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Abstract
To detect pulmonary abnormalities such as Tuberculosis (TB), an automatic analysis and classification of chest radiographs
can be used as a reliable alternative to more sophisticated and technologically demanding methods (e.g. culture or sputum
smear analysis). In target areas like Kenya TB is highly prevalent and often co-occurring with HIV combined with low
resources and limited medical assistance. In these regions an automatic screening system can provide a cost-effective
solution for a large rural population. Our completely automatic TB screening system is processing the incoming CXRs (chest
X-ray) by applying image preprocessing techniques to enhance the image quality followed by an adaptive segmentation
based on model selection. The delineated lung regions are described by a multitude of image features. These characteristics
are than optimized by a feature selection strategy to provide the best description for the classifier, which will later decide if
the analyzed image is normal or abnormal. Our goal is to find the optimal feature set from a larger pool of generic image
features, –used originally for problems such as object detection, image retrieval, etc. For performance evaluation measures
such as under the curve (AUC) and accuracy (ACC) were considered. Using a neural network classifier on two publicly
available data collections, –namely the Montgomery and the Shenzhen dataset, we achieved the maximum area under the
curve and accuracy of 0.99 and 97.03%, respectively. Further, we compared our results with existing state-of-the-art systems
and to radiologists’ decision.
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Introduction

Tuberculosis (TB) – according to the 2017 WHO report
[41], is considered one of the major life threats beside
HIV (human immunodeficiency virus), with a mortality
rate of 1.3 million people among the 10.4 million people
developing the disease each year. Cure rates over 90% have
been described in clinical studies. However, it still remains
a major challenge due to the presence of TB in tandem with
HIV in 1.7 million cases out of the reported 10.4 million
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ones. Among the population contracting the virus, 90% are
adults, 65% are male, and 56% are coming from only five
countries: Indonesia, Pakistan, India, the Philippines and
China.

TB is an infectious disease caused by the bacillus
Mycobacterium tuberculosis, which typically affects the
lungs. It spreads through the air when people with active TB
cough, sneeze, or otherwise expel infectious bacteria [52].
TB is most prevalent in Africa and Southeast-Asia, where
widespread poverty and malnutrition reduces resistance to
the disease. The most common method for diagnosing TB
worldwide is sputum smear microscopy (developed more
than 100 years ago), in which bacteria are observed in
sputum samples examined under a microscope. Following
recent developments in TB diagnostics, the use of rapid
molecular tests for the diagnosis of TB and drug-resistant
TB is increasing, as highlighted in WHO’s reports [40, 41].
In countries with more developed laboratory capacity TB
cases are also diagnosed via culture methods (the current
reference standard). However, these methods are currently
rather expensive, and not easily applicable in low-resourced
regions such as Africa. In these areas chest X-ray (CXR) is
still the most prominent TB detection method in use.

Tuberculosis is exhibited in CXR images in form of
cavitations, consolidations, infiltrates, blunted costophrenic
angles, opacities, pleural effusion and thickening, pneu-
monia, horizontal fissure displacement, hilar enlargement
and small broadly distributed nodules [52], among other
radiological manifestations. These changes can often be
detected in CXRs in the form of corrupted and/or deformed
lung profiles [27], disruptions in the lung shapes, intensity
changes in the lung tissue [23], texture abnormalities [8],
etc. Some prominent TB manifestations can be observed in
Fig. 1. Besides the design and development of a deploy-
able and reliable CXR screening system, our major aim is to
select the best and complementing features. These specially
selected characteristics will help the underlying classifier to
produce a complex decision surface necessary to distinguish
normal CXRs from the abnormal ones.

Our objective with the feature selection [17] imple-
mented for our CXRs classification scenario was three-fold:
i) improve the prediction performance of the underlying
classifier, ii) provide an optimal feature set suitable to
describe abnormalities such as TB in the lung, and iii) pro-
vide a direct comparison of our results with those published
by Jaeger et al. [23]. In addition to the main goal to find an
optimal feature set providing high classification accuracy,
our secondary goal was to select a fast and well performing
classifier such as an artificial neural network [3, 53]. Such
a network is able to define complex non-linear decision sur-
faces necessary to distinguish TB cases from non-TB cases
relying only on features. The feature selection will also
make possible an overall shorter processing time due to the
fact that only a reduced number of features is to be extracted
and used in the classification process.

In this paper, we propose an end-to-end system
capable of detecting different lung abnormalities from
CXRs analysis using only image processing and machine
learning. The rest of the paper is structured as follows:
“Related work” gives a brief overview of the state-
of-the-art, “Methods” discusses the methods in use, –
involving lung segmentation, features description, features
selection and classification. “Experiments” provides a
brief description of the used chest X-ray collections, the
evaluation protocols and the different results. Finally, a brief
summary highlighting the strengths of our paper is provided
in “Conclusion”.

Related work

Recently, we note an increased focus on automatic chest
radiography [2, 11, 24, 25, 28, 29, 31, 44] due to the more
affordable prices for X-ray machines, and the huge potential
residing in the automatic image processing [16]. Such tools
analyze these digital images without any external human
involvement [30]. Even though, in the last few years many
papers have been published in computer-aided diagnosis

Fig. 1 Different Tuberculosis manifestations in chest X-Ray images
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(CAD) targeting chest x-ray images [26], there are only a
limited number of systems which can accurately read chest
radiographs [14, 31].

Due to the uncontested success of deep convolutional
neural networks, in the recent years different works
appeared in the medical image analysis field [2, 22,
28, 29, 31]. Instead of using the traditional feature
extractions followed by classification, the researchers
in this new paradigm tasked the networks to extract
automatically [18] the separating characteristics from X-
rays, MRIs, etc. However, such methodologies need very
large training samples [21] and some small deformations
like calcifications or infiltrates might not be detected
properly [2]. Do to this fact we focused our current
research on the classical solution, where well defined image
characteristics can describe the different abnormalities and
is usable for reduced size data too.

Nodule detection is becoming one of the popular research
focuses, due to the very well defined aspect of the
problem. Even some commercial systems are available on
the market [46] helping radiologist to localize and diagnose
lung cancer [19]. However, nodules are one of many
representations of TB, besides consolidations, infiltrates,
blunted costophrenic angles, opacities, pleural effusion and
thickening, pneumonia, horizontal fissure displacement, or
hilar enlargement. Due to the high complexity of the
problem to detect these different type of TB manifestations,
recent studies concentrate more on specific topics, such
as lung segmentation [5, 8], temporal subtraction for bone
scans [47], or other aspects such as detection of catheters
and pneumothorax, texture analysis or shape analysis [15].

To overcome human involvement in lung cancer detec-
tion addressed by the seminal work of Lodwick et al.
[33] by converting the visual images of roentgenograms
into numerical sequences, the current research shifted the
focus to more sophisticated and automatic feature extraction
methods. These features are able to describe the differ-
ent phenomenons encountered in the different CXRs. Van
Ginneken et al. [15] identified these possible features as
being texture related as patterns are diffuse. The analysis
of pixel neighborhood intensities can reveal certain spe-
cific characteristics. As the authors mention it, is hard for a
radiologist ”to get a clue” why these image features relate
to certain diseases. However, to mimic the radiologists’
reading habits, computer scientists should transcribe the
reading knowledge in a more formal way. The extraction
of all types of image characteristics (intensity, shape pro-
files, wavelets, etc.) should be followed by feeding these
characteristics into sophisticated classifiers such as neural
networks, Support Vector Machines (SVM), etc. The noise
– caused by the image acquisition or size of the lung region
of the analyzed subject, etc. [36] can skew the results. To
reduce these type of artifacts, different methods such as rib

segmentation [1], rib supression or histogram equalization
[23] have been implemented. The perceptual errors commit-
ted by human readers can be corrected with focused analysis
using systematic search strategies, coning devices, etc.

Depeursing et al. [10] proposed a study to compare
different classification methods involving five different
classifiers applied to three types of feature groups: gray-
level histograms, air components and quincunx wavelet
frame coefficients with B-spline wavelets. Similar attempts
have been proposed by Jaeger et al. [23] involving classifiers
such as SVM, multi-layer perceptron, decision tree and
linear regression. In both cases SVMs provided the best
performances. The work [54] presents a rather small scale
experiment (77 images) only for nodule detection involving
feature extraction. The features – mainly intensity values,
wavelets, Gabor coefficients, multi-scale Hurst features,
etc, in total 67 different characteristics were selected
using a genetic algorithm (GA) by minimizing the overall
classification error. With the method they managed to
reduce the features number to 25. However, there is no direct
comparison showing the importance of the feature selection.

In general, there is no clear understanding why some
features perform better than others and there is no clear
view how those image features can actively contribute
in the classification. Therefore, a clear understanding of
the features and their combination is a necessity in order
to provide a well defined framework in the future for
pulmonary disease detection and classification.

Methods

This section describes the different processing steps of
the system: starting with lung segmentation using atlas-
based segmentation, the feature selection, and finally the
classification which provides the user with a confidence
measure for each analyzed image belonging to the normal
or abnormal cases.

Lung segmentation

In our system, we use an atlas-based lung segmentation
algorithm. The atlas is a set of CXRs from several
patients and their expert delineated lung boundaries. The
system first chooses the most similar models to the
patient X-ray by measuring the lung shape similarities.
Then, it warps the selected models to the patient X-
ray using a registration algorithm. This algorithm uses
the scale invariant feature transform (SIFT) flow (i.e.,
SIFT-flow) registration approach [32], which computes the
corresponding pixels of image pairs according to their SIFT
feature similarity. The average of the registered models will
constitute the patient-specific lung model. The system then
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combines the CXR intensity values and lung model with
an objective function to decide for the final boundary. The
segmentation solves the objective function with a graph-cut
energy minimization approach [4].

The system produces state-of-the-art results on a
public set (c.f., JSRT set [45]) reaching 0.954 ± 0.0015
coverage. Similar scores were reported for the Montgomery
collection, where 0.941 ± 0.034 coverage was obtained.
For more details about this stage, we refer to the work by
Candemir et al. [5].

Features description

To characterize normal and TB suspicious CXR lung
segments, we considered three different feature sets. The
feature Set A is inspired from object detection [16, 37] and
was used with success in a previous work [23]. The feature
Set B has been utilized with success by Rahman et al. [42]
for a medical CBIR system. Finally, we considered basic
shape features, which can also be powerful to characterize
abnormalities. For pleural effusion the lower part of the lung
is not visible due to the accumulated fluid in the thoracic
cavity, thus producing a blunt costophrenic angle [35] and a
considerably modified lung shape [52].

All features have only been extracted from the lung
regions detected by the atlas-based segmentation method
(see “Lung segmentation”) preceded by a histogram
equalization to enhance the overall contrast of the analyzed
CXR images.

Set A: Is a versatile and compact feature set combining
shape, edge and texture descriptors. The final feature rep-
resentation is built by concatenating the different descrip-
tors (histograms) extracted from the segmented lung
regions. In particular, the following shape and texture
descriptors were considered: Intensity Histogram (IH),
Gradient Magnitude Histogram (GM), Shape Descriptor
Histogram (SD), Curvature Descriptor Histogram (CD),
Histogram of Oriented Gradient (HOG) [9], Local Binary
Pattern (LBP) [39]. A modified multiscale approach pro-
posed by Frangi et al. [13] is considered to compute
the eigenvalues of Hessian matrix needed for the shape
and curvature descriptors. The Hessian describes the
second-order surface curvature properties of the local
image intensity surface. The normalization makes these
descriptors intensity invariant. Jaeger et al. [23] deter-
mined that quantizing these features into 32 bins provides
good discrimination performance. The size of the feature
descriptor is 192.

Set B: Is a rather diversified and low-level feature collec-
tion involving intensity, edge, texture, color and shape
moment features. The final feature representation is built
by concatenating the different descriptors (histograms)

extracted from the segmented lung regions. In particular,
the following descriptors were considered: Color Layout
Descriptor (CLD), Edge Histogram Descriptor (EHD)
from MPEG-7 standard [34], Color and Edge Direc-
tion Descriptor (CEDD) [6], Fuzzy Color and Texture
(FCTH) [7], Tamura texture descriptor, Gabor texture
feature [20], and other texture features such as primitive
length (PL), edge frequency (EF), and autocorrelation
(AC) [48]. This feature set is larger, comprising 595
features.

Set C: Is a focused feature collection involving only shape
measurements calculated from the lung shapes provided
by the standard MATLAB� implementation. For our
purpose size, orientation, eccentricity, extent, centroid,
and bounding box were considered. The dimension of
this feature set is 12. For each lung segment 6 different
features were extracted and later concatenated. For
details please refer to the help provided by MATLAB’s
regionprops1.

Set C contains only similar types of features, while set
A and B are a mixture of all sorts of features, as they were
used separately for different pattern recognition tasks [16,
37, 42]. Therefore, we have not seen the necessity to classify
the features based on their properties and nature.

Feature selection and classification

In many systems devoted to better CXR analysis [8, 14,
23, 24, 27], the authors do not specifically motivate their
selection for the particular features in use. Rather, they
just borrow well-known features from image processing
[16]. Without any specific motivation, – excepting color,
edges or texture, which are applicable to all kinds of object
detection tasks [37], content based image retrieval (CBIR)
[42] works do not consider particularly crafted features
to characterize abnormalities such as TB. While some
features can complement each other, – by improving the
discriminating power of the descriptor [50], some features
might work in the detriment of others, thus the selection
of features from a larger pool is necessary and useful for
further consideration.

For our purpose we considered a wrapper type feature
selection model [43, 49]. Instead of aiming to reach a
certain accuracy level, – often used as selection criterion, we
conducted an exhaustive search among the different feature
combinations. Given n different features, the number of
possible combinations is:

N =
(

n

1

)
+

(
n

2

)
+ · · · +

(
n

n

)
= 2n − 1 (1)

1http://www.mathworks.com/help/images/ref/regionprops.html

http://www.mathworks.com/help/images/ref/regionprops.html
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Due to the different feature combinations, the corresponding
feature subsets were concatenated, and a train/test procedure
launched to established the best combination. The feature
combination providing the maximum ACC or AUC was
retained as the winner combination. Due to the exponential
nature of the experiment, a parallel approach of the wrapper
method was implemented. The selection/training/testing
phases for each particular feature combination is completely
independent so such parallelism was possible. We are
aware that this exhaustive search might take longer than
a random search looking for a certain threshold, but
due to the fact, that this search has to be performed
only once, we preferred performance maximization over
speed.

For classification, a neural network-based classifier was
considered. Our choice for the selection of the classifier
might sound a bit arbitrary, but we conducted some
preliminary experiments using Support Vector Machine
(SVM). The results were not encouraging, and they were
in the range of the original experiments conducted by
Jaeger et al. [23]. Neural networks in particular are
known for their capacities of estimating complex decision
surfaces [3] and handling multi-class problems. Due to
the large numbers of features to be handled (up to 799
dimensions), and the lack of information about the possible
correlations among the different feature components, a fully
connected multi-layer perceptron network was utilized.
The number of neurons in the input layer was selected
based on the dimensionality of the input feature vector.
The number of output neurons was also set based on
the possible outcomes: normal and abnormal. The number
of neurons in the hidden layer was estimated based on
several trial runs. Finally, for the experiments 10 neurons
were considered as being optimal in the hidden layer. For
training, error-backpropagation strategy was considered,
while for learning rate = 0.001, and momentum = 0.2
were used. The different parameters were established based
on several trial runs. For the number of hidden neurons
in the hidden layer, we considered the criteria to have
as less possible neurons to keep the complexity low as
possible, therefore the recognition time becomes faster.
More sophisticated network optimizations involve pruning
algorithms [51, 53] could be considered, however this
kind of optimization goes beyond the scope of the current
research.

Experiments

This section gives a detailed description of the data in use,
the evaluation protocols considered for the experiments.
Finally, the different experiment setups are described
followed by some comparisons.

Data

For the experiments two different, publicly available
CXR data collections were considered. The images in
these studies were de-identified by the data providers,
and are exempted from IRB review at their institution.
The data was exempted from IRB review (No. 5357) by
the NIH office of Human Research Protection Program.
The Montgomery dataset, – a representative subset of
a larger image repository, was collected over many
years within the tuberculosis control program of the
Department of Health and Human Services of Montgomery
County. The set contains 138 posteroanterior CXRs, among
which 80 CXRs are normal ones, while the remaining
58 CXRs are abnormal cases (presenting some sort
of abnormality indicating TB). The Shenzhen dataset
is from Shenzhen No. 3 Hospital (Shenzhen, China),
one of the largest hospitals in China for infectious
diseases. The CXR images belong to outpatient clinics.
The collection contains 342 normal, and 334 abnormal
cases. For more details about the data, please refer to
[23].

Evaluation protocols

In order to properly evaluate the performance of the current
system, several measures were considered. Accuracy (ACC)
and area under the curve (AUC) were selected [12]
to measure these performances. We considered these
measurements and not others such as MCC (Matthew
correlation coefficients), because we wanted to directly
compare our results with the results presented in [23].
Beside the ACC, the AUC is a necessary measure to
understand the behavior of the underlying classifier. Due
to the special application in question, namely deciding if a
specific CXR contains abnormalities, there is a high need to
control the true positive rate, as nobody should be missed
if his/her CXR contains a certain type of abnormality [38].
The ROC curve also gives us the possibility to adjust our
classification threshold for the purpose of our application.
Each of our experiments follows a 10x cross-validation
protocol. The reported results are the average scores of the
different folds.

Results

Different experiments were conducted involving the
Montgomery, and the Shenzhen collection, respectively.
First some results are reported using as input for the clas-
sifier the feature set A, feature set B, and feature set C,
respectively. The goal of these experiments was to show
the importance of these features separately, as well as their
strength by combining them together.
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In Table 1. is to be observed the discriminative power
of the feature set A, involving less features than set B. The
intensity histogram, the local binary patterns, the histogram
of oriented gradients, etc. seem to be more powerful than the
features borrowed from MPEG-7 standard. Similar trend is
to be observed in the work proposed by Jaeger et al. [23].
The increased scores in our cases suggest also the fact, that
the neural network is able to better estimate the decision
surface than a support vector machine (SVM).

While the first column in the table show individual results
for the different feature sets, the last column involves all
the features described in detail in “Features description”.
This extended feature set is focusing more on the common
representational effort of these features –by stitching them
together. Apparently, the combined feature set involving
set A, B, and C can not overcome the individual results
generated by set A, because set B and C are introducing a
certain number on confusions.

Due to the the limited number of blunt costophrenic angle
appearances in the analyzed collections, the shape features
have only limited description power. The majority of the
CXRs available in our collections have TB manifestations
inside the lung regions, and not that much along the
boundaries usually involving severe shape deformations.
However, shape features (Set C) can be still considered as
a reliable source to separate abnormal CXRs from normal
ones, when the TB manifestation is to be observed on the
shape such as pleural effusion [35, 52].

In Table 2. similar conditions were considered as in the
case of Table 1., but this time instead of measuring ACC,
the AUC is measured to show the real strength of the
neural classifier, –by varying the threshold applied to the
accuracy. The results achieved for the feature set A are very
promising, achieving almost perfect scores for the Shenzhen
data (AUC = 0.99), and promising score (AUC = 0.87)
for the Montgomery collection. These scores provide a real
proof that it is possible to set up a classifier which provides
almost perfect classification rates. Following the trend
discussed earlier, the feature set B and feature set C provide
moderate results, due to their limitation describing and
capturing the specific shape and orientations of lung, ribs,
etc. The ROC curves for the Montgomery and Shenzhen
collections, involving set A are shown in Fig. 2.

However, these characteristics are classical image fea-
tures used in object recognition or content based image

Table 1 Accuracy (ACC) measures reported for the different feature
representations for different data collections

Dataset Set A(%) Set B(%) Set C(%) Set {A,B,C}(%)

Montgomery 78.30 72.47 65.82 69.45

Shenzhen 95.57 81.06 70.40 92.00

Table 2 Area under the curve (AUC) measures reported for the
different feature representations for different data collections

Dataset Set A Set B Set C Set {A,B,C}

Montgomery 0.87 0.72 0.71 0.79

Shenzhen 0.99 0.90 0.77 0.97

retrieval. Nobody analyzed their particular contribution to
the final recognition. Therefore, our feature selection exper-
iment identified some 17 different features belonging to
Set A(#6), B(#10), and C(#1). The experiments in Tables 3
and 4. show those optimized feature sets which provide
the highest accuracy, and maximized area under the curve,
respectively. Our optimization criteria for the best selection
of features was max{ACC} and max{AUC}.

For feature selection each possible feature combination
was trained/tested on a 10x cross-validation basis, and the
average scores were reported. The scores for the optimized
feature collections (see Tables 3 and 4.) are way more
accurate than the results obtained by the original features
(see Tables 1 and 2.) obtaining a net ACC gain of 6.45%
(Montgomery) and 1.46% (Shenzen), respectively. The
AUC net gain goes up to 4% (Montgomery), while for
the Shenzhen data the same AUC has been achieved, more
precisely 0.99, – a result which is acceptable considering the
importance of the correct classification of the true positive
cases (abnormalities).

Is to be noted that for the feature selection, – due to the
nature of the evaluation protocol (no dedicated training/test
set), all the folds contributed to the selection of the best
feature collection, therefore the results could be biased
[49].

In order to support the correctness of our choice for
the selection, we published the standard deviation (σ ) for
the results coming from the 10 folds. While the standard
deviation is low for the results reported for the Shenzhen
collection (see Table 4.), the spread is really high for the
Montgomery collection (see Table 3.). The rather high σ

level for the second collection can be explained with the
relatively low number of CXRs and the unbalanced aspect
of this collection. The standard deviation in this case can be
considered as a measure to see how far we would be in case
of a dedicated test set to test with.

While the results reported for the feature selection
might be biased, not only is the accuracy gain substantial,
but all features need much more time to be extracted,
thus influencing the overall processing time of each chest
radiograph. Beside the increased accuracy/area under the
curve, we also would like to focus our discussion towards
the selected features. Among the selected ones is to
be observed a net dominance of features such as IH,
CD, LBP, HOG belonging to the original feature set
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Fig. 2 ROC curve for the
Montgomery and Shenzhen
collection using the feature set
A for classification

A. From the set B, features like FTCH, GLCM, Gabor
and EF were considered, showing the strength of these
particular features in the overall evaluation. As one can
see, these features describe texture, intensity, edginess, etc.,
properties valuable to distinguish normal and abnormal
CXRs. Far beyond the comparison to the baseline system
[23], our ultimate goal is to find the best possible
feature combination, and deploy the system in Kenya
to accurately detect TB positive patients. Therefore, for
direct evaluation our feature selection scores are somehow
biased, but for the upcoming chest x-ray images to be
analyzed, we discovered the best feature descriptors to be
considered.

The optimization also supports the fact that shape
features do not contribute to the classification, and their
usage should be rather considered in a pre-filtering phase,
before starting a thorough analysis of the radiograph.
Such a filter beside a costophrenic angle estimator [35]
could help to quickly identify lung shape abnormalities
which are strong indicators of different types of lung
diseases.

As our screening application is to be used in a TB
prevalent area such as Kenya, it is important to provide the
healthcare providers with a reliable tool for screening, –
avoiding any misclassification of the abnormal cases. While

Table 3 Results for the optimized feature set involving the Mont-
gomery collections

Optimization Result σ Selected features

max{ACC} 84.75% 11.16 {FTCH,EF,IH,GM,SD,CD,LBP}
max{AUC} 0.91 0. 11 {FTCH,GLCM,EF,IH,SD,CD}

it is still acceptable to identify a healthy lung as being
abnormal, none of the abnormal cases should be missed.
Therefore, we show some results in Table 5. for both
collections involving recall values of 0.90, 0.95, and 0.99,
respectively.

The false positive rate (FPR) for the Shenzhen collection
is rather promising and acceptable. The results produced
for the Montgomery collection are more modest. One
possible explanation could be the reduced number of
samples present in the collection. It is known that for
statistical classifiers such as neural networks, to adjust the
different weights through the learning process a multitude
of different samples is necessary [3]. This condition is more
fulfilled for the Shenzhen collection, where the number of
samples is over 300, both for abnormal and normal cases,
respectively.

To directly compare our results, we considered the
system proposed by Jaeger et al. [23]. In this paper the
authors are focusing exactly on the same data and using
same type of experiments as we provided in this current
paper. For quality measurements accuracy (ACC) and
area under the curve (AUC) were considered, both being
adequate measures to decide about the quality of the system.
While the authors of the previously mentioned work report
different type of results, for the sake of clarity, only their

Table 4 Results for the optimized feature set involving the Shenzhen
collections

Optimization Result σ Selected features

max{ACC} 97.03% 1.71 {CLD,Gabor,GLCM,EF,IH,HOG,LBP}
max{AUC} 0.99 0.005 {Gabor,EF,GM,HOG,LBP}
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Table 5 False positive rates for recall values of 0.90, 0.95 and 0.99 for
Montgomery and the Shenzhen collections

Dataset 0.90 0.95 0.99

Montgomery 0.261 0.261 0.261

Shenzhen 0.003 0.011 0.062

best scores will be mentioned in the comparison. To our
best knowledge, there are no other works reporting results
on the Montgomery and Shenzhen benchmark collections.
As one can see in Table 6, the improvements both ACC
(11.47%) and AUC (11%) reported by our system are rather
significant for the Shenzhen collection. The improvement
of the AUC with 1% for the Montgomery collection is
statistically insignificant. The comparison with the achieved
scores by the feature selection (see Tables 3 and 4.) would
be even more impressive than the results obtained by
the feature set A (see Tables 1 and 2.). However, such
comparison would not be exactly accurate.

We also compared the performance of our system with
human reading performances. For that purpose we used the
results reported by Jaeger et al. [23]. For the experiments
two independent radiologists were asked to read the CXRs
belonging to the Montgomery collection. This process
was completely independent from our experiments, and
it was based only on visual inspection of the frontal
chest X-rays. In Table 7. a detailed confusion matrix
is presented, showing how human readers perform in
classifying the CXRs into normal and abnormal cases,
respectively. By calculating the accuracy (ACC) obtained by
the radiologists, one can observe the fact, that the accuracy
(81.86%) achieved by the radiologist is still higher than
the accuracy (78.30%) reported by our system, considering
the exact same conditions for the Montgomery collection.
With more specific features and more training samples
available, we are confident that the scores provided by
the automatic systems will increase gradually. All these
results point us to the conclusion that automatic screening
systems are necessary and helpful. With the corresponding
medical expertise provided by the radiologist, machines
can also classify with high accuracy and reliability chest
radiographs for the benefit of the overall diagnostic
process.

Table 6 ACC and AUC comparisons between the results reported by
Jaeger et al. [23] and the results produced by our system (see Our)

Dataset ACC [23] ACC (Our) AUC [23] AUC (Our)

Montgomery 78.3% 78.3% 0.86 0.87

Shenzhen 84.10% 95.57% 0.88 0.99

Table 7 Comparison of human consensus performance with ground
truth of Montgomery collection [23]

Consensus

+ –

Ground truth + 58 0 58

– 25 55 80

83 55 138

Conclusion

In this paper, we presented a completely automatic frontal
chest radiograph screening system able to detect healthy
lungs and spot abnormal ones - carrying different type
of Tuberculosis manifestations. Due to the focus group
specificities (Kenya’s rural population), – involving limited
resources and limited medical personnel, the development
of such mobile screening systems is important, and it has
a huge benefit for the public health endeavors sustained
currently in Kenya.

Our main goal, besides the description of the automatic
CXR screening system, was to gain a deeper understanding;
why some features can carry the necessary information
to separate the abnormal cases from the normal cases
using and some others do not possess such capability. The
majority of the current systems just borrow some well-
known features from the literature, –considered for larger
purpose object detection or content-based image retrieval,
and apply a classification scheme on top of that. Our
solution provides a wrapper based feature selection to
find a particular feature combination which minimizes the
classification error rate, and maximizes the area under the
curve.

Considering three different feature sets involved in a pre-
vious study, we managed to select, –in a data-driven manner,
those particular feature combinations which maximize the
overall performances of the classification systems for the
different CXR collections. Among the selected features we
can enumerate features such as Gabor, Fuzzy Color and
Texture Histogram, Intensity Histogram, Shape Descrip-
tor, Local Binary Pattern, Curvature descriptor, Histogram
of Oriented Gradient, Edge Frequency, features which can
be considered in the future for similar classification tasks.
These characteristics are more concentrated on the over-
all image quality, edginess and texture, –properties which
can apparently distinguish between normal and abnor-
mal CXRs. However, we are aware that these results are
reported for only two different frontal chest X-ray collec-
tions, namely the Montgomery and Shenzhen collections.
These publicly available collections contain only a limited
number of X-rays, but beside our main goal to detect impor-
tant and descriptive features from a larger collection, we
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also wanted to provide a direct comparison of our results
with those published by Jaeger et al. [23], – hence the choice
of the data.

Our classification shows a net improvement of up to
11.45% accuracy and 11% improvement in the area under
the curve for the Shenzhen collection. Considering the
results involving the feature selection, the scores can go
even higher. Admittedly, our feature selection scheme is
biased, however, with this selection we managed to identify
the feature subset on which the trained upcoming deployed
system in Kenya could provide the best recognition score.

Our experiments involving false positives rates for fixed
recall values of 0.90, 0.95, and 0.99 show that we can
define such a threshold mechanism based on the ROC
analysis which could provide high specificity values. This is
a necessity for such medical applications.

To further improve the automatic part in the classification
process, one could extract automatically features from the
analyzed lung regions using an encoder type network.
Combining both type of features could lead to increased
performances. Beside concentrating on the features some
special attention can be focused on the classifier too.
Instead of using one classifier to identify all sort of
TB manifestations, specialized classifiers could better
identify certain particular anomalies such as infiltrates,
calcifications, pleural effusion, etc.

Besides identifying the normal cases the precise detec-
tion of abnormal cases could be deferred to other, more
sophisticated healthcare facilities such as hospitals or clin-
ics where more in-depth investigations can take place. The
comparison of our results with medical experts’ readings
shows that automatic systems such as ours can be consid-
ered in the screening process. Such computer-aided diag-
nosis systems can work side-by-side with medical experts
providing a second opinion and actively helping pulmonary
diagnosis of patients.
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