m. Principle component analysis
(PCA) was also involved in the effectiveness validation of
discriminative subspace building during the classification.
The output showed an adaptive manner of such kind of en-
hanced fuzzy KNN. Sometimes similarities among data or
overlap of majority classes may cause misclassification when
voting, so Syaliman, et al. [34] proposed local mean based and
distance weight(LMDW) KNN to make higher performance

during the majority vote phase. The two efficient and methods
were merged together to output improved results than usual.

Naïve bayes

The Bayes’ theorem is the foundation of the naïve Bayesian
(NB) as a probabilistic statistical classifier, whereas the so
called naïve or simple assumption is made that attributes or
features are conditionally independent, so that computational
complexity can be decreased during the multiple operations of
probabilities. Spiegelhalter, David J., et al. applied Bayesian
probabilistic and statistical ideas to expert systems that exacts
probabilistic inference on individual cases, possibly using a
general propagation procedure [35]. Kononenko, Igor opti-
mized the tradeoff between the Bnon-naivety^ and the reliabil-
ity of approximations of probabilities, and presented a set of
diagnostics for identifying conflicts between data and prior
specification by using Bayesian statistical techniques [36].
Langley, Pat reviewed the induction of simple Bayesian clas-
sifiers that involves disjunctive concepts, since they violate
the independence assumption on which the latter relies [37].
Peng, Hanchuan, and Fuhui Long designated a heuristic algo-
rithm, Bayesian metric, to discrete variable with a limited
number of states and learned theψ-structure of belief network
(or Bayesian network, BN), where clusters of Bequivalent^
pixels are regarded as the irregular features [38]. More recent-
ly in Hickey’s research, the combination of greedy feature
selection and Bayes classifier was used on a robust public
health dataset to test one or some features which can forecast
the best target. The innovation part in their work was reflected
in the imprecise search of attribute space without seeking the
whole exhaustively, and also the random weighted selections
with ranking scores of plentiful attribute probabilities [39].
Except for the greed feature ranking method in NB classifiers,
a new quick variable selection way was designed by Joaquín
Abellán and Javier G. Castellano [40] to overcome the disad-
vantages of non-negative and preset information threshold in
Info-Gain computing in a NB model. The most informative
variables were chosen by imprecise probabilities and the max-
imum entropy measure without the setting threshold. The re-
sult was proved to be a valuable tool for processing bioinfor-
matics benchmark datasets, especially there are volumes of
complex features and tremendous instances in it.

Decision tree

Classification learning of observations in decision tree (DT)
goes from features (denoted by nodes) to outcomes of targeted
class values (represented by leaves) through logical conjunc-
tions of those attributes (calculated by branches), as a whole
flowchart of decision support. The crucial strategy behind a
decision tree is the traditional top-down divide-and-conquer
approach utilizing information entropy of different features.
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Estella, Francisco, et al. designed and implemented a system
in order to manipulate magnetic resonance images (MRI),
store big data for patients, and then used fuzzy decision tree
(FDT) classifiers to achieve feature extraction as well as fea-
ture selection combination for decision-making in classifica-
tion task [41]. Rodriguez, Juan José, et al. proposed a decision
trees generated classifier ensembles based on feature extrac-
tion in order to preserve the variability information in data.
The feature set randomly splits into K subsets rotations, then
takes place to form the new features for a base classifier and
PCA is applied to each subset [42]. Domingos, Pedro, and
Geoff Hulten proposed an efficient decision trees based on
the ultra-fast decision tree, called concept-adapting very fast
decision tree CVFDT. The idea is sliding window of current
examples that every time a new example arrives with O(1)
complexity per example, as opposed to O(w), where w is the
window size [43, 44]. In Zhu, et al.’s study [45], when deter-
mining the splits in tree branches, the optimal split scoring
function estimation was taken to replace maximum likelihood
estimator (MLE) in the related calculation in entropy. The fact
they found was that sub-sample number decreased rapidly
with the trend of exponential form during node splitting, thus
the assumption of singleMLE (sample size is much more than
support size) was no more eligible. Their method was validat-
ed on thirteen different entropy estimation schemes over a set
of benchmark datasets including bioinformatics. Taking ac-
count of the sensitive costs of acquired features and
misclassified instances, Esmeir and Markovitch used anytime
cost-sensitive tree (ACT) to generate a sampling collection of
sub-trees for every feature, the stochastic tree induction algo-
rithm was employed to compute the minimum cost as an es-
timated value for attributes [46]. Several years later, they
persisted in the work of stochastic approach of improving
ACTwith a novel framework for tree classification atanycost
(TATA) [47], additional resources can be exploited to generate
a classifier at any cost during learning time, when the time
itself would be pre-allocated or determined dynamically. The
budget of classification tasks was also considered as well, so
overall it was resource-bounded.

Support vector machine

The pivotal mind of support vector machine (SVM) is the
hyper-plane constructed by implicitly mapping the original
input space to higher dimensional one in order to make the
distance between two separated classes as maximal as possi-
ble. For the mapping step, it is usually done via user specified
kernel functions like radial basis function (RBF), sigmoid,
Gaussian, polynomial, etc. Bounds on the generalization per-
formance based on the leave-one-out method and the VC-
dimension are given to match the complexity of the problem
and automatically adjusted the effective number of parameters
[48]. Lee, Ki-Joong, Young-Sook Hwang, and Hae-Chang

Rim took a two-phase named entity recognition method based
on SVM (one is to pinpoint entities by a simple dictionary
look-up, and another is to classify the semantic class of the
identified entity by SVMs) and dictionary that can alleviate
the entity identification and the semantic classification, the
unbalanced class distribution problems [49]. Nanni, Loris, et
al. used a local binary pattern (LBP) approach based on uni-
form local quinary pattern (LQP) and a rotation invariant local
quinary pattern (where a variance bin selection is performed
and neighborhood preserving embedding feature transform is
applied) to find the best way for describing a given texture
[50]. Hasri, et al. proposed multiple SVM - recursive feature
elimination (MSVM-RFE) as a gene selection to identify the
small number of informative genes over leukemia and lung
datasets. Their idea was straightforward for reducing the di-
mensionality of a subset of original data and repeating the
selection operation on a few subsamples from bootstrap re-
sampling on original data to stabilize the performance of
SVMs [51]. In the research work of Kavitha, et al. [52], a
boosted SVM version named fast correlation-based filter
(FCBF) SVM was introduced based on MSVM-RFE, the au-
thors thought that FCBF should be added first to select the
most prominent not correlated genes and reduce further di-
mensionality than MSVM-RFE. More accurate output and
less computational time were acquired as an inspiring result.

Neural network

Inspired by the physical neural network in biological field,
neural network (NN) is designed to simulate neurological
function system that has multiple layers of grouped and inter-
connected processing nodes known as neurons with adjustable
weighted links, aiming at addressing the particular classifica-
tion issue under the entire unity of aggregated neurons. The
training and learning process is reflected in adjustment of
linkage weights and changes in network structure as an adap-
tive manner in terms of the information flowing internally and
externally via network during studying steps. NN is also re-
ferred to artificial neural network (ANN) frequently. The most
commonly used NN model is a typical multilayer perceptron
(MLP) with backpropagation (BP), which feeds forward the
values first and then calculates gradient of the loss function of
each neuron error contribution, and at last propagates it back
to the earlier layers. The iterative gradient descent optimiza-
tion can lead to reasonable classification results of new types
of data, but cause large expensive costs of parameter choice
and model training. Chest diseases consisting of asthma,
pneumonia, tuberculosis and other chronic pulmonary dis-
eases are analyzed in a comparative study using four types
of NNs, they are multilayer (MLP or MLNN), generalized
regression (GRNN), probabilistic (PNN) and learning vector
quantization (LVQ) [53]. The respective structures and prop-
erties of those NN models were discussed by Er, et al. in a
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detailed way and experimental results reported that NN could
definitely help diagnosis of chest diseases as components of
learning based decision support system and eachmodel has its
own power for dealing with specific disease dataset.
Gunasundari, et al. believed that NNs are method-free tools
capable for identifying disease types, i.e. no special given
algorithm is needed to particular disease diagnosis [54]. In
their research work, lung cancer tissue was discovered and
segmented from chest computed tomography (CT) as a feature
extraction phase to minimize analyzed data size and NN was
applied to tell the various lung diseases apart. Bin Wei and
Jing Zhao proposed a metaheuristic based novel NN architec-
ture for precisely detecting exon intron boundaries and splice
sites prediction in gene identification [55], the improved par-
ticle swarm optimization (IPSO) gave their method the ability
of accelerating the convergence and avoiding local optimum
during training NN structure and building the model.

Ensemble

Ensemble (EM) can be considered as a hybrid of various ap-
proaches with the reasonable and logical hypothesis behind
that many classification models are able to work collabora-
tively and get superior classification outcomes than single one
only. As a typical case of ensemble learning, random forest
(RF) is an ensemble classifier made up of various decision
trees to be a forest with outputs of major classes of all indi-
vidual trees. As an expansion of improved RF, enriched ran-
dom forest (ERF) was proposed by Amaratunga, et al. [56] to
use the weighted random sampling for selecting the desired
subsets at each tree node and the weights were tilted according
to informative features. The test results showed a superior
performance on microarray datasets. Similarly, Yao, et al. pre-
sented another enhanced RF using a replaced sampling meth-
od and multiple example subsets were randomly extracted
with replacement from major class to be balanced with the
minor class [57]. Fabris, et al. studied the rule based method
Bcomputing the predictive accuracy of random tree rules with
positive (±) feature values (COMPACT + FV)Bto measure the
importance of each positive feature value in a RFmodel. They
believed that considering fewer feature values is better than
measuring as a whole set [58]. Gopal, Ram, et al.’s special
issue contribution, BMulti-Objective Design of Hierarchical
Consensus Functions for Clustering Ensembles via Genetic
Programming,^ focused on adding the BTechnique^ and
BTask^. They presented a novel genetic programming (GP)
based approach formed as a hybrid of advanced strategies of
multi-objective clustering and clustering ensembles [59].
Ding, Jing, et al. proposed a classifier ensemble that can alle-
viate these problems by compensating for the weakness of a
classifier with the strengths of other classifiers, assuming that
the errors made by individual classifiers are not fully correlat-
ed [60]. Shen, Hong-Bin, and Kuo-Chen Chou introduced

ensemble classifier that is composed of a set of basic classi-
fiers (optimized evidence-theoretic k-nearest neighbors), with
each trained in different parameter systems, and the outcomes
are combined through a weighted voting to give a final deter-
mination for classifying a query protein [61]. Eom, Jae-Hong,
et al. combined a set of four different classifiers (SVM, NN,
DT and BN) with ensembles for supporting the diagnosis of
cardiovascular disease (CVD) based on aptamer chips [62].

Clustering

Clustering is the task that partitions sample data into clusters,
and groups a set of objects in such a way that members in the
same group (called a cluster) are more similar (in some sense
or another) to each other than to those in other groups [63]. In
this section, we demonstrate some typical clustering tech-
niques, such as hierarchical clustering (HC), partitioning relo-
cation clustering (PRC), density-based clustering (DBC),
grid-based clustering (GBC), and model-based clustering
(MBC).

Hierarchical clustering

Hierarchical clustering (HC) gathers data objects into tiny
clusters, where those smaller clusters are categorized into larg-
er clusters from button to up layer, and so forth in the hierar-
chical manner. Zhang et al. proposed a distance measurement
that enables clustering data with both continuous and categor-
ical attributes, namely BIRCH that is especially suitable for
very large datasets [64]. Bryant, David, and Vincent Moulton
illustrated a hierarchical distance-based approach named
Neighbor-Net, which provides a snapshot of the data for con-
structing phylogenetic networks and guiding more detailed
analysis. The Neighbor-Net is based on the Neighbor-
Joining (NJ) algorithm [65]. Heo, Moonseong, and Andrew
C. Leon derived a mixed-effects linear regression model of
three hierarchical-based cluster randomized clinical trials,
which can determinate the randomly assigned sample size
and require to detect an intervention effect on outcomes at
health care subject’s level [66]. An accelerating version of
hierarchical clustering of microarray gene expression data
was carried out by Darkins, et al. [67]. The Bayesian hierar-
chical clustering (BHC) strategy was applied as a randomized
statistical method using Gaussian process to build more flex-
ible models and handle wide ranges of unstructured data more
adaptively. With the rapid development of bio-inspired opti-
mization methodologies, the communicating ants for cluster-
ing with backtracking strategy (CACB) algorithm first came
into being in Elkamel, et al. [68]. It can ensure multi clusters
aggregation simultaneously and result in a compact dendro-
gram, its natural properties were dynamic and adaptive
thresholding policy and backtracking strategy in former ag-
gregation steps. However, Pelin Yildirim and Derya
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Birantargued that randomization may affect and discriminate
the clustering results seriously [69],so by introducing two new
concepts k-min linkage (the average of k closest pairs) and k-
max linkage (the average of k farthest pairs), they proposed k-
linkage agglomerative hierarchical clustering to measure the
distance of k observations from two clusters separately. The
method showed a deterministic result and higher accuracy
than traditional HC.

Partitioning relocation clustering

Partitioning relocation clustering (PRC) organizes and
constructs several segmentations of data, and each parti-
tion is a subgroup of original collection of data and
stands for every individual cluster. The iterative reloca-
tion technique is the rationale key idea of it, attempting
to modify suitable number of partitions finally. Chiu,
Tom, et al. proposed a clustering algorithm using the
distance measurement based on the framework of
BIRCH that performs a pre-clustering step by scanning
the entire dataset and storing the dense regions of data
records in terms of summary statistics, and enables the
algorithm to automatically determine the appropriate
number of clusters and a new strategy of assigning clus-
ter membership to noisy data [70]. Hussain, Hanaa M., et
al. proposed a parallel process approach, which is Xilinx
Virtex4 XC4VLX25 field programmable gate arrays
(FPGA) to accelerate the five K-means clustering cores
for processing Microarray data [71]. Tseng, George C.
gave a K-means clustering approach, which extended on
penalization and weighting to avoid scattered objects
clustering, account and identify for prior information of
preferred or prohibited cluster patterns in meanwhile
[72]. Botía, et al. brought extra K-means processing step
into weighted gene co-expression network analysis
(WGCNA) and created k-means to gene co-expression
network (GCN) for assessment on UKBEC and
GTExhuman brain tissue data. It refined the output of
WGCNA with K-means as a hybrid post-processing
[73]. Due to the truth that ultimate cluster distribution
is heavily relied on the random positions of initial cen-
troids and insufficient improvements of additional input
information about data points, Sathiya and Kavitha
invented an enhanced initial cluster centers based K-
means approach with the core technique to reserve some
informative knowledge using simple data structure in cur-
rent and next iterations [74]. The popular variants of K-
means such like K-medians (calculating median as the
centroid in place of mean), K-medoids (removing
outliers towards sensitivity in K-means) and K-modes
(matching dissimilarity measure to replace Euclidean dis-
tance metric and using mode as the centroid) are
reviewed in [75].

Density-based clustering

Instead of measuring distance as the criteria of cluster
partitioning, the density of data point distribution within the
given radius of neighbors is used for arbitrary shaped cluster-
ing in density-based clustering (DBC). Jiang, Daxin, Jian Pei,
and Aidong Zhang used a density-based, hierarchical cluster-
ing (DHC) approach to identify the clusters, which tackled the
problem of effectively clustering and improved the clustering
quality and robustness [76]. Kailing, Karin, Hans-Peter
Kriegel, and Peer Kröger introduced an effective and efficient
approach, SUBCLU (density-connected subspace clustering),
which underlay the algorithm DBSCAN to detect arbitrarily
shaped and positioned clusters in subspaces and efficiently
prune subspaces in the process of generating all clusters in a
bottom up way [77]. Another issue of human intervention in
the workflow of DBSCAN when choosing the input parame-
ters was resolved by using the bio-inspired cuckoo search
algorithm in Wang, et al.’s publication [78]. The global pa-
rameter Eps was optimized and the clustering procedure be-
came automatic. Günnemann, Stephan, Brigitte Boden, and
Thomas Seidl introduced a density-based cluster, DB-CSC,
to detect clusters of arbitrary shape and size, and avoid redun-
dancy in the result by selecting only the most interesting non-
redundant clusters. This approach not only circumvents the
problem of full-space clustering, but also limitless cluster of
certain shapes [79]. A robust density-based clustering (RDBC,
by Florian Sittel and Gerhard Stock [80]) with properties of
deterministic, efficient, and self-consistent parameter selection
was presented to determine protein metastable conformational
states, in terms of space density under a geometric coordinate
system. And then the definitions of local free energies were set
up and Markov state models were built from molecular dy-
namics trajectories to generate superior effects on the data.
Similarly, Liu, et al. [81] implemented the adaptive
partitioning of local density-peaks of DBC, the application
as also for molecular dynamics trajectories analytics. The sim-
ple KNN search was performed and molecular dynamics con-
formations densities and locations were obtained for next step
of grouping into clusters. Such density-dependent mechanism
can guarantee the cluster size to be adaptively scalable in
different regions.

Grid-based clustering

Multi resolution grid structures of the space of objects are
formed into independently quantized cells, wherein all calcu-
lations of clustering steps are implemented in grid-based clus-
tering (GBC). Maltsev, Natalia, et al. illustrated a grid-based
high-throughput PUMA2 interactive system, which allows
users to submit batch sequence data for automated functional
analysis and construction of metabolic models to compare and
evolve analysis of genomic data and metabolic networks in
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the context of taxonomic and phenotypic information [82].
Ortuso, Francesco, Thierry Langer, and Stefano Alcaro pro-
vided a GRID-based pharmacophore model (GBPM), which
can define most relevant interaction areas in complexes deriv-
ing GBPM from 3D molecular structure information. It is
based on logical and clustering operations with 3Dmaps com-
puting, which can share, standardize and give a reliable solu-
tion for biological data storage and analysis [83]. Porro, Ivan,
et al. implemented Grid based platform, Grid portal, which
contains three analysis sequence (group opening and image
set uploading, normalization, and model based gene expres-
sion) to hide the complexity of framework from end users and
to make them able to easily access available services and data
[84]. Ren, et al. [85] proposed PKS-tree based GBC that can
tackle massive dimensional stream data clustering efficiently
in the aspects of storage and indexing. Non empty grids were
recorded by PKS-tree as well as the empty relationships be-
tween those grids, the new arrived data point was mapped and
inserted into a grid according to the density relationship stored
in PKS-tree. Such algorithm can reduce the time complexity
to O(log N) at most. And for Liu, et al. in [86], they gave out a
hybrid approach combining density with grid-based cluster-
ing, where grid parameters were used to determine the data
space division into the valid or invalid meshes, then valid
meshes got merged in the direction from up-left to bottom-
right of the whole diagonal grids of the located data points.
Meanwhile for invalid grids, they were searched by the
boundary grid values. Finally only two adjacent grids can be
processed at a time, and all the valid ones located in diagonal-
direction grids. The results demonstrated the reduced cluster-
ing time and improved accuracy than traditional methods.

Model-based clustering

The basic idea for model-based clustering is the supposed
model for each cluster firstly and the replacement of best
fitting model for the given one. Two technical foundations
of MBC algorithms are employed: statistical learning method
and neural network learning approach. Expectation-
maximization (EM) analysis based on statistical modeling it-
eratively refines the weighted representation of belonged
memberships and assigns an object to it according to cluster
mean values. Si, et al. applied EM for clustering model pa-
rameters estimation on RNA sequential data [87]. Moreover,
two versions of stochastic EM algorithms were also intro-
duced to jump out of the local trap and intended to find the
global solution. COBWEB is built on heuristic inspired stan-
dards for classification tree (differs from decision tree with
probabilistic description of concept) formation of hierarchical
clustering. Abawajy, et al. evaluated the outcomes of multi-
stage means for ECG data clustering partially, COBWEB,
EM, Farthest First and K-means algorithms were systemati-
cally compared to get the conclusion that all those methods

can independently do data processing without extra informa-
tion but depend on initialization of selecting parameters be-
cause of stochastic nature [88]. Self-organizing map (SOM)
with NN architecture of an exemplar for each cluster proto-
type, constructs feature mappings of high dimensional input
space to low dimensional output space, the reduction is done
but at the same time distance relationships of the topology are
kept possibly as well. Wang, et al. conducted series of DNA
microarray experiments to uncover the hidden patterns of gene
expression data by mainly usage of SOM [89]. Simplified
component plane was revealed via SOM and the further clus-
tering of SOM results demonstrated the feature patterns.

Data mining has a relatively wide range of applications in
bioinformatics since it offers many practical benefits by im-
proving processing accuracy, saving precious diagnosis time,
assisting to make valuable decisions, maximizing revenues,
etc. Following are those mentioned above typical data mining
techniques applied in bioinformatics via manyways, as shown
below (Table 1):

In the next table (Table 2), we list the advantages and dis-
advantages of data mining techniques. Different learning ap-
proaches may focus on handling a certain biomedical area.
The comparison can give a guide to select appropriate
methods for processing the bioinformatics.

Deep learning in bioinformatics

Over the past decades, data mining approaches were primarily
applied on traditional knowledge discovery in well-structured
relational database with mainly numerical data, in order to
meet the demands of industrial business requirements. The
applied data analysis methods were dominated techniques like
statistics, simple logical reasoning, etc. Current situation for
data mining field lies in the exploration of heterogeneous data
besides homogeneous one (involving the forms of structured,
semi structured and unstructured) by utilizing core thoughts
and processing tools of machine learning, pattern recognition,
artificial intelligence, etc. to perform more intelligent learning
strategies and obtain potentially undiscovered knowledge just
like our human beings. As for the future trend of data mining
domain, in addition to data structure issue, much more com-
plicated data objects will be dealt like big data with homoge-
neous types, large noises, multiple representations, huge vol-
umes and high speed streams. Apart from the consideration of
big, deep is worth taking into account as well through sophis-
ticated technologies of deep neural network (DNN), parallel
and distributed computing, metaheuristics, fuzzy logic, cloud
computing, etc. It is quite obvious that data mining tendency
not only serves as the powerful processing mechanism of big
data, but also provides more deep insights of knowledge ex-
traction in kinds of scientific and research fields.
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It has been extremely accumulated and developed for bio-
medical data in an unprecedented way of wide extent and

depth nowadays. And it leads to large amount of machine
learning algorithms for mining available knowledge from

Table 1 Review of various data
mining techniques in biomedical
analysis

Technique Application aim Source data

KNN Hypertension warning [30] Cardiovascular disease data

NB Prognostics of breast cancer recurrence [36] Breast cancer data

DT Decision-making in cancer classification [41] Magnetic resonance images

SVM Identify entity into its semantic class [49] Protein, DNA and RNA’s subclasses

NN Algorithm-free disease identification [54] Chest CT

EM Diagnosis cardiovascular disease [62] Aptamer chips data

HC Gene conversion [66] Archealchaperonin sequences

PRC Investigate high-throughput biological data [72] Genomic and proteomic data

DBC Investigate high-throughput biological data [76] Time series gene expression data

GBC Bioinformatics matching [82] Genomic data

MBC Automatic clinical diagnosis [88] ECG

Table 2 Comparison of advantages and disadvantages of various data mining approaches

Technique Advantages Disadvantages

KNN Simplicity and fast speed of accomplishment Noise sensitively aware

High space complexity required

NB Less time consumption and higher accuracy for huge dataset Cannot give accurate results if there exists dependency among
variables

DT No domain limitation of the knowledge to construct decision tree Restrict to one output attribute

Can easily process the data with high dimension Performance of classifier is depend upon the type of dataset

Can handle both numerical and categorical data

SVM Better accuracy compared with other classifiers Should select different kernel function for different dataset

Easily handle complex nonlinear data points The comparison with other methods training process takes more time

NN Can simulate almost any functions for complex applications and
problems

The black box nature, hard to interpret the structure

High performance of accuracy Large computational cost

The availability of multiple training May over-fitting after times of training

EM Improvement in predictive accuracy Difficult for understanding

Using the wrong ensemble method will get bad results

HC Flexibility regarding the level of granularity Difficult for choosing the criteria bound

Easily to handle the type of similarity or distance problems Cannot re-construct clusters

Applicability to any attribute type Quite heuristic and informal

PRC No limitations on attribute types Not obvious to choose K value

The choice of medoids is calculated by the location of an inside
cluster

Only numerical attributes are covered

Resulting clusters can be unbalanced

DBC No need to set the cluster number in advance Fail in varying density clusters

Able to identify noise data while clustering Not work well in high dimensional data

Able to discern arbitrarily clusters shape

GBC Able to work well in relatively high-dimensional spatial data Strong dependency on cluster initialization

O(N) linear time complexity Dependency on parameters setting

MBC Formal models with explicit statistical properties and standard
distributions

Sometimes models seem to be too simple for real world application
scenarios

Adaptive in selecting model parameters flexibly May cost a lot of computing resources especially for NN structure
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bioinformatics. Meanwhile, broad boundaries of practical ap-
plications range from many real world scenarios, among
which massive scale of data also brings challenges including
stronger learning adaptability for huge volume and high di-
mensions, superior process ability for heterogeneous nature of
data, etc. More recently, deep learning evolves from tradition-
al neural networks (NNs) in the branch of machine learning
techniques with the basic concept of neuron processors and
the essential architecture of multiple processing layers for the
sake of transferring non-linear relationships through responses
of each layer [90]. It facilitates primary and successful appli-
cations in majority of areas like speech and image recognition,
natural language processing, biomedical research with
strengths in up level abstractions of features of large raw data,
distributed and parallel computing, sophisticated learning
mechanism without too many manual interventions instead.

Deep neural network

At first sight, the obvious characteristic of a DNN architecture
is hierarchy forms which mainly consists of layers of input,
multi hidden and output (Fig. 1). The output result is comput-
ed straight forward along the sequent layers of DNN as long as
input data is fed, and this kind of working mechanism in a
neural network is known as feed forward. In each neuron of
middle hidden layer, the output result in vector format from
previous layer is multiplied by a weight vector and plus a bias
value in the current layer, then the biased weighted sum is put
into a nonlinear function (sigmoid, hyperbolic tangent, or rec-
tified linear unit (ReLU), etc.) to get a number as the output of
this cell at present. Tremendous neuron outputs in the same
hidden layer comprise a new numeric vector called feature

layer. From a macro scale view the primitive patterns with
raw features are transformed to more abstract feature repre-
sentation levels through such kind of deep processing steps to
reach the final goal of classification task. It is such hierarchical
representation learning method that makes it successfully find
out desired but abstract underlying correlations and patterns
among large amount of bioinformatics data and offer a mean-
ingful insight of understanding bioinformatics better.

According to the types of layers and the corresponding
learning methods, there are many deep learning networks of
DNNs, among which typical examples are deep belief net-
work (DBN) [91] and stacked auto-encoder (SAE) [92], as
well as Convolutional neural network (CNN) [93] and recur-
rent neural network (RNN) [94]. Those models are the most
widely used in biomedical analysis with a certain representa-
tive property of model structure and training process.

Convolutional neural network

CNN is commonly used in image processing, recognition,
computer vision and other areas, especially two-dimensional
signal processing, its idea stems from the study of optic nerve,
in which the discovery of principle of receptive field [95] is
greatly significant to the CNN model. As a significant mem-
ber of DNNs, there are different hierarchical layers that com-
prise the main body structure of CNN model. Inspired by the
study of visual cortex of the brain, two further groups of cells
are classified as simple neurons and complex neurons, where
simple ones receive the raw signals within a particular area of
sub-regions in visual stimuli and the complex group copes
with the subsequent synthesized information from simple
group to meet the requirements of more intricate process.

Fig. 1 Demonstration for general
structure and construction process
of DNN in each step
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Thus, CNNmimics the function flow of the brain and acts as a
prominent deep model with those key ideas: multi-layer stack,
regional connectivity, weight sharing and pooling.

This deep CNN model consists of multiple Bstage^ stack
illustrated in Fig. 2a, each basic component Bstage^ contains a
convolution layer and a polling layer. The convolution layer
can capture feature maps form regional connectivity by doing
convolution between small regions and using the weighted
mask in that area, thus hyper parameters can be essentially
reduced with application of the principle of weight sharing.
The pooling layer merges the adjacent nodes into one to ac-
quire similar but more aggregated and complex features,
moreover reducing the amount of training data. After con-
structing several stacked stages together, a number of fully
connected layers and classifiers are added at the end to further
process data, which make it possible for non-linear abstract
representations. Finally, the whole CNN model is trained via
supervised learning.

Due to the eminent reputation of excellent performance of
successful deep architectures for analysis on bioinformatics
data, CNN has contributed immensely in the primary research
fields and corresponding domains. The straightforward appli-
cations of CNN can be fulfilled since it has the potentiality not
only in a one-dimensional signal interval (for example geno-
mic sequence) to retrieve the recurring patterns, but also in a
two-dimensional image grid (such as mammography) to ex-
tract the learned features, or even in a three-dimensional data
cube (for instance 3D MRI) to obtain the spatial outlines. The
most distinguishing advantage of CNN is automatic feature
representation of a tensor form for the input dataset no matter
what the task is, and furthermore there are only few

parameters in the CNN model compared to a fully connected
NN because of the local connectivity and weight sharing with
the same amount of neurons in hidden layers. But it requires a
lot of memories and resources when computing the interme-
diate values of hidden layers and constructing the fully con-
nected classifier in the last step.

Stacked auto-encoder

SAE’s basic building block is called auto-encoder (AE),
which has the gradual stacked structure of three layers: input,
hidden and output. The core idea behind auto-encoder relies
on the concept of a well-constructed model representation
with the built encoder and decoder. The encoder has almost
the same function in DNN as transforming the input vector to
a hidden layer representation with weight matrix and bias/
offset vector. Simultaneously the decoder maps the hidden
layer representation to the reconstructed input, which is
regarded as the output result. The topological diagram is
shown in Fig. 2b. AE model sets the training target to fit the
input data, (i.e. the network output is as much as possible
equal to the input), and then is trained by backpropagation
algorithm, by feeding input and setting the difference error
between reconstructed input and original one. Although the
training process of AE is supervised, it does not require the
original data to be classified and labeled, so the whole training
process is still unsupervised. If sparse penalty (the number of
activated cells in the network is limited or constrained) is
introduced to the training, then a sparse AE is formed [96,
97]. Suppose random noise is combined with the input data
during training, the de-noising AE is obtained [98], whereas

(a) Stage of CNN (b) AE of SAE 

(c) RBM of DBN (d) Recurrent of RNN 

Fig. 2 Illustrations of architecture
and topology of each basic unit,
making up the four different types
of DNNs: a stage of CNN; b auto-
encoder of SAE; c restricted
Boltzmann machine of DBN; d
recurrent unit of RNN
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these two models can often learn better characteristics of data
in practice.

The training process of SAE is similar to that of CNN, and
the procedure is demonstrated in (Fig. 1). After training the
first AE unit, the hidden layer is set to be input of next layer
AE, which is trained in same way as the previous one.
Through this iterative way, the final layer of SAE is the ab-
stract feature of the input data after several transformations. At
last, according to situations of the problem, different output
layers are connected, and the weights of output layer are
trained by supervised learning algorithm, and then final clas-
sification result is performed. The benefits that SAEs provide
are listed out below: its layer wise working strategy becomes
very much suitable as far as neural network structure is con-
cerned, and no matter whatever the input data type is, SAE
would simply replace the loss function with a new one and
change the relevant activation function. It needs not to recon-
struct the total network using a lot of time and resources, but
may only fine-tune via the back propagation algorithm.

Deep belief network

DBN is composed of multiple restricted Boltzmann machines
(RBMs) as each single RBM contains a visual layer and a
hidden layer, a two way direction link between two layers,
in which the visual layer simultaneously works as input and
output multiplexing displayed in Fig. 2c. Having the charac-
teristics of highly complex directed acyclic graph in the form
of sequential RBMs, DBN is trained through building up
RBM layers level by level instead. RBM model refers to con-
trastive divergence algorithm to train unlabeled samples with-
out high cost of training expense, so it belongs to unsuper-
vised learning algorithm. The final model can restore the vi-
sual layer data from the hidden layer data due to bidirectional
property, thereby the hidden layer is the abstract expression of
the visual layer. DBN construction process is like SAE as
follows: First training to get the first RBM, then freezing
weights and setting the hidden layer as the next RBM’s visual
layer, with the same training method to get the second RBM.
Recursively, a number of stacking multiple RBMs together in
sequence forms a deep Boltzmann machine (DBM). In the top
of the DBM, a layer namely associative memory is settled to
convert DBM to DBN. Resembling SAE, the output will be
multi-level abstraction of input data after layer-wise unsuper-
vised learning of patterns. Good results are usually got when
applying classifiers to highly abstract features. Recently, a
hybrid method adding convolution layer before DBN to form
a new convolution DBN receives successful application re-
sults in face recognition [99] and audio classification [100].

Since DBN training produce basically consists of rapid
RBM modeling of contrastive divergence algorithm, it illus-
trates the capacity to quickly derive an optimized parameter
set from a large number of search spaces. DBN also shows the

ability for addressing low speed of convergence and local
optimum problems and calculating the outcome results of
the variables in each layer in a manner of approximately in-
ferring way. However the drawbacks of DBN exist in the
limitations of such approximate inference method, because it
is a quite greedy algorithm working within every layer once a
time and there is a lack of reactions between other layers for
parameter optimization.

Recurrent neural network

RNN with a fundamental structure of recurrent and cyclic
connection unit is designed for handling sequential informa-
tion and therefore it has the ability of memory (Fig. 2d).
Recurrent computation is conducted in hidden layer while
processed input data arriving sequentially, causing old data
remembered implicitly in state vectors (units in hidden layer).
So it is a further extension of traditional feed forward NNwith
the fact that hidden unit relies on the computation of current
input and previous values stored in those state vectors [101],
output is affected by both past and current inputs consequent-
ly, whereas in a conventional NN the relationship of inputs
and hidden neurons is independent for each other. At a first
glance, RNN seems to be not as deep as those three multi-
layer models mentioned above, but its memorized storage
nature leads to even deeper architecture if a long period of
time is considered. One serious problem for RNN is vanishing
gradient [102], losing necessary information rapidly based on
transmission of values in activation functions because of the
simple one nonlinear layer in each RNN cell. Fortunately, long
short term memory (LSTM) [103] or gated recurrent unit
(GRU) [104] can help to prevent using substitution of simple
hidden units with more complicated ones. Compared to RNN,
those improved networks have the complex structure by
adding more components in their recurrent unit such as in-
put/forget/output gates, cell/hidden transmission states, etc.

Although RNN acquire less attentions and explorations
than CNN, it has been proved that RNN still has the dominat-
ed power to process and analyze sequential data or since it can
usually map variable-length input sequence to another fixed-
size sequence and make the consequent predictions via its
recursive loops. RNN is not the first primary option for bio-
medical imaging processing, but it is also believed that RNN
can perform a good incorporation with CNN and enhance its
influence in the corresponding research domain.

After describing different sorts of frameworks and architec-
tures in a theoretical way, there are two major fields for deep
learning applied in bioinformatics: medical (disease diagnosis,
clinical decision making, medical image processing, drug dis-
covery and repurposing) and biological (genomics, tran-
scriptomics, proteomics) data analysis. The following
(Table 3) lists out a detailed review of success of deep learning
applications in reality.
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Here, an initial evaluation of popular deep learning
frameworks is shown (Table 4), making it feasible and
easy implemented for researchers or workers in the indus-
try. All the frameworks are compute unified device archi-
tecture (CUDA, GPU programming) acceleration
supported.

Data mining and deep learning comparison

Data mining, as its name suggests, is to dig hidden infor-
mation from massive data. According to its definition, the
mined object here is a large number of incomplete, noisy,
fuzzy, and random practical application data. The infor-
mation refers to implicit, regular, previously unknown,
but potentially useful, and ultimately understandable
knowledge. In a real business environment, data mining
is more application-oriented. As a common method to
fulfill data mining technologies, machine learning is the
use of computers, probability theory, statistics and other
knowledge. By inputting data into computer programs and
letting computers learn new knowledge, it is a way to
realize artificial intelligence, but this kind of learning will
not let the machine generate consciousness. The process
of machine learning is to find the objective function
through training data. Data quality can affect machine

learning accuracy, so data preprocessing is very impor-
tant. Deep learning, which is a new type and field of
machine learning, is motivated mainly by establishing,
simulating the thinking of the human brain, and analyzing
the neural network of learning. It can be said to be a kind
of brain, which mainly imitates the mechanism of the
human brain to interpret data, such as image, voice, text
and signal.

Till now to sum up, we list out the key ideas and
basic components behind various data mining and deep
learning algorithms in Table 5 for readers to understand
them intuitively. From technical point of view, machine
learning is the core technique of data mining, and now
it is very natural to make the comparison of machine
learning and deep learning from some aspects discussed
below:

& Material Dependency: Among many dependent factors
for implementing algorithms, the first significant mat-
ter that traditional machine learning differs from deep
learning is the scale of data volume. Traditional data
mining mainly focuses on a relatively small amount of
high-quality sample data. Machine learning is more
about massive and mixed data. However, machine
learning does not necessarily require global data. It
is only in the era of big data that the methods of huge

Table 4 Comparison of most
popular frameworks for deep
learning

Framework Language Advantages Model

DLToolbox Matlab Easy and simple to use CNN/DBN/SAE

Caffe C++/Python/Matlab Fast implementation and simple to use CNN/MLP/RNN

DL4J Java/Scala/Python Distributed support CNN/DBN/SAE

Theano Python Flexible for models CNN/DBN/SAE/RNN

Torch Lua/C++ Fast implementation and flexible for models CNN/DBN/SAE/RNN

TensorFlow C++/Python/Java/R Flexible reinforced for models CNN/DBN/SAE/RNN

MXNet C++/Python/Julia/R Distributed support CNN/RNN/DBN

Keras Python/R Easy and simple to use CNN/RNN/DBN

Table 3 Review of various deep
learning techniques in biomedical
analysis

Technique Application aim Source data

SAE + softmax Classification and detection of cancer [105] Gene expression data

DBN Clustering of cancer [106] Breast and ovarian cancer

CNN + SVM Cataracts grade [107] Cataracts data

CNN Medical image auto segmentation [108] CT +MRI

RNN Prediction of protein contact map [109] ASTRAL database

RNN +DBN Classification of metagenomics [110] Microbiome sequence data

SAE Medical image reconstruction [111] MRI

RNN Prediction of liver injury drug induced [112] Drug data
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data and stacking machines are widely used because
of their low cost and quick effect in the industry.
Whereas, deep learning algorithms need comparative-
ly big data to learn sufficient knowledge from it and
get better insight perfectly. When there is a small
dataset for training, deep learning methods always
perform worse results, so large and big data is a

necessary condition of deep learning. The situation is
also true when it comes to the scenario of bioinfor-
matics data analysis.

Another striking difference between those two learning
strategies is hardware environment. As a normal sense, low

Table 5 The list of basics of various data mining and deep learning algorithms

Technique The key ideas and basic structures

Data Mining

Data Preprocessing

Data Cleaning Fill in missing values, smooth noise, identify or delete outliers, and resolve inconsistencies

Data Integration Combine data from multiple sources, store them together and provide a unified view of data

Data Transformation Replace pattern distribution or relationship with a specific form that is suitable for mining

Data Reduction A reduced representation of the dataset which is much smaller but still close to preserving the integrity
of the original data

Classification

KNN The unclassified data point is discovered and assigned to particular label according to the formerly known
k nearest neighbor (KNN) points, and vote the determination of targeted object belonging

NB A probabilistic statistical classifier where the naïve assumption is made that attributes or features are
conditionally independent

DT Split features to outcomes of targeted class values through logical conjunctions of those attributes with
traditional top-down divide-and-conquer approach utilizing information entropy

SVM Construct hyper-plane by implicitly kernel function mapping of the original input space to higher dimensional
one in order to make the distance between two separated classes as maximal as possible

NN Multiple layers of grouped and interconnected processing neurons with adjustable weighted links and
nonlinear mapping

EM A hybrid of various approaches with the hypothesis behind that many classification models are able to work
collaboratively and get superior classification outcomes than single one only

Clustering

HC Gather data objects into tiny clusters via average-linkage, where those smaller clusters are categorized into larger
clusters from button to up layer hierarchically

PRC Organize and construct several segmentations of data, and each partition is a subgroup of original collection of
data for every individual cluster measured by distance

DBC The density of data points distribution within the given radius of neighbors is used for arbitrary shaped clustering
and it is the criteria of cluster partitioning

GBC Multiresolution grid structures of the space of objects are formed into independently quantized cells, wherein all
calculations of clustering steps are implemented

MBC The supposed model for each cluster is given firstly and replace the best fitting model for previous one

Deep Learning

DNN A hierarchy form consists of deep layers of input, multi hidden and output of a NN, processing input with
feedforward and optimizing with backpropagation

CNN Contain multiple convolution layers to capture feature maps from regional connectivity via the weighted filter, and
polling layers to reduce data size, at last a fully connected NN is added as the classifier

SAE Awell-constructed model representation with the built encoder and decoder. The encoder transforms the input
vector to a hidden layer and the decoder maps the hidden layer representation to the reconstructed input, which
is regarded as the output result.

DBN It is composed of multiple restricted Boltzmann machines (RBMs) as each single RBM contains a visual layer and
a hidden layer, a two way direction link between two layers, where the visual layer simultaneously works as
input and output multiplexing

RNN Recurrent and cyclic connection unit is designed for handling sequential information therefore causing old data
remembered implicitly in state vectors, hidden unit relies on the computation of current input and previous
values stored in those state vectors, output is affected by both past and current inputs consequently
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hardware configuration on end machines are enough for con-
ventional machine learning algorithms. On the contrary, it
heavily relies on high performance end devices for deep learn-
ing algorithms because of the ability of GPUs for supporting
deep learning quite well. During the working operations, there
are various and massive inherent mathematical calculations
such as matrix multiplication within deep learning and opti-
mization of its algorithms, the essence of GPUs can just meet
the requirements of deep learning tasks.

& Feature Engineering: The feature is a particular represen-
tation of an observed object for the purpose of measuring
itself by informative, independent and discriminating
characteristics. And in feature engineering, its main pro-
cess is the workflow of converting domain knowledge into
the emergence of created and extracted features to reduce
the complexity of original data, pick up meaningful ex-
pressions of raw data and make underlying patterns intu-
itively visible to learning algorithms. The price of
deploying feature engineering is the difficult and expen-
sive cost according to resource, expertise and time.

In Machine learning, human resource is dedicated to
identify, encode and label the large majority of applied
features by experts manually in terms of domain knowl-
edge and data type. For instance, features from a biomed-
ical image can be composed of pixel values, shapes of an
object, textures in the area, positions and orientations of
interested part. Then all these features are fed into specific
machine learning algorithms to be evaluated and classi-
fied, finally the performance of machine learning is de-
cided by the accuracy of feature identification and extrac-
tion from raw ones. Comparatively, more high-level fea-
tures are learned from bottom up representation of origi-
nal data in deep learning. It can combine multiple possi-
bilities of distinctive features in a certain feature level,
and build on stacked feature layers hierarchically. After
consecutive hierarchical identification of complex patterns
in raw data, it then selects which of these features are
responsible for carrying out the learning job. As the re-
sult, deep learning automatically finds out the features
applied to classification importantly and makes itself an
adaptive feature extractor for ubiquitous problem solving,
which is a prominent step forward of traditional machine
learning. Examples can be found in CNN of biomedical
images, where low-level features like edges, lines, tex-
tures and orientations of the target lesion are obtained
and high-level expression of a whole lesion area is pro-
duced based on those features in former layers.

& Problem Solving Police: The core thought when apply-
ing traditional machine learning algorithms to solve a
learning task is generally concluded as divide and

conquers method, i.e. breaking down the issue recur-
sively into individual and small sub components that
can be solved simply enough, and the ultimate solu-
tion to original problem is the aggregation of sub ap-
proaches to those divided questions. Typical case can
be referred to decision tree model built on information
entropy and its improved theories. Imagine the appli-
cation of breast cancer detection task, the aim is to
identify multiple lesion regions in mammography data
to predict whether the patient is suffering from it. As a
usual machine learning approach, it decomposes the
learning process into lesion detection and illness rec-
ognition. Image segmentation methods may be
employed to check the boundaries and outlines of re-
gion of interest through scanning all possible divided
parts of raw image, and object recognition algorithms
like Bayesian or SVM methods are then utilized to
identify the distribution characteristics in that region
and tell whether it matches with breast cancer.
However, as mentioned before, if settings of network
model are done, deep learning can process the issue
via the manner of end-to-end policy. One does not
need to care about the detailed intermediate proce-
dures of entire problem solving workflow; the deep
neural network will automatically generate the predic-
tive result when directly passing the image as input.
Their linkage is that they both use self-learning meth-
od to solve problems as training and testing data is
given, and the most areas of problem solving basically
overlap, i.e. their targets are the same.

& Interpretability: The primitive deep learning is a
learning process that uses deep neural network to
solve feature expressions and can be roughly regarded
as a neural network structure that contains multiple
hidden layers. As far as machine learning is con-
cerned, models generated from corresponding algo-
rithms are with many forms but relatively simple,
which leads to an easily interpretable structure of
model itself such as decision tree, rule based reason-
ing and logistic regression. But for deep learning,
there are only several commonly used algorithms and
network architectures, but both are very complicated
to design and explain in order to get a comprehensive
understanding of all. The main problem of traditional
machine learning is finding suitable models; mean-
while the primary mission tends to search proper pa-
rameters of models for deep learning since more at-
tentions are paid on trying to boost the interpretability
of deep network structure. Indeed mathematically one
can find out which nodes of a deep neural network are
activated, but still cannot know exactly what these
neurons are supposed to model or what these layers
of neurons are doing collectively.
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Challenges and issues

While machine learning and deep learning have illustrated
their powerful abilities and strengths dealing with bioinfor-
matics data processing in preprocessing, feature extraction,
feature selection, classification, clustering, etc. They still face
some kinds of inherent challenges and emerging issues that
should be taken into considerations.

Data preprocessing and imbalanced data Although the topic
of data preprocessing is discussed before in the relevant sec-
tion, the properties of bioinformatics data with high and com-
plex dimensional features, tremendous amount of instances,
heterogeneous from multiple sources make the procedure
quite tough as time goes by and new problem emerges
[113]. For example, it is really challenging to fuse informative
biological data together with classic e-records for patients or
medical images or other types of data in a commercial infor-
mation system that only has limited data fusion functions. The
similar question appears under the situation of merging mul-
tiple datasets when concerning the criteria both in scale and
accuracy. In spite of the well-known curse of dimensionality, a
further problem of vast biomedical data has the essence of
incompleteness where the raw data involves missing data
values, inconsistent value naming conventions or the detec-
tion and removal of duplicate entries are needed.

Unfortunately for imbalanced data issue in bioinfor-
matics [114], the reality is that the expensive data acqui-
sition stage and complex processing situation have re-
stricted the size of data thus prominent asymmetric label
distribution is shown (for instance in an illness center
database, healthy cases are always significantly less than
those sick ones because there is no need for a normal man
to go to the hospital). Some researchers have been dedi-
cating in solving imbalanced data problem using various
sampling or feature extraction methods, cost sensitive
learning, pre-training etc.

Big data needs for large datasets Over the years advanced
technologies have facilitated the emergence of new ways
of generating and collecting data rapidly, continuously
and largely, namely big data with properties characterized
by 5Vs: volume (large data quantity), variety (inconsistent
data type and nature), velocity (fast data speed), variabil-
ity or veracity (data inconsistency) and value (ultimate
target and goal) [115–122]. Indeed it is also true for the
application of bioinformatics field, and it leads to lots of
issues to be addressed both in academic research and in-
dustrial production. Real time analytics on big data is
much harder than before due to the 5Vscharacteristics of
big data, usually batch-based data analytics mode is ex-
panded as distributed and parallel computing algorithms
to cope with velocity issue [123–127]. But the capability

of data throughput of I/O operations is a bottleneck of real
time analytics performance [116]. And also most of the AI
learning algorithms are not primitively created for distrib-
uted and parallel computation, even though there are some
frameworks that build deep learning on big data platform
like Tensorflow on Spark, they are still under incubation
or research oriented with the shortage of robust industrial
implementation.

Learning strategy and model selection In data mining algo-
rithm domain, except for well-represented data structure, it has
struggled against not only the big amount of unstructured and
heterogeneous data, but also data obtaining massive interre-
lated objects whose original formation is in point clouds or
typed graphs [113, 117]. So more advanced learning strategies
are desired for novel insights for pattern discovery. Firstly,
graph theory is vigorous method to map interrelated objects
with types of structures. The hybrid point of graph-based
learning approach can be found in aspects oftopology, net-
work analysis, data conceptual representation, etc. The second
is topology-based learning method, which has the potential
power on arbitrarily high-dimensional data from computation-
al geometry. Till now it is hardly implemented to the extent of
human brain pattern recognition. Generally speaking, for the
third entropy-based learning strategy, the deserved problem is
to apply more intricate information theories in machine learn-
ing algorithms.

In deep learningmodel architecture, the interpretability and
quality control is a major criticism against the intuition known
as black-box, which means that the hidden and internal struc-
ture keeps unclear and difficult to explain even if the results
are awesome. And the situation is always worse in bioinfor-
matics context. Visualization is treated as a widespread solu-
tion of black-box, however the deep model is still suffering
from a lack of transparency to discover complex structural
relationships in bioinformatics.

Another widely talked topic locates in the choice of
appropriate models under different circumstances. One
can refer to Table 2 and 4 in previous sections and find
the pros and cons of each model, so in order to get the
reliable and robust consequences of data analytics, the
selection of various models with capabilities to handle
input data and learning target. While in reality, the under-
standings about model architectures especially for DNNs
are very shallow and rough. The hyperparameter optimi-
zation task is not straightforward all the time after model
selection step, such as the learning rates, initial weight
and bias values, number of hidden layers and neural cells,
iteration steps and so on. Hyperparameter optimization is
directly related to accelerating deep learning and compu-
tational cost reduction problems. Many scholars have con-
tributed a lot in this study area, nevertheless, the increas-
ing demand of improvements is worthy all the time.
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Conclusion

The rapid growth and development of bioinformatics has
created an unprecedented opportunity for biomedical re-
search, data analytics, knowledge discovery and innova-
tive application. Data mining with core techniques of ma-
chine learning algorithms is a significantly promising ap-
proach to achieve such goals in both explicit and implicit
IT ways. However, some poor issues such as shallow,
static, batch oriented and non-generalized performance
emerge, causing troublesome bottleneck. Nevertheless,
the emergence of deep learning extends the boundary of
conventional machine learning with more generalized
ability to overcome challenges. Through this review pa-
per, the importance of both biomedicine and bioinformat-
ics is described, following with the basics of data mining
and deep learning methodologies, among which multiple
data preprocessing, classification and clustering algo-
rithms are discussed of machine learning and various deep
frameworks are analyzed in bioinformatics application
scenario. As a result, it is strongly believed that deep
learning together with machine learning are anticipated
to make great advances collaboratively in development
of biomedicine and bioinformatics perspectives.

For the future of this study, we think that the aggrega-
tion of advanced machine learning algorithms can make
the promising progress of technical improvement, and da-
ta fusion method and efficiency assessment of bioinfor-
matics data will also contribute in the direction of present
applications. Software design and tools development in
the manner of automated way can significantly boost ma-
chine learning evolution to a certain degree. And in deep
learning domain, a bright future trend is to joint tradition-
al deep architectures and try a better integration with
higher performance. Furthermore by extension of tradi-
tional deep methods, semi-supervised learning, reinforce-
ment learning, transfer learning, etc. are acquiring more
and more attentions particularly with the incorporation of
big data processing techniques.

Funding The authors are thankful to the financial support from the re-
search grants, 1) MYRG2015–00024-FST, titled Building Sustainable
Knowledge Networks through Online Communities’ offered by RDAO/
FST, University ofMacau andMacau SAR government. 2)MYRG2016–
00069, titled ‘Nature-Inspired Computing andMetaheuristics Algorithms
for Optimizing Data Mining Performance’ offered by RDAO/FST,
University of Macau and Macau SAR government. 3) FDCT/126/2014/
A3, titled ‘A Scalable Data Stream Mining Methodology: Stream-based
Holistic Analytics and Reasoning in Parallel’ offered by FDCTof Macau
SAR government.

Compliance with Ethical Standards

Conflict of Interest The authors declare that this article content has no
conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Li, J., Wong, L., and Yang, Q., Guest editors' introduction: Data
Mining in Bioinformatics. IEEE Intell. Syst. 20(6):16–18, 2005.

2. Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi,
R., Chang, J.-F., and Hua, L., Data mining in healthcare and bio-
medicine: a survey of the literature. J. Med. Syst. 36(4):2431–
2448, 2012.

3. Kharya, S., Using data mining techniques for diagnosis and prog-
nosis of cancer disease. arXiv preprint arXiv:12051923, 2012.

4. Santosh, K., and Antani, S., Automated chest X-ray screening:
Can lung region symmetry help detect pulmonary abnormalities?
IEEE Transactions on Medical Imaging, 2017.

5. Zohora, F. T., Antani, S., and Santosh, K., Circle-like foreign
element detection in chest x-rays using normalized cross-
correlation and unsupervised clustering. In: Medical Imaging
2018: Image Processing. International Society for Optics and
Photonics, p 105741V, 2018.

6. Zohora, F. T., and Santosh, K., Foreign Circular Element
Detection in Chest X-Rays for Effective Automated Pulmonary
Abnormality Screening. International Journal of Computer Vision
and Image Processing (IJCVIP). 7(2):36–49, 2017.

7. Santosh, K., Vajda, S., Antani, S., and Thoma, G. R., Edge map
analysis in chest X-rays for automatic pulmonary abnormality
screening. Int. J. Comput. Assist. Radiol. Surg. 11(9):1637–
1646, 2016.

8. Karargyris, A., Siegelman, J., Tzortzis, D., Jaeger, S., Candemir,
S., Xue, Z., Santosh, K., Vajda, S., Antani, S., and Folio, L.,
Combination of texture and shape features to detect pulmonary
abnormalities in digital chest X-rays. Int. J. Comput. Assist.
Radiol. Surg. 11(1):99–106, 2016.

9. Kalsi, S., Kaur, H., and Chang, V., DNA Cryptography and Deep
Learning using Genetic Algorithm with NW algorithm for Key
Generation. J. Med. Syst. 42(1):17, 2018.

10. Hsieh, S.-L., Hsieh, S.-H., Cheng, P.-H., Chen, C.-H., Hsu, K.-P.,
Lee, I.-S., Wang, Z., and Lai, F., Design ensemble machine learn-
ing model for breast cancer diagnosis. J. Med. Syst. 36(5):2841–
2847, 2012.

11. Somasundaram, S., Alli, P., and Machine Learning, A., Ensemble
Classifier for Early Prediction of Diabetic Retinopathy. J. Med.
Syst. 41(12):201, 2017.

12. Alanazi, H. O., Abdullah, A. H., and Qureshi, K. N., A critical
review for developing accurate and dynamic predictive models
using machine learning methods in medicine and health care. J.
Med. Syst. 41(4):69, 2017.

13. Han, J., How can data mining help bio-data analysis? In:
Proceedings of the 2nd International Conference on Data
Mining in Bioinformatics. Springer-Verlag, pp 1–2, 2002.

14. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G.,
Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A.,
and Causton, H. C., Minimum information about a microarray
experiment (MIAME)—toward standards for microarray data.
Nat. Genet. 29(4):365–371, 2001.

15. Antonie, M.-L., Zaiane, O. R., and Coman, A. Application of data
mining techniques for medical image classification. In:
Proceedings of the Second International Conference on
Multimedia Data Mining. Springer-Verlag, pp. 94–101, 2001.

16. Dasu, T., Johnson, T., Muthukrishnan, S., and Shkapenyuk, V.,
Mining database structure; or, how to build a data quality browser.
In: Proceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data. ACM, pp 240–251, 2002.

J Med Syst (2018) 42: 139 Page 17 of 20 139



17. Raman, V., and Hellerstein, J. M., Potter's wheel: An interactive
data cleaning system. In: VLDB, pp 381–390, 2001.

18. Becker, B., Kohavi, R., and Sommerfield, D., Visualizing the sim-
ple Bayesian classifier. Information Visualization in Data Mining
and Knowledge Discovery. 18:237–249, 2001.

19. Zhang, J., Hsu, W., and Lee, M., FASTCiD: FAST clustering in
dynamic spatial databases. Submitted for publication, 2002.

20. Xu, X., Jäger, J., and Kriegel, H.-P., A fast parallel clustering
algorithm for large spatial databases. In: High Performance Data
Mining. Springer, pp 263–290, 1999.

21. Han, J., Pei, J., and Kamber, M., Data mining: concepts and tech-
niques. New York: Elsevier, 2011.

22. Daubechies, I., Ten lectures on wavelets. SIAM, 1992.
23. Mackiewicz, A., and Ratajczak, W., Principal components analy-

sis (PCA). Comput. Geosci. 19:303–342, 1993.
24. Holland, S. M., Principal components analysis (PCA).

Department of Geology. Athens, GA: University of Georgia,
2008, 30602–32501.

25. Ku, W., Storer, R. H., and Georgakis, C., Disturbance detection
and isolation by dynamic principal component analysis. Chemom.
Intell. Lab. Syst. 30(1):179–196, 1995.

26. Andrews, H., and Patterson, C., Singular value decomposition
(SVD) image coding. IEEE Trans. Commun. 24(4):425–432,
1976.

27. Shearer, C., The CRISP-DM model: the new blueprint for data
mining. Journal of Data Warehousing 5(4):13–22, 2000.

28. Glas, A. M., Floore, A., Delahaye, L. J., Witteveen, A. T., Pover,
R. C., Bakx, N., Lahti-Domenici, J. S., Bruinsma, T. J., Warmoes,
M. O., and Bernards, R., Converting a breast cancer microarray
signature into a high-throughput diagnostic test. BMC Genomics
7(1):278, 2006.

29. Yoshida, H., Kawaguchi, A., and Tsuruya, K., Radial basis
function-sparse partial least squares for application to brain imag-
ing data. Computational and Mathematical Methods in Medicine
2013, 2013.

30. Jen, C.-H., Wang, C.-C., Jiang, B. C., Chu, Y.-H., and Chen, M.-
S., Application of classification techniques on development an
early-warning system for chronic illnesses. Expert Syst. Appl.
39(10):8852–8858, 2012.

31. Bailey, T., and Jain, A., A note on distance-weighted $ k $-nearest
neighbor rules. IEEE Trans Syst Man Cybern 4:311–313, 1978.

32. Keller, J. M., Gray, M. R., and Givens, J. A., A fuzzy k-nearest
neighbor algorithm. IEEE Trans Syst Man Cybern 4:580–585,
1985.

33. Liu, D.-Y., Chen, H.-L., Yang, B., Lv, X.-E., Li, L.-N., and Liu, J.,
Design of an enhanced fuzzy k-nearest neighbor classifier based
computer aided diagnostic system for thyroid disease. J. Med.
Syst. 36(5):3243–3254, 2012.

34. Syaliman, K., and Nababan, E., Sitompul O Improving the accu-
racy of k-nearest neighbor using local mean based and distance
weight. In: Journal of Physics: Conference Series. vol 1. IOP
Publishing, p 012047, 2018.

35. Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., Cowell, R. G.,
Bayesian analysis in expert systems. Statistical science: 219–247,
1993.

36. Kononenko, I., Semi-naive Bayesian classifier. In: Machine
Learning—EWSL-91. Springer, pp 206–219, 1991.

37. Langley, P., Induction of recursive Bayesian classifiers. In:
Machine Learning: ECML-93. Springer, pp 153–164, 1993.

38. Peng, H., and Long, F. A., Bayesian learning algorithm of discrete
variables for automatically mining irregular features of pattern
images. In: Proceedings of the Second International Conference
on Multimedia Data Mining. Springer-Verlag, pp 87–93, 2001.

39. Hickey, S. J., Naive Bayes classification of public health data with
greedy feature selection. Commun. IIMA 13(2):7, 2013.

40. Abellán, J., and Castellano, J. G., Improving the Naive Bayes
Classifier via a Quick Variable Selection Method Using
Maximum of Entropy. Entropy 19(6):247, 2017.

41. Estella, F., Delgado-Marquez, B. L., Rojas, P., Valenzuela, O., San
Roman, B., and Rojas, I., Advanced system for automously clas-
sify brain MRI in neurodegenerative disease. In: Multimedia
Computing and Systems (ICMCS), 2012 International
Conference on. IEEE, pp 250–255, 2012.

42. Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J., Rotation
forest: A new classifier ensemble method. IEEE Trans. Pattern
Anal. Mach. Intell. 28(10):1619–1630, 2006.

43. Domingos, P., and Hulten, G., Mining high-speed data streams. In:
Proceedings of the sixth ACM SIGKDD international conference
onKnowledge discovery and data mining. ACM, pp 71–80, 2000.

44. Hulten, G., Spencer, L., and Domingos, P., Mining time-changing
data streams. In: Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining.
ACM, pp 97–106, 2001.

45. Zhu, B., Jiao, J., Han, Y., Weissman, T., Improving Decision Tree
Learning by Optimal Split Scoring Function Estimation, 2017.

46. Esmeir, S., and Markovitch, S., Anytime induction of low-cost,
low-error classifiers: a sampling-based approach. J. Artif. Intell.
Res. 33:1–31, 2008.

47. Esmeir, S., and Markovitch, S., Anytime learning of anycost clas-
sifiers. Mach. Learn. 82(3):445–473, 2011.

48. Boser, B. E., Guyon, I. M., and Vapnik, V. N. A., training algo-
rithm for optimal margin classifiers. In: Proceedings of the fifth
annual workshop on Computational learning theory. ACM, pp
144–152, 1992.

49. Lee, K.-J., Hwang, Y.-S., and Rim, H.-C., Two-phase biomedical
NE recognition based on SVMs. In: Proceedings of the ACL 2003
workshop onNatural language processing in biomedicine-Volume
13. Association for Computational Linguistics, pp 33–40, 2003.

50. Nanni, L., Lumini, A., and Brahnam, S., Survey on LBP based
texture descriptors for image classification. Expert Syst. Appl.
39(3):3634–3641, 2012.

51. Hasri, N. N. M., Wen, N. H., Howe, C. W., Mohamad, M. S.,
Deris, S., and Kasim, S., Improved Support Vector Machine
Using Multiple SVM-RFE for Cancer Classification.
International Journal on Advanced Science, Engineering and
Information. Technology 7(4–2):1589–1594, 2017.

52. Kavitha, K., and Gopinath, A., Gopi M Applying improved svm
classifier for leukemia cancer classification using FCBF. In:
Advances in Computing, Coemmunications and Informatics
(ICACCI), 2017 International Conference on. IEEE, pp 61–66,
2017.

53. Er, O., Yumusak, N., and Temurtas, F., Chest diseases diagnosis
using artificial neural networks. Expert Syst. Appl. 37(12):7648–
7655, 2010.

54. Gunasundari, S., and Baskar S., Application of Artificial Neural
Network in identification of lung diseases. In: Nature &
Biologically Inspired Computing. NaBIC 2009. World Congress
on. IEEE, pp 1441–1444, 2009.

55. Bin, W., and Jing, Z., A novel artificial neural network and an
improved particle swarm optimization used in splice site predic-
tion. J Appl Computat Math 3(166), 2014.

56. Amaratunga, D., Cabrera, J., and Lee, Y.-S., Enriched random
forests. Bioinformatics 24(18):2010–2014, 2008.

57. Yao, D., Yang, J., and Zhan, X., An improved random forest
algorithm for class-imbalanced data classification and its applica-
tion in PAD risk factors analysis. Open Electr Electron Eng J 7(1):
62–72, 2013.

58. Fabris, F., Doherty, A., Palmer, D., de Magalhães, J. P., Freitas, A.
A., and Wren, J., A new approach for interpreting Random Forest
models and its application to the biology of ageing. Bioinformatics
1:8, 2018.

139 Page 18 of 20 J Med Syst (2018) 42: 139



59. Gopal, R., Marsden, J. R., and Vanthienen, J., Information min-
ing—Reflections on recent advancements and the road ahead in
data, text, and media mining. New York, NY: Elsevier, 2011.

60. Ding, J., Berleant, D., Nettleton, D., and Wurtele, E., Mining
MEDLINE: abstracts, sentences, or phrases. In: Proceedings of
the pacific symposium on biocomputing, 2002. pp 326–337,
2002.

61. Shen, H.-B., and Chou, K.-C., Ensemble classifier for protein fold
pattern recognition. Bioinformatics 22(14):1717–1722, 2006.

62. Eom, J.-H., Kim, S.-C., and Zhang, B.-T., AptaCDSS-E: A clas-
sifier ensemble-based clinical decision support system for cardio-
vascular disease level prediction. Expert Syst. Appl. 34(4):2465–
2479, 2008.

63. Jain, A. K., Murty, M. N., and Flynn, P. J., Data clustering: a
review. ACM computing surveys (CSUR) 31(3):264–323, 1999.

64. Zhang, T., Ramakrishnan, R., and Livny, M., BIRCH: an efficient
data clustering method for very large databases. In: ACM Sigmod
Record. vol 2. ACM, pp 103–114, 1996.

65. Bryant, D., and Moulton, V., Neighbor-net: an agglomerative
method for the construction of phylogenetic networks. Mol.
Biol. Evol. 21(2):255–265, 2004.

66. Heo, M., and Leon, A. C., Statistical power and sample size re-
quirements for three level hierarchical cluster randomized trials.
Biometrics 64(4):1256–1262, 2008.

67. Darkins, R., Cooke, E. J., Ghahramani, Z., Kirk, P. D.,Wild, D. L.,
and Savage, R. S., Accelerating Bayesian hierarchical clustering
of time series data with a randomised algorithm. PLoS One 8(4):
e59795, 2013.

68. Elkamel, A., Gzara, M., and Ben-Abdallah, H., A bio-inspired
hierarchical clustering algorithm with backtracking strategy.
Appl. Intell. 42(2):174–194, 2015.

69. Yildirim, P., and Birant, D., K-Linkage: A New Agglomerative
Approach for Hierarchical Clustering. Adv Electr Comput Eng
17(4):77–88, 2017.

70. Chiu, T., Fang, D., Chen, J., Wang, Y., and Jeris, C., A robust and
scalable clustering algorithm for mixed type attributes in large
database environment. In: Proceedings of the seventh ACM
SIGKDD international conference on knowledge discovery and
data mining. ACM, pp 263–268, 2001.

71. Hussain, H.M., Benkrid, K., Seker, H., and Erdogan, A. T., FPGA
implementation of K-means algorithm for bioinformatics applica-
tion: An accelerated approach to clustering Microarray data. In:
Adaptive Hardware and Systems (AHS), 2011 NASA/ESA
Conference on. IEEE, pp 248–255, 2011.

72. Tseng, G. C., Penalized and weighted K-means for clustering with
scattered objects and prior information in high-throughput biolog-
ical data. Bioinformatics 23(17):2247–2255, 2007.

73. Botía, J. A., Vandrovcova, J., Forabosco, P., Guelfi, S., D’Sa, K.,
Hardy, J., Lewis, C. M., Ryten, M., and Weale, M. E., An addi-
tional k-means clustering step improves the biological features of
WGCNA gene co-expression networks. BMC Syst. Biol. 11(1):
47, 2017.

74. Sathiya, G., and Kavitha, P., An efficient enhanced K-means ap-
proach with improved initial cluster centers. Middle-East J. Sci.
Res. 20(1):100–107, 2014.

75. Jain, A. K., Data clustering: 50 years beyond K-means. Pattern
Recogn. Lett. 31(8):651–666, 2010.

76. Jiang, D., Pei, J., and Zhang, A., DHC: a density-based hierarchi-
cal clustering method for time series gene expression data. In:
Bioinformatics and Bioengineering. Proceedings. Third IEEE
Symposium on, 2003. IEEE, pp 393–400, 2003.

77. Kailing, K., Kriegel, H.-P., and Kröger, P., Density-connected sub-
space clustering for high-dimensional data. In: Proceedings of the
2004 SIAM International Conference on Data Mining. SIAM, pp
246–256, 2004.

78. Wang, L., Li, M., Han, X., and Zheng, K., An improved density-
based spatial clustering of application with noise. International
Journal of Computers and Applications: 1–7, 2018.

79. Günnemann, S., Boden, B., and Seidl, T., DB-CSC: a density-
based approach for subspace clustering in graphs with feature
vectors. Machine Learning and Knowledge Discovery in
Databases:565–580, 2011.

80. Sittel, F., and Stock, G., Robust density-based clustering to iden-
tify metastable conformational states of proteins. J. Chem. Theory
Comput. 12(5):2426–2435, 2016.

81. Liu, S., Zhu, L., Sheong, F. K., Wang, W., and Huang, X.,
Adaptive partitioning by local density-peaks: An efficient
density-based clustering algorithm for analyzing molecular dy-
namics trajectories. J. Comput. Chem. 38(3):152–160, 2017.

82. Maltsev, N., Glass, E., Sulakhe, D., Rodriguez, A., Syed, M. H.,
Bompada, T., Zhang, Y., and D'souza, M., PUMA2—grid-based
high-throughput analysis of genomes and metabolic pathways.
Nucleic Acids Res. 34(suppl_1):D369–D372, 2006.

83. Ortuso, F., Langer, T., and Alcaro, S., GBPM: GRID-based
pharmacophore model: concept and application studies to pro-
tein–protein recognition. Bioinformatics 22(12):1449–1455,
2006.

84. Porro, I., Torterolo, L., Corradi, L., Fato, M., Papadimitropoulos,
A., Scaglione, S., Schenone, A., and Viti, F., A Grid-based solu-
tion for management and analysis of microarrays in distributed
experiments. BMC Bioinf 8(1):S7, 2007.

85. Ren, J., Cai, B., and Hu, C., Clustering over data streams based on
grid density and index tree. 6. https://doi.org/10.4156/jcit.vol6.
issue1.11, 2011.

86. Liu, F., Ye, C., and Zhu, E., Accurate Grid-based Clustering
Algorithm with Diagonal Grid Searching and Merging. In: IOP
Conference Series: Materials Science and Engineering. 1: IOP
Publishing, p 012123, 2017.

87. Si, Y., Liu, P., Li, P., and Brutnell, T. P.,Model-based clustering for
RNA-seq data. Bioinformatics 30(2):197–205, 2013.

88. Abawajy, J. H., Kelarev, A. V., and Chowdhury, M., Multistage
approach for clustering and classification of ECG data. Comput.
Methods Prog. Biomed. 112(3):720–730, 2013.

89. Wang, J., Delabie, J., Aasheim, H. C., Smeland, E., and
Myklebost, O., Clustering of the SOM easily reveals distinct gene
expression patterns: results of a reanalysis of lymphoma study.
BMC Bioinf 3(1):36, 2002. https://doi.org/10.1186/1471-2105-
3-36.

90. Hinton, G. E., and Salakhutdinov, R. R., Reducing the dimension-
ality of data with neural networks. Science 313(5786):504–507,
2006.

91. Hinton, G. E., Osindero, S., and Teh, Y.-W., A fast learning algo-
rithm for deep belief nets. Neural Comput. 18(7):1527–1554,
2006.

92. Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H., Greedy
layer-wise training of deep networks. In: Advances in neural in-
formation processing systems. pp 153–160, 2007.

93. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based
learning applied to document recognition. Proc. IEEE 86(11):
2278–2324, 1998.

94. Pascanu, R., Mikolov, T., and Bengio, Y., On the difficulty of
training recurrent neural networks. In: International Conference
on Machine Learning. pp 1310–1318, 2013.

95. Hubel, D. H., and Wiesel, T. N., Receptive fields, binocular inter-
action and functional architecture in the cat's visual cortex. J.
Physiol. 160(1):106–154, 1962.

96. Xu, J., Xiang, L., Hang, R., and Wu, J., Stacked Sparse
Autoencoder (SSAE) based framework for nuclei patch classifi-
cation on breast cancer histopathology. In: Biomedical Imaging
(ISBI), 2014 IEEE 11th International Symposium on. IEEE, pp
999–1002, 2014.

J Med Syst (2018) 42: 139 Page 19 of 20 139

https://doi.org/10.4156/jcit.vol6.issue1.11
https://doi.org/10.4156/jcit.vol6.issue1.11
https://doi.org/10.1186/1471-2105-3-36
https://doi.org/10.1186/1471-2105-3-36


97. Jia,W., Yang, M., andWang, S.-H., Three-Category Classification
of Magnetic Resonance Hearing Loss Images Based on Deep
Autoencoder. J. Med. Syst. 41(10):165, 2017.

98. Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.,
Extracting and composing robust features with denoising
autoencoders. In: Proceedings of the 25th international conference
on Machine learning. ACM, pp 1096–1103, 2008.

99. Huang, G. B., Lee, H., and Learned-Miller, E., Learning hierar-
chical representations for face verification with convolutional
deep belief networks. In: Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp
2518–2525. , 2012.

100. Lee, H., Pham, P., Largman, Y., Ng AY., Unsupervised feature
learning for audio classification using convolutional deep belief
networks. In: Advances in neural information processing systems,
2009. pp 1096–1104, 2009.

101. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning. Nature
521(7553):436–444, 2015.

102. Bengio, Y., Simard, P., and Frasconi, P., Learning long-term de-
pendencies with gradient descent is difficult. IEEE Trans. Neural
Netw. 5(2):157–166, 1994.

103. Gers, F. A., Schmidhuber, J., and Cummins F., Learning to forget:
Continual prediction with LSTM.

104. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio Y., Learnieng phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:14061078

105. Fakoor, R., Ladhak, F., Nazi, A., and Huber, M., Using deep
learning to enhance cancer diagnosis and classification. In:
Proceedings of the International Conference on Machine
Learning, 2013.

106. Liang, M., Li, Z., Chen, T., and Zeng, J., Integrative data analysis
of multi-platform cancer data with a multimodal deep learning
approach. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) 12(4):928–937, 2015.

107. Gao, X., Lin, S., and Wong, T. Y., Automatic feature learning to
grade nuclear cataracts based on deep learning. IEEE Trans.
Biomed. Eng. 62(11):2693–2701, 2015.

108. Liao, S., Gao, Y., Oto, A., and Shen, D., Representation learning: a
unified deep learning framework for automatic prostate MR seg-
mentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention, 2013. Springer,
pp 254–261, 2013.

109. Di Lena, P., Nagata, K., and Baldi, P., Deep architectures for pro-
tein contact map prediction. Bioinformatics 28(19):2449–2457,
2012.

110. Ditzler, G., Polikar, R., and Rosen, G., Multi-layer and recursive
neural networks for metagenomic classification. IEEE Trans on
Nanobiosci 14(6):608–616, 2015.

111. Majumdar, A., Real-time Dynamic MRI Reconstruction using
Stacked Denoising Autoencoder. arXiv preprint arXiv:
150306383, 2015.

112. Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., and Lai, L., Deep learn-
ing for drug-induced liver injury. J. Chem. Inf. Model. 55(10):
2085–2093, 2015.

113. Holzinger, A., Dehmer, M., and Jurisica, I., Knowledge discovery
and interactive data mining in bioinformatics-state-of-the-art, fu-
ture challenges and research directions. BMC Bioinf 15(6):I1,
2014.

114. Min, S., Lee, B., and Yoon, S., Deep learning in bioinformatics.
Brief. Bioinform. 18(5):851–869, 2017.

115. Lan, K., Fong, S., Song, W., Vasilakos, A. V., and Millham, R. C.,
Self-Adaptive Pre-Processing Methodology for Big Data Stream
Mining in Internet of Things Environmental Sensor Monitoring.
Symmetry 9(10):244, 2017.

116. Kashyap, H., Ahmed, H. A., Hoque, N., Roy, S., and
Bhattacharyya, D. K., Big data analytics in bioinformatics: A
machine learning perspective. arXiv preprint arXiv:150605101,
2015.

117. Holzinger, A., and Jurisica I., Knowledge discovery and data min-
ing in biomedical informatics: The future is in integrative, interac-
tive machine learning solutions. In: Interactive knowledge discov-
ery and data mining in biomedical informatics. Springer, pp 1–18,
2014.

118. Kamal, S., Ripon, S. H., Dey, N., Ashour, A. S., and Santhi, V., A
MapReduce approach to diminish imbalance parameters for big
deoxyribonucleic acid dataset. Comput. Methods Prog. Biomed.
131:191–206, 2016.

119. Bhatt, C., Dey, N., and Ashour, A. S., Internet of things and big
data technologies for next generation healthcare, 2017.

120. Dey, N., Hassanien, A. E., Bhatt, C., Ashour, A., and Satapathy, S.
C., Internet of Things and Big Data Analytics Toward Next-
Generation Intelligence. Berlin: Springer, 2018.

121. Tamane, S., Tamane, S., Solanki, V. K., and Dey, N., Privacy and
security policies in big data, 2017.

122. Dey, N., Bhatt, C., and Ashour, A. S., Big Data for Remote
Sensing: Visualization, Analysis and Interpretation, 2018.

123. Kamal, M. S., Dey, N., and Ashour, A. S., Large Scale Medical
DataMining for Accurate Diagnosis: A Blueprint. In Handbook of
Large-Scale Distributed Computing in Smart Healthcare (pp. 157–
176). Springer: Cham, 2017.

124. Manogaran, G., and Lopez, D., Disease surveillance system for
big climate data processing and dengue transmission. International
Journal of Ambient Computing and Intelligence (IJACI) 8(2):88–
105, 2017.

125. Jain, A., and Bhatnagar, V., Concoction of Ambient Intelligence
and Big Data for Better Patient Ministration Services.
International Journal of Ambient Computing and Intelligence
(IJACI) 8(4):19–30, 2017.

126. Matallah, H., Belalem, G., and Bouamrane, K., Towards a New
Model of Storage and Access to Data in Big Data and Cloud
Computing. International Journal of Ambient Computing and
Intelligence (IJACI) 8(4):31–44, 2017.

127. Vengadeswaran, S., and Balasundaram, S. R., An Optimal Data
Placement Strategy for Improving System Performance of
Massive Data Applications Using Graph Clustering.
International Journal of Ambient Computing and Intelligence
(IJACI) 9(3):15–30, 2018.

139 Page 20 of 20 J Med Syst (2018) 42: 139


	A Survey of Data Mining and Deep Learning in Bioinformatics
	Abstract
	Introduction
	Data mining in bioinformatics
	Data preprocessing
	Data cleaning
	Data integration
	Data transformation
	Data reduction

	Classification
	K-nearest neighbor
	Naïve bayes
	Decision tree
	Support vector machine
	Neural network
	Ensemble

	Clustering
	Hierarchical clustering
	Partitioning relocation clustering
	Density-based clustering
	Grid-based clustering
	Model-based clustering


	Deep learning in bioinformatics
	Deep neural network
	Convolutional neural network
	Stacked auto-encoder
	Deep belief network
	Recurrent neural network

	Data mining and deep learning comparison
	Challenges and issues
	Conclusion
	References


