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Abstract
Early automatic breast cancer detection from mammograms is based on the extraction of lesions, known as microcalcifications
(MCs). This paper proposes a new and simple system for microcalcification detection to assist in early breast cancer detection.
This work uses the two most recognized public mammogram databases, MIAS and DDSM. We are introducing a MC detection
method based on (1) Beucher gradient for detection of regions of interest (ROIs), (2) an annulus model for extraction of few and
effective features from candidates to MCs, and (3) one classification stage with two different classifiers, k Nearest Neighbor
(KNN) and Support Vector Machine (SVM). For dense mammograms in the MIAS database, the performance metrics achieved
are sensitivity of 0.9835, false alarm rate of 0.0083, accuracy of 0.9835, and area under the ROC curve of 0.9980 with a KNN
classifier. The proposedMC detection method, based on a KNN classifier, achieves, a sensitivity, false positive rate, accuracy and
area under the ROC curve of 0.9813, 0.0224, 0.9795 and 0.9974 for the MIAS database; and 0.9035, 0.0439, 0.9298 and 0.9759
for the DDSM database. By slightly reducing the true positive rate the method achieves three instances with false positive rate of
0: 2 on fatty mammograms with KNN and SVM, and one on dense with SVM. The proposed method gives better results than
those from state of the art literature, when the mammograms are classified in fatty, fatty-glandular, and dense.

Keywords Digital mamograms,microcalcifications . K-nearest neighbors . Support vector machine . Morphologic image
processing . Feature extraction

Introduction

Breast cancer is the number one cause of deaths in women and
it corresponds to approximately 15% of all cancer deaths

among women. Worldwide, 570,000 women died of breast
cancer in 2015 [1].

Numerous experiments have established that an early de-
tection of cancer eases the treatment, reducing risks, as well as
the mortality percentage in 25% [2]. For early detection,
mammography is an imaging tool with high sensitivity and
it is the most recommended by the guidelines of the World
Health Organization [3, 4].

A mammogram is the best diagnostic tool to find a cluster
of microcalcifications (MCs) in a glandular duct. MCs appear
as white specks [5], and they are early signs of breast cancer.
Microcalcification lesions are difficult to detect by human
vision since microcalcification size is between 0.5 to 2 mm.
For this reason, the false positive rate of a radiologist is re-
ported at 15% [6] and the false negative rate at 20% [7].

This work proposes an algorithm, which detects
microcalcifications on mammograms based on morphologic
processing, learning machines and a very small set of features.
These arguments encourage the implementation of autonomous
diagnostic tools to detect early risks of breast cancer by finding
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the presence of MCs on mammograms so that patients can
follow specialized treatment.

Related work

The work in [8], proposed a microcalcification detecting sys-
tem which applies a Swarm Optimization Neural Network
(SONN). Features applied to this classifier were extracted
using texture energy measures obtained through a
convolutional kernel. The method in [9] proposed a biological
adaptive model of contrast detection. This model is based on
the human visual system (HSV) to adapt the contrast accord-
ing to the HSV model. Before applying this model, the image
is filtered based on anisotropic diffusion and curvilinear struc-
ture using local energy and phase congruency. The aim is to
reduce false positives due shot noise or curvilinear structures.
In another method [10], the microcalcification segmentation is
based on the geodesic active contours (GAC) technique asso-
ciated with anisotropic texture filtering. Authors of [11] pro-
posed microcalcification detection using the two-dimensional
discrete wavelet transform. Before segmenting the region of
interest, an enhacement step is applied by Logarithm transfor-
mation for dynamic range manipulation. To extract ROIs, a
binarization step with automatic threshold and morphological
operations are applied; followed by unsharp masking to
enhace the ROI. As a final step, a discrete Wavelet transform
is applied to detect microcalcifications.

Previous works are characterized by the classifier and da-
tabase that are used to test the proposed approach.Well known
public databases are Digital Mammogram Database, (MIAS)
[12] and the Digital Database for Screening Mammography,
(DDSM) [13]. Works that have used only one of these data-
bases are: [6, 8, 9, 11, 14]. Works that used both datasets are
[17, 19–21]. Someworks did not use a public database such as
[10, 15, 16]. Methods based on KNN classifiers are found in
[16–18] and those based on SVM are found in [8, 16, 19].
Both classifiers are used in [16]. Other classifiers used for MC
detection are Fuzzy C-means with Features (FCM-WF) [15]
and Adaboost [6].

From this analysis, it is observed that there are significant
differences in terms of databases and the number of images
used by each method. One difficulty is that different works do
not specify what images of the database were used so that it is
not possible to tell if hard images are taken out of the testing
set, thus making any comparison unfair. Six of the reviewed
works on Table 3, do not specify which images left off from
their analysis.

This work improves over current state of the art on signif-
icant reduction of false positives on dense mammograms by
using an annulus model and a set of few features that leads to
an overall improved method to detect microcalcifications on
mammograms, compared to previous work.

Material and methods

Mammogram databases

We use the two most popular public databases MIAS [12], and
DDSM [13]. The first database contains 322 medio–lateral
(MLO) mammograms at a spatial resolution of 50 μm/pixel
and 8 bits/pixel. Mammograms are also classified in terms of
breast density type; fatty, fatty-glandular, and dense. As it is
shown in the Table 1, this database contains 207 normal images
(without microcalcification clusters) and 20 images with clus-
ters of microcalcifications (5 fatty, 6 fatty-glandular, 9 dense).
Images with microcalcifications are provided along with their
correspondingGround Truth (GT), while normal images do not
have GTs. The ground truth specifies information regarding
ROIs which are clusters with microcalcifications. Those 20
images, with specified ground truth, contain 25 regions of in-
terest which include microcalcification clusters. From these 25
ROIs, 268 individual microcalcifications were extracted as it is
explained in the section BMicrocalcification Extraction^. Three
images (1 fatty, 1 fatty-glandular, and 1 dense) have no clusters
of microcalcifications, thus they have no Ground Truth speci-
fied; only distributed isolated microcalcifications and that is
why they are not considered for analysis. The remaining im-
ages from the database correspond to images with other type of
lesions without microcalcifications.

The DDSM database was digitized by four different scan-
ners. Table 2 shows information related to this database. This
Table does not contain the same type of detailed information
as Table 1 because DDSM images in the database do not
include breast density type.

Generation of candidates without microcalcifications

The aim of this part of the method is to generate a training set
of 21 × 21-pixel image patches, which correspond to candi-
dates. The number of patches with microcalcifications (candi-
dates to be detected as True Positives) is the same as the
number of patches without microcalcifications (candidates to
be detected as True Negatives).

To generate patches without microcalcifications, normal
images are randomly selected, and from each randomly select-
ed normal image a patch is randomly extracted. Each normal
image is tagged with a number, and to generate a set of ran-
domly selected normal images, n random image tags are gen-
erated by means of a discrete uniform probability density
function, f(x) = 1/m; where x ∈ {1, 2,…,m} is an image tag
number; and m is the total number of images from each mam-
mogram density. Parameters, (n, m), are (n = 121, m = 76),
(n = 97, m = 65) and (n = 50, m = 66) for dense, fatty-
glandular and fatty mammograms, respectively. For each
mammogram density parameter n is chosen so that the number
of candidates, which are MCs, is the same as the number of

134 Page 2 of 9 J Med Syst (2018) 42: 134



candidates, which are not. According to Table 2, there are 121
MCs in 9 dense mammograms, 97 MCs in 6 fatty-glandular
mammograms, and 50 MCs in 5 fatty mammograms.

Similarly, one pair of random numbers, (r, c), is generated
for each randomly selected normal image. Parameters r and c
are coordinates of the center of a randomly chosen 21 × 21-
pixel patch on the given mammogram.

Ground truth region extraction

The proposed approach, to solve the problem of detecting
microcalcifications (MC), is separated into three main stages,
extraction of abnormal clusters or regions of interest, extrac-
tion of individual candidates from abnormal clusters, and clas-
sification of candidates.

Extraction of abnormal regions of interests provided by GT
images of the database which were specified by a radiologist,
by giving (1) coordinates (x, y) of the center of each cluster of
interest, and (2) an approximate radius, in pixels, of a circle
enclosing an abnormal cluster, as it is shown in Fig. 1. Rather
than enclosing a cluster by a circle (Fig. 1 b), a square is used
(Fig. 1 c).

Extraction of microcalcifications candidates
from abnormal clusters

Extraction of microcalcifications, from an abnormal cluster, is
separated into 4 stages: segmentation (Beucher Gradient and
Enhancement of Gradient Image), binarization, feature
extraction, and classification. Fig. 2 shows a mammogram
region after different operations are applied to detect
microcalcifications.

Segmentation

Microcalcification clusters are obtained from the GT where
regions with microcalcifications are specified. These clusters
are regions of different sizes. The first two blocks (Original
image and Ground Truth region extraction), in Fig. 2, corre-
spond to the mammogram along with a MC cluster specified
by the GT, and the purpose of segmentation block is to local-
ize must changing borders. This is accomplished in two steps:
Beucher Gradient application and enhancement of gradient
image.

Beucher gradient

Because of the fact that dilation of gray-level images enhances
bright regions and suppresses dark regions while eroding en-
hances dark regions and suppresses bright regions, where the
area of the suppressed region is smaller than that of the spec-
ified structuring element b(r, c), both operations are com-
bined, through the use of the high-pass filter, Beucher
Gradient [22]. The erosion of a gray-level image f(r, c) by a
structuring element b(r, c) at location (r, c) is obtained by
selecting the minimum value of f − b inside the region of in-
tersection over which both functions f and b are defined ac-
cording to

f⊝b½ � r; cð Þ ¼ min
x; yð Þ∈b

f r−x; c−yð Þ−b x; yð Þf g ð1Þ

The dilation of a gray-level image f(r, c) by a structuring
element b(r, c) at location (r, c) is defined by finding the max-
imum value of f + b inside the common region between both,
function f and structuring element b, according to

f⊕b½ � r; cð Þ ¼ max
x;yð Þ∈b

f r−x; c−yð Þ þ b x; yð Þf g ð2Þ

By considering flat structuring elements with zero entries,
eroding or dilating of a gray-level image with a structuring
element consists in finding theminimum ormaximum value of
the image inside the region bounded by the intersection of the
image and the structuring element.

Table 1 MIAS breast density
MIAS database

Fatty Fatty-glandular Dense Total

Number of images with clusters of microcalcification 5 6 9 20

Images with isolated microcalcifications 1 1 1 3

Number of clusters in GT Images 5 6 14 25

Extracted microcalcifications 50 97 121 268

Images without microcalcification clusters 66 65 76 207

Table 2 DDSM for abnormality

DDSM

Abnormal Normal

Images 29 20

Extracted microcalcifications 114 114
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The morphological gradient, Beucher Gradient, is the ar-
ithmetic difference between the dilated and the eroded version
of the gray level image of interest f(r, c), by a structuring
element b(r, c),

g f r; cð Þð Þ ¼ f⊕b½ � r; cð Þ− f⊝b½ � r; cð Þ ð3Þ

The result of applying Beucher Gradient on a mammogram
is shown in the upper right part of Fig. 2.

Enhancement of gradient image

To improve the quality of the filtered image, a 3×3 median
filter is applied, a non-linear filtering technique to remove

a b c

Fig. 1 a Digital mammogram
from MIAS; b) Ground Truth
with a white circle enclosing
cluster of microcalcifications; c)
Ground Truth with a red square
enclosing a cluster of
microcalcifications

Fig. 2 Microcalcifications cluster, segmentation, binarization, feature extraction, and classification
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noise while preserving edges. To enhance edges, a process,
called unsharp masking, is applied, where a smoothed version
of the image, fsmooth(r, c), is subtracted from the original im-
age, subtracting away the low-frequency components of the
signal, and yielding the high-frequency content,

f high−pass r; cð Þ ¼ f r; cð Þ− f smooth r; cð Þ ð4Þ

where the high-pass image component can be used for sharp-
ening by adding it to the original image. Thus, the complete
unsharp masking operator is given by

f sharpen r; cð Þ ¼ f r; cð Þ þ A� f high−pass r; cð Þ ð5Þ

where A is a scaling constant, set to 0.7. The result of applying
median filtering, followed by unsharp masking is shown in
the lower right part of Fig. 2.

Binarization

Thresholding is applied to generate a binary image as it is
depicted in the block of binarization of Fig. 2. The MC are
characterized by abrupt border changes, the enhanced gradient
image of the segmentation block represents these changes;
thus, the top 10% of the gradient values are most probable to
represents MC borders. Therefore, the threshold value, for
binarization, is established at 90% of the highest gray value
of the enhanced GT region of interest.

One impairment of binarization is that remaining noise
might be misclassified as a candidate to microcalcifications.
To reduce the likelihood of the occurrence of these misclassi-
fications, ROIs, with radii smaller than 0.1 mm, are eliminated
using opening with a disk-like structural element of 0.2-mm
diameter. The reason for choosing a structuring element of
0.2-mm diameter is based on the consideration that the diam-
eter, of the smallest microcalcification, is 0.2 mm. The
opening of a binary image f(r, c), by a structuring element
b(x, y), is given by f ∘ b = (f⊝ b)⊕ b, and it eliminates objects
smaller than the structuring element. Resolution of digital
mammograms, for both databases, is 50 μm per pixel. Thus,
the size of the structuring element, in pixels, is
0:2 mm=diameter
50 μm=pixel ¼ 4 0:2 mm=diameter

50 μm=pixel

Another consideration is that the diameter, of the largest
microcalcification, is 1 mm. Thus, the size of the circle, which
encloses a candidate to microcalcification, is
1 mm=diameter
50 μm=pixel ¼ 20 1 mm=diameter

50 μm=pixel , and the area of the correspond-

ing square is chosen as 21×21 pixels. EachMC candidate is in
a 21×21 image patch and its center is established at the posi-
tion of the highest gray level value.

To recover the complete shape of candidates, at all loca-
tions of interest, an algorithm for extraction of connected
components is used. Another motivation for extraction of

connected components is to assign a label to each region of
interest for sub-sequent automatic extraction of properties
from each labeled ROI, mainly the position of the highest gray
level value inside the region.

Feature extraction

Also, in the feature extraction block of Fig. 2 it is shown the
extraction of features from a candidate to microcalcification. It
is useful to visualize a microcalcification in the three-
dimensional space, as a gray level function of coordinates
(x, y), as it is observed in Fig. 3. This three-dimensional re-
construction provides an approximation of the projection of an
actual microcalcification into a set of intensity values on a
digital mammogram. The three-dimensional reconstruction
of a microcalcification consists of a prominent peak in relation
to local surroundings on the mammogram. Thus, it is feasible
the modeling of a microcalcification based on a set of surface
levels.

To detect real microcalcifications, four features are ex-
tracted from a candidate. Information is obtained from three
different surface levels assigned to each ROI, by using a
mask, which contains the distribution of these surface
levels. Fig. 4 a) shows a ROI with 21 X 21 pixels and with
its center at the maximum intensity value. Information, for
each surface level of the ROI, is extracted by overlapping
the ROI with a mask which shows the distribution of each
of the three surface levels. Fig. 4 b) shows the mask along
with the distribution of each surface level. The surface level
distribution consists of three concentric annuli with respec-
tive radii R, R + 2 and R + 4. This work uses R = 3, by con-
sidering known sizes of microcalcifications. Each annular
region, Aannulus, provides information of interest regarding
each surface level. Each annular region is labeled by an
integer number in {1, 2, 3}.

Fig. 3 Visualization of one microcalcification
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After overlapping the mask with one ROI, information
from the three annular regions is used for extraction of a
four-entry feature vector, f = [f1, f2, f3, f4]

T, according to,

f 1 ¼ max Aannulus1ð Þ−max Aannulus2ð Þ ð6aÞ
f 2 ¼ max Aannulus1ð Þ−max Aannulus3ð Þ ð6bÞ
f 3 ¼ mean Aannulus1ð Þ−mean Aannulus2ð Þ ð6cÞ
f 4 ¼ entropy Aannulus1ð Þ−entropy Aannulus2ð Þ ð6dÞ
where functions max(), mean(), and entropy() are the
maximum, mean and entropy values, respectively, of the cor-
responding annular region intensity values.

The first and the second feature f1, f2, represents the differ-
ence between the peak intensity value, in the first annular
region, and the peak, on the second and third annulus, respec-
tively. For the third feature, f3, is the difference between first
and second mean values. Another feature is the entropy value.

Classification

The classification of true microcalcifications is depicted in the
classification block of Fig. 2. To decide whether a ROI is a
microcalcification or not, the classifier is implemented by
using KNN and SVM.

KNN classifier

The KNN is a non-linear classifier. To assign a class to an
unknown feature vector x, K feature vectors, out of set of N
training feature vectors {xi; i = 1,…,N}, are identified as the
nearest neighbors to the unknown x. Each one of the k nearest
neighbors, xi, belongs to a corresponding class, Ci, where the
number of classes is two (normal and abnormal). Out of the K
nearest neighbors to x, the number of nearest neighbors, ki,
that belong to class Ci (i = 1, 2), are identified, where k = k1 +
k2. The class, assigned to x, is the one with the largest ki.

SVM classifier

An SVM is an optimal classifier which is geometrically rep-
resented by a separating hyperplane which is the furthest away
from each class after training this classifier with labeled data.
The SVM, in this work, used aGaussian Kernel function, with
(1) one output, which provides two possible outcomes, corre-
sponding to two different classes (microcalcification or ab-
normal region, normal region), and (2) four inputs according
to the size of the feature vector used.

Performance evaluation

To compare works that detect microcalcifications, it is essen-
tial to compare efficiency among different proposed methods.
To evaluate the performance of the proposed method, True
Positive Rate (TPR) or sensitivity, False Positive Rate
(FPR), specificity and accuracy are used as figures of merit.
TPR, also known as sensitivity or recall or detection alarm, is
the probability that the outcome of a diagnosis is positive
given that the patient presents breast cancer, and it is given as,

TPR ¼ TP
TP þ FN

ð7Þ

where true positives (TP) are those microcalcifications cor-
rectly identified and false negatives (FN) are those
microcalcifications incorrectly rejected. False Positive Rate
(FPR), also known as false alarm, is defined as the probability
that the outcome of a breast cancer diagnosis is positive given
that the patient is healthy according to

FPR ¼ FP
TN þ FP

ð8Þ

where true negatives (TN) are those cases correctly rejected
and false positives (FP) are those artifacts incorrectly detected

Fig. 4 a Region of interest b)
with corresponding annulus mask
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as microcalcifications. Specificity is defined as 1 − FPR.
Accuracy specifies the percentage of breast cancer diagno-

sis which are correct,

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð9Þ

The receiver operating characteristic (ROC) curve com-
pares operating characteristics, TPR vs. FPR by plotting them
at different plotting settings. The area under the curve (AUC)

is equal to the probability that a classifier ranks a randomly
chosen positive higher than a randomly chosen negative one.

Cross-validation is k-fold Cross Validation (k-fold CV)
where the training set is randomly divided into k sub-sets or
folds, of equal length. One of the folds is used as a validation
test while the remaining k – 1 folds are used for training. This
process is repeated k times and for each fold all performance
parameters are estimated. An overall performance parameter
(specificity, sensitivity, accuracy) is computed by averaging
the k estimates of the parameter of interest.

Table 3 Performance of different methods for microcalcification detection

Ref. TPR FPR Accuracy AUC Database Number of images

[9] 1 0.5 DDSM 58 cluster abnormalities
24 normal

[8] 0.95 0.077 SVM 0.8755 MIAS 216 mammograms

[20] 0.9810 0.63 per image DDSM
MIAS

20 MIAS images.
140 DDSM images.

[17] MIAS
KNN: 0.95
DDSM
KNN: 0.86

MIAS
KNN: 0.96
DDSM
KNN: 0.90

DDSM
MIAS

MIAS:
20 patches
DDSM:
300 patches

[6] 0.8715 0.0642 0.9143 0.9036 MIAS 208 benign images
80 abnormal images

[14] 0.957 0.959 0.97 MIAS 23 mammograms (7 Glandular, 10 Dense, 6 Fatty)
containing microcalcification clusters.

50 mammograms (15 Glandular, 20 Dense, 15 Fatty)
without microcalcifications.

[19] KNN: 0.89
MIAS

KNN: 0.19
MIAS

MIAS
SVM:

0.9851
KNN:

0.9256

DDSM
MIAS

MIAS
26 ROIs
DDSM
103 ROIs

[21] 0.97 0.45 per image MIAS
USCF
DDSM

MIAS and UCSF
189 images
DDSM
27 abnormal – 18 normal.

[11] 93.1 0.1 MIAS 40 normal
29 microcalcifications

Proposed KNN 0.9035
0.9813
0.9424

0.0439
0.0224
0.0497

0.9298
0.9795
0.9463

0.9759
0.9974
0.9807

DDSM
MIAS
Both

MIAS:
20 abnormal images.
207 normal images.
ROIs of 21 X 21 pixels:
MIAS database
268 normal candidates and 268 microcalcifications.
DDSM: 114 normal candidates
114 microcalcifications

Proposed SVM 0.9211
0.9664
0.9476

0.0526
0.0299
0.0550

0.9342
0.9683
0.9463

0.9656
0.9934
0.9802

DDSM
MIAS
Both

Proposed MIAS
fatty-glandular

KNN:
0.9897

SVM:
0.9691

KNN: 0.0200
SVM: 0.0309

KNN:
0.9845

SVM:
0.9691

KNN:
0.9978

SVM:
0.9930

Proposed MIAS fatty KNN:
0.9400

SVM:
0.9200

KNN: 0
SVM: 0

KNN: 0.97
SVM: 0.96

KNN:
0.9924

SVM:
0.9928

ProposedMIAS dense KNN:
0.9835

SVM:
0.9752

KNN: 0.0083
SVM: 0

KNN:
0.9835

SVM:
0.9876

KNN:
0.9980

SVM:
0.9951
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Experimental results

Experimental set up and efficiency

Experimental analyses were carried out to evaluate the pro-
posed method by using the public databases MIAS [12] and
DDSM [13] with a MATLAB R2016a implementation.
Experiments were executed on a laptop computer with an
AMD A10-4600 M processor at 2.3 GHz, and 8 GB RAM.
The cross-validation process is 10-fold CV.

Comparison with other methods

Table 3 shows the performance of different methods, includ-
ing the proposed one, in terms of TPR or sensitivity, FPR,
accuracy and AUC where different public databases are used.
The purpose of Table 3 is to show the different databases, and
performance measures, used by the scientific community,
working on MC detection. Some methods do not report some
performance measurements. Our approach achieves the
highest metric values in terms of TPR, accuracy and AUC,
and it also reaches the lowest FPR values.

Conclusions

Important aspects to the solution of this problem are the re-
duced number of features (four features), low computational
cost, the use of a microcalcification model based on annular
regions, features which are independent of image resolution,
high performance results. The proposed method promises a
good future because of its simplicity for implementation and
the advantage of needing a reduced number of features.

The proposed method uses all available mammograms,
with MCs, from each database. It also analyzes all the avail-
able microcalcifications. To account for FP and TN, normal
candidates are randomly generated from the set of MIAS nor-
mal images so that the number of ROIs with MC and that of
ROIs without MC are equal. Another highlight is the achieved
false positive rate in different density mammograms.

The detection of microcalcification candidates, based on the
high-pass filter Beucher Gradient, makes the proposed method
achieve high performance in detecting microcalcifications on
dense mammograms since it locates microcalcifications on
areas of low contrast, which is a condition of dense mammo-
grams. Besides, background noise is considerably reduced in
dense mammograms and this reduction is higher than that on
mammograms with other density type which allows the im-
provement of feature extraction based on the annulus model.

After comparing the proposed approach with other recent
methods, our approach achieves the best performance in terms
of true positive rate (TPR), false positive rate (FPR),
accuracy, and area under the ROC curve; even though other

methods are not applied to all available abnormal images,
from a database; and the fact that these other works do not
specify image selection for experiments. Methods, for MC
detection on dense mammograms, show very low perfor-
mance; however, we give the best performance during MC
detection on dense mammograms with 0.9752 for TPR, 0
for FPR, 0.9876 for accuracy, and 0.9951 for AUC. The pro-
posed method outperforms others because of the benefits of
using the annulus-based microcalcification model for feature
extraction.
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