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Abstract
The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to
compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal
users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans
and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges
which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other
possible types of malware to the devices, and finally, to steal victims’ private keys linked to the blockchain. For the purpose of
maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and
approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization
(PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts
boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root
exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The
evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also
helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).

Keywords Blockchain . Root exploit . Static analysis .

Android .Machine learning

Introduction

In today’s environment, people use mobile devices as their
main gadgets to connect and communicate. In the healthcare
sector, mobile devices are utilized for blockchain-based
medical data management (BMDM) [1–3]. Blockchain is a
digital ledger that records digital money transactions as
well as other important patient-information that involves
human lives [4]. A respectable security framework
in blockchain attracts the healthcare sector particularly
when it involves the Internet of Medical Things (IoMT) or
the Internet of Health Things (IoHT), both of which, offer
better security and privacy for medical data processing [5].
Nevertheless, current news recorded many hacked cases
involving blockchain [6]. This is because once the attacker
obtains the victim’s private key, the hacker is able to
sign into any legal transaction in the blockchain and
from there, the attacker able to transfer all the medical
data obtained to his/her address. In order to obtain
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this private key, the hacker needs to take over the operating
system (OS) of the mobile device and this is done through
the use of root exploit malware.

Root exploit is a type of malware attackers use to modify
the Android OS kernel so that the attackers able to gain super-
user privileges. When attackers gain root of the OS kernel,
they also gain access to full administrator privileges.
Through this, attackers are able to install other malware types,
such as botnets, worms, or Trojans into the system. Attackers
are able to evade detection bymodifying the OS code, running
its process stealthily, and bypassing permissions [7–9]. The
number of root exploit has increased because of malware cre-
ators and homebrew communities (smartphone users who
break the OS kernel to obtain a customized version of the
OS). When a new version of the OS is released, malware
creators may develop their own root exploit or they may wait
for the homebrew community to determine ways to break the
OS [10]. To combat this, security analysts have implemented
two types of analysis namely, dynamic and static analysis, to
detect root exploit.

Dynamic analysis investigates malware characteristics by
running the application [11, 12]. This is exemplified by a
study which inspected the network movement whilst detecting
malware [13]. Another example is traced to DyHAP [14]
which analyzed mobile network traffic to detect malware.
Dynamic analysis has its own drawbacks. Its coverage is lim-
ited since it monitors the application’s behavior within a lim-
ited time only. Malware behaviors which exceed the time of
the experiment are thus unexplored thereby obscuring certain
malware activities and overlooking certain parts of the inves-
tigation. In contrast, static analysis scrutinizes the application
codes without executing the malware. In addition, this analy-
sis only requires fewer resources (low specifications of hard-
ware) and exhibits fast processing speed [15]. During static
analysis, the malware is unable to modify or hide its malicious
behavior [16] because it is unexecuted. Nonetheless, static
analysis needs distinct features in minimal amounts so as to
be able to detect malware.

Discovering the relevant list of features in lesser amounts
increases the accuracy of the machine learning prediction
model. This is because static analysis decreases the multifac-
eted nature of the predictive model, hence, reducing the ma-
chine learning processing time. It also removes irrelevant data
as well as minimizes the dimensionality of the datasets [17,
18]. In relation to this, the current paper adopts the particle
swarm optimization (PSO) approach, which is a bio-inspired
algorithm, to swarm the overall features so as to gain an opti-
mized list of features that specifically detect unknown root
exploit. This study applies three types of features
encompassing: (1) system command, (2) directory path, and
(3) code-based features. System command is a command in
UNIX-based operating system. It is an efficient type of feature
because of the rare changes in its characteristics although the

kernel version is updated regularly. Security practitioners pos-
sibly use this feature for a long period of time. It consists of
terminal commands, android debug bridge (ADB) commands
and executing processes. The ADB is a novel feature that was
not covered by literature search during writing this paper. The
next type of feature is the directory path. It consists of Linux
kernel directories and system paths. The last feature is code-
based features; they are tools used for executing the com-
mands, such as standard error (stderr), standard input (stdin),
and standard output (stdout).

To conduct this study that uses the bio-inspired PSO fea-
tures through the machine learning classifiers, this research
applied four type of boosts (Adaboost, Realadaboost,
Logitboost, and Multiboost). These were used to train and
convert the Decision Stump classifier into a strong learner that
detect root exploit in mobile devices. The contributions of this
study are as follows:

a) The assessment experiment applied 550 benign and 550
root exploit samples which were extracted from the
Malgenome dataset. To avoid bias results in detecting
the unknown root exploit, this study also evaluates other
samples which were taken from Drebin which were ex-
cluded from the simulation stage.

b) The experiment employed the bio-inspired PSO to
swarm, optimize and select the best root exploit features
for the machine learning classifiers.

c) The study also used multiple categories of features such
as: (1) system command (i.e., terminal and process); (2)
directory path; and (3) code-based features. To the best of
the author’s knowledge, the first category include the nov-
el ADB features, which had not been discovered in pre-
vious Android static analysis research.

d) This study employed multiple types of boosts (Adaboost,
Realadaboost, Logitboost, and Multiboost) for compari-
son purposes so as to discover which among them, is the
most suitable boost that also synchronizes well with the
PSO selected features.

e) This study also developed a root exploit detection system
(RODS) which was then used to evaluate the detection
rate of the root exploit prediction.

f) The evaluation measured the effectiveness of the results in
both simulation and RODS to increase the security of the
blockchain-based medical data management (BMDM).

The remainder of this paper is organized as follows.
Second section surveys the related works. Third section pro-
vides information about the techniques utilized in this analy-
sis. It involves data collection, reverse engineering applica-
tion, feature extraction and machine learning classification.
Fourth section exhibits the assessment and result. Fifth section
compares the results with previous findings. Sixth section
provides the development of the root exploit detection system.
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Seventh section presents the discussion of the paper. Finally,
eighth section expounds on the conclusion and gives sugges-
tions for future works.

Related work

This section briefly describes the blockchain, awareness of the
root exploit, types of analysis to counter it, previous works
involving static analysis and machine learning, the bio-
inspired method in optimizing features and boosting method
that helps to develop efficient root exploit prediction.

Blockchain based medical data management (BMDM)

Deep investigations focusing on medical applications [19–23]
are noted in previous studies. These investigations have made
contributions to medical data management by enhancing time
proficiency in processing data of the heartbeat. Its effective-
ness concerns low resource usage, great time calculations,
more vitality, less power and low memory consumption. All
these are important because the condition of each patient is
dependent on each second of the time. Therefore, security in
healthcare devices is vital in protecting patients’ data from
being compromised. One possible alternative that able to pro-
tect and secure the data management of healthcare applica-
tions is the blockchain technology [5].

Figure 1 depicts blockchain in the medical environment.
Blockchain refers to a block that records the new transaction
of the medical data. Once the new block finishes its comput-
erization, it will be linked to the chain, further constructing a
chain of multiple blocks. The blockchain then records this
transaction in a distributed ledger on a peer to peer network.
It excludes the requirement of a middle man or third party
thereby, enhancing processing speed whilst also minimizing
costs involved. Compared to other approaches, blockchain is
more secure because the data are chained in the blockchain,
and decentralized. Therefore, attackers are unable to attack the
node which they would like to compromise. Even if attackers
are able to attack the node, they need to compute the overall
involved block of the blockchain at a certain time and this is
highly impossible.

Nonetheless, root exploit is capable of bringing risks into
the blockchain data management. This is because, the root
exploit would take over the whole operating system (OS) that
contains the healthcare applications; it steals all the password
including the private keys and proceed to signing legal trans-
actions in the blockchain data transaction. The attackers may
disguise as an administrator of the OS and start transferring
the data with the help of the root exploit.

Root exploit

Asmentioned above, unscrupulous authors design malware to
compromise the system so as to make private gains. Among

Doctor 1 creates an order, 
which receives an unique ID 

called as hash which points to a 
record in the blockchain.

Doctor 2 may replace the Doctor 1 
during his absence and need to 

observe the patient’ s record

The Android medical 
device records the 

patient’ s  status

Lab assistant queries the 
blockchain to accesses the 
order, does the work and 

report to the record

Fig. 1 Blockchain in medical
situation
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the common types of malware available such as root exploit,
botnet, spyware, worm, and Trojan, the most dangerous is root
exploit, also known as rootkit [24, 25]. Figure 2 depicts how
root exploit affects the victim’s OS. Once the attackers com-
promise the kernel of the OS, they are able to control all layers
of the system including applications and libraries. As a result,
the OS may allow the attackers to do whatever they please
including installing multiple types of malware and stealing all
the passwords that are contained in the blockchain transaction.
Figure 3 shows the two situations of before and after the root
exploit attacks. Once the attackers had obtained all the re-
quired passwords, they will proceed with the transactions in
the blockchain and begin to steal all the private medical data
and transfer these to the desired address of the blockchain
destination. Therefore, security practitioner conduct malware
analysis to investigates and determines ways of preventing,
detecting, and responding to malware activities [26–28].

Malware analysis

Malware analysis comprises dynamic and static analysis.
Many studies such as [29–37] have employed dynamic anal-
ysis to execute applications and to monitor the malware
runtime behavior, for example, network access, correlating
user input, applications and network traffic, user behavior,
thread–gain system call sequences (activated by applications),
and memory modifications. By monitoring the running appli-
cations, security analysts are able to detect any unknown

malware or the type of malware that transforms from benign
to malware on-the-fly (during the application runs). Dynamic
analysis is convenient but it is limited by its high requirements
and low performance. This method is unable to detect the
malware types which hide their malicious behaviors during
analysis. In contrast, static analysis examines malware sam-
ples without executing them [38].

Static analysis [39] is an experiment which focuses on
the malware application code, hence it covers all possible
activities without any scope of time. This is because static
analysis does not execute any application. Its main activ-
ity is to reverse engineer the applications, with the aim of
retrieving the entire native code and to further inspect the
structure and substance within it without executing the
applications [40–42]. The benefit of this approach is that
since it considers the overall code, it also provides the big
picture of the application cycle. In addition, its processing
phase is short and fast because static analysis is done
without running the application.

Using static analysis, [15] had proposed family signatures as a
method to detect unknown malware in the Android platform.
Their study concentrated on using code strings to detect new
malware variants. The signature code consists of methods, clas-
ses, character strings, and method bodies. These signatures were
extracted to classify each set of variant of a malware family by
estimating its similarity to the signatures. Unlike the targeted
malware discussed in their study, our features are specifically
adjusted to detect root exploit.

Android operating 

system

kernel

Android operating system 

affected by root exploit

kernelkernel

Root 

exploit

Install other types of malware (trojan and botnet)

Spying the victims communication in the 

background to avoid their acknowledgement
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libraries
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Fig. 2 Root exploit exploitation
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Apkauditor [43] introduced a way to detect malware by
using permission as features. This system utilizes static fea-
tures to distinguish the benign or malicious applications. The
study used permission as features and logistic regression al-
gorithm to detect the malware score threshold. When an ap-
plication exceeds its threshold limit score, Apkauditor clas-
sifies it as malicious and so categorizes it as malware. Two
other studies namely, [44, 45] have also adopted permission as
their features and machine learning algorithms in their ap-
proach, unlike our current study which excludes permissions
but focus mainly on code strings in the Java code as features.
This is because root exploit is a malware type that is able to
evade permissions when it gains super-user privileges [7–9].

Droidanalyzer [46] combines API, rooting and botnet com-
mands as features to detect root exploit and mobile botnet.
Their study analyzed risky API and strings by using particular
features and keywords to identify malware. Their algorithm
calculates theMD5 hash value which were cross-referenced in
the database of signatures. The current study, however, adopts
machine learning specifically to detect root exploit.

Droidexec [47] proposes a framework with opcode com-
ponents as features to detect root exploit. The framework uses
similarity recognition by adopting structural graph constructor
(function–relation graph extraction and opcode component
graph constructor). The current study, in comparison, uses
strings of features to detect root exploit malware; it also com-
bines system commands, directory path, and code-based fea-
tures with machine learning to detect root exploit.

Static analysis and machine learning

Most security practitioners adopt static analysis with proactive
machine-learning approach to discover unknown malware
thereby, overcoming the drawbacks of static analysis [48].

Machine learning is a mathematical mechanism that explores
the study of algorithms and predicts decisions based on sam-
ple data. It is capable of predicting future judgements in light
of the encounters seen through past data sources (learning set)
hence, predicting the yields [49]. The learning set depends on
a given dataset. Insightful choices are made by the connected
calculation of the applied algorithms. One such machine
learning types is supervised machine learning, which depends
on the data of a training stage to create a function. The training
information contains input (features or attributes) and output
yields (between malware and benign). This information is
then estimated for constructing the model. As indicated by
the model, supervised machine learning is capable of charac-
terizing the unknown status of the applications as malware or
benign. Security analysts have adopted different types of ma-
chine learning classifiers for this purpose, as illustrated in
Table 1.

The authors in [38] detected malware by adopting the
Bayesian classification. Their study used permissions from
Androidmanifest.xml and code-based application as features.
Among their code-based features (in the top 25 mixed attri-
butes), only one feature, chmod, is similar to ours. This com-
mand is used in a Unix-type OS to change the permission of
the file system and objects (files and directories).

In [55], the authors proposed using static analysis to extract
features from the .apk, .xml, and .dex file properties (including
strings, types, classes, prototypes, methods, fields, static
values, inheritance, and opcodes). The authors included string
types into their features, similar to our study approach. By
applying strings with examples applied in their paper, we un-
able to compare which features they exactly used for their
study. In our study, we list the exact 31 features in the exper-
iment to ease the reader to compare and investigate our
features.

BEFORE ROOT EXPLOIT ATTACK AFTER ROOT EXPLOIT ATTACK

Root exploit

AttackerAndroid 

medical 

device

Blockchain

Patient

Android 
medical 
device

Blockchain

Patient

Fig. 3 Before and after root
exploit attack
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Drebin [53] implemented the static analysis approach to-
gether with the support vector machine (SVM). They used the
.xml files, permission, application programming interface
(API) calls, and network addresses as their features in detect-
ing malware. However, the research excluded strings or key-
words as features. Different from Drebin who uses an SVM
classifier only, the current study adopts multiple types of
boosts for the machine learning classifiers. While Drebin
targeted general malware types, we aimed to detect root ex-
ploit only.

The authors in [56, 59] also used static analysis to detect
malware. They used three types of features (API calls, permis-
sions, and commands) in their experiments. Five features in
their command including chmod, /sys/bin/sh, chown, pm in-
stall, and createSubprocess are similar to our study. The au-
thors used a total of 179 features (including API calls, com-
mands, and permissions) in their experiments but only the top
20 features were mentioned in their paper. This restriction
created some difficulties in comparing the command of fea-
tures used for machine learning classifiers.

Another type of machine learning, which is a clustering
technique with unlabeled data, is unsupervised machine learn-
ing. This technique is used in computer security applications,
such as malware detection and forensics [66]. Clustering in-
volves dividing a large dataset into similar and smaller
datasets. This method classifies a given object set through a
certain number of clusters (assume k clusters) so as to find the
k centroids (assigned for each cluster). This algorithm ran-
domly chooses the centroid from the set application; it collects
each application which belong to a given dataset, and it then
assigns a centroid to the nearest centroid. Sherlockdroid [60]
and Droidmat [61–63] applied the K-means clustering algo-
rithm in the static analysis of Android malware detection.

The similarity method in clustering [64] is also capable of
detecting malware. The similarity distance, based on real-
world compressors, is called normalized compression distance
(NCD). This method has been used in [67] to determine the
similarities among the malware families. The NCD is a
parameter-free data mining method which excludes features
from the dataset. Another method that is able to detect clone
applications (benign applications convert clone applications to
malware applications) is Dnadroid [65]. Clone applications
may imprint similar characteristics which can be used to ex-
pose malware infections.

The studies mentioned above use static analysis and vari-
ous features to detect malware. None of these studies except
Droidanalyzer [46] and Droidexec [47] had discussed root
exploit malware. This shows that the investigation of root
exploit in the Android platform is rarely conducted. Both
Droidanalyzer and Droidexec had adopted methods that were
different from the current study which uses machine learning
intelligence as the prediction method. Droidanalyzer had uti-
lized API calls and keywords as sets of features for detecting
malware while Droidexec [47] had adopted the graph con-
structor which uses opcode components, as features. Both
had listed the keywords as an example only. The current study
also uses similar keywords such as onlymount -o remount and
chmod but unlike the two studies, it lists the exact total of 31
lines of features that were used in the experiment.

To the best of our knowledge, at the time of writing this
paper, the ADB command is one of the novel types of features
which were unexplored in existing studies that had employed
static analysis with machine learning classifier. It is crucial to
have a list of optimized features to enhance the machine learn-
ing classification. Therefore, this study utilized the particle
swarm optimization (PSO) to select the best features.

Table 1 Examples of machine
learning classifiers in previous
studies

References Machine learning classifiers

[38, 50, 51] Bayes, Support Vector Machine (SVM), Decision Tree, and MP

[52, 53] Support Vector Machine (SVM)

[54] K-Nearest Neighbor, Decision Tree, Bayesian Network, and SVM

[42] K-Nearest Neighbor, ID3, Decision Tree, C4.5, and linear SVM

[44] Adaboost, NB, C4.5, Decision Tree, and SVM

[55] Decision Tree, NB, Bayesian Network, Part, boosted Bayesian network,
boosted Decision Tree, RF, and Voting Feature Interval (VFI)

[45] Simple Logistic, NB, Bayesian Network, Sequential Minimal Optimization,
Instance-based learning with parameter k, J48, Random Tree, and RF

[56] NB, Part, Ridor, Decision Tree, and Simple Logistic

[57] SVM, J48, and Bagging. Prism and Nearest Neighbor

[58] Adaboost

[59] RF, Random Tree, NB, Decision Tree, and Simple Logistic

[60–63] K-means

[64, 65] Normalized Compression Distance (NCD).
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Particle swarm optimization (PSO)

In accordance with selecting the most relevant features to
enhance the machine learning detection accuracy [68], this
study adopted the particle swarm optimization (PSO), a bio-
inspired based to optimize features in detecting root exploit. A
study [69] which recommended this method to detect malware
managed to unveil outstanding results.

PSO was inspired by the flocking and schooling examples
of birds or fish [70]. For instance, the PSO algorithm is based
on the birds rushing around the nourishment sources. Over
different cycles, it has gathered a variable of values that are
close to the member with a value that close to the target @
solution. It envisions a group of bird’s hovering over a zone
where they noticed a hidden source of food. The individual
that is closest to the food chirps the loudest and the other birds
will swing around towards him/her. When another circling
bird close to the target chirps, it becomes even louder.

In Fig. 4, the individual bird would endeavor to be nearer to
the direction of the flying bird that is close to the food’s coordi-
nate which is called gBest. The data information is represented as
a pattern or sequence, so the individual pieces of information are
being controlled until the example coordinates. In the bird’s case,
the general population most remote from the sustenance would
attempt to stay mindful of the others by flying faster than the
gBest bird. The value of gBest changes for every particle’s pBest
value when it gets closer to the objective than gBest. For every
emphasis of the algorithm, the gBest moves increasingly closer
and closer to the objective until one of the particles achieves the
objective. Once we have achieved the optimized features with
the PSO,we utilized it to classify and predict the root exploit with
the boosting method.

Boosting

The term, Boosting, alludes to meta-calculations @ a group of
algorithms in the machine learning to transform from

powerless to a solid classifier. The benefits of Boosting are
its quick execution in classification, makes lesser mistakes in
the ensemble method strategy and it is reasonable for any
stage regardless of whether the underlying model is effective
or ineffective [71]. This paper utilized four types of boost
comprising Adaboost, Logitboost, Multiadaboost, and
Realadaboost.

Adaboost

Adaboost is Adaptive Boosting and it was presented by
Schapire and Freund [61]. The boosting calculation of the
algorithm is created by learning the feeble calculation more
than once in a round arrangement. This helps to deliver more
precise and exact outcomes. Adaboost allocates each percep-
tion, xi an underlying weight esteem, wi ¼ 1

n ; where n is the
aggregate number of perceptions. For every incorrect percep-
tion, wi is expanded while for every correct prediction, wi is
diminished. Adaboost also prepares another powerless model
where perceptions with more prominent weight are given pri-
ority. It processes the calculation over and over again so as to
consider the heaviness of the frail classifier until the point
where the observations are splendidly anticipated.

Realadaboost

The Realadaboost calculation utilizes weighted likelihood
evaluations to refresh the added substance strategic model,
instead of the groupings. It fits an added substance strategic
relapse shown by the stagewise and estimated advancement of
J (F) = E[e]−yF(x)] [72]. For instance, F(x), is a present gauge; it
further locates an enhanced gauge of F(x) + f(x) by limiting
J(F(x) + f(x)) at every x. It refreshes the populace and consis-
tently applies it to the information by approximating contin-
gent desire through terminal-hub midpoints in trees. It uses
rough approximations to restrict desire, for example, decision
trees or other compelled models.

j

i

i

j

i

jg best

p best

p best

Fig. 4 Particle swarm
optimization (PSO)
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Logitboost

It is an update from Adaboost and it contains multiple class
capabilities [72]. The Logitboost algorithms (two classes, pop-
ulation version) are used to fit the additive logistic regression
model. It begins with weights wi ¼ 1

N i ¼ 1; 2; 3…:;N ; F xð Þ
¼ 0 and probability estimates xið Þ ¼ 1

2 . The populace calcu-
lation portrayed heremakes an instant interpretation of a usage
on information when E(.| x) is supplanted by a relapse tech-
nique, for example, relapse trees.While the part of the weights
are manufactured in the populace case, they are not in usage;
w(x) is steady when adapted on x, however the w(xi) in a
terminal hub of a tree, for example, rely on the present esteems
F(xi), and will be regularly inconsistent. It utilizes the Newton
calculation ventures to fit an added substance symmetric stra-
tegic model using the most extreme probability.

Multiboost

Multiboost is an accession to the AdaBoost method. It com-
bines with wagging, which is a part of bagging, to fit the bri-
dling of Adaboost’s high predisposition and differences, which
decreases through the lessening of wagging’s prevalent change.
It uses C4.5 as the base learning calculation to create choice
panels with less errors. It gives more favourable positions than
the Adaboost in suiting parallel executions. It is able to

accomplish a large portion of Adaboost’s incredible predispo-
sition decrease when combined with the greater part of the
packing’s unrivalled difference reduction. With this mix, the
Multiboost is proficient in preparing cases with various weights
so as to deliver an exact machine learning expectation [73].

In order to increase machine learning’s prediction in detect-
ing root exploit, these multiple types of boosting have to be
combined with the weak rules of algorithm. In the current
study, the Decision Stump is boosted from being a weak to a
strong classifier. Since the earlier section of this paper has
explained static analysis, the PSO and the boosting method,
Table 2 tabulates the differences of this study and previous
static analysis studies which use machine learning as an ap-
proach. Based on the comparison, it seems evident that the
current study serves as the only experiment that had scruti-
nized the novel ADB features by utilizing multiple types of
boosts to detect root exploit. The following methodology sec-
tion describes these novel features and boosts in detail.

Methodology

The methodology of this study comprises data collection, ap-
plication of reverse engineering, feature extraction, and ma-
chine learning classification. Figure 5 shows how malware
and benign applications were collected. This is followed by

Table 2 Previous studies comparison

References Type of 

features

Feature selection Classification 

method

Targeted 

malware

Malware 

dataset

[61] ƒ Information gain m g mal

[40] ƒ Mutual information m g mal

[55] ƒ Vector space m g

[76] ƒ Range algorithm and 

information gain

m g

[77] ƒ Accumulative value

[71] ƒ PSO

This paper A PSO

Legends:

g = general type 

of malware

ƒ = other 

features 

without ADB

= multiple types of boosts

(Adaboost, Realadaboost, 

Logitboost and Multiboost)

mal = 

malgenome exploit

= 

Comparative 

analysis

m =machine 

learning without 

boosts

A = additional 

features with 

ADB

= drebin = adaboost = botnet
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the reverse engineering application (to retrieve the codes) and
then the extracting and identifying of the relevant features. In
the final stage, we evaluated these features by using machine
learning classifiers. The aim is to take note of the accuracy of
the machine learning classification which utilizes the best fea-
tures in the Android-based healthcare mobile device. The idea
is to prevent any root exploit attacks and to protect the
blockchain environment from being compromised.

Data collection

A dataset is organized into certain types of data structure so as
to support the experiment which strives to identify malware.
For this purpose, the experiment needs two classes of applica-
tions: malware and benign.Malware is an abbreviated term for
Bmalicious software.^ Unethical application authors design
malware for harmful purposes, such as damaging the operating
system of the computer and gaining unauthorized access into
users’ private data without user consent. In contrast, benign
software refers to applications that legally provide services
and activities to fulfill an owner’s requests. When it is desirable
to obtain the private data, requests are sent to the user for
authentication. Hence, the initial phase of this methodology
involves gathering the malware and benign software.

As the experiment requires malware dataset, 1260 samples
of Malgenome were extracted and utilized. These samples
consist of 49 different malware families [76] and have been
used in many studies [12, 14, 16]. They include several

malware types, such as botnet and root exploit. This study
specifically focuses on root exploit malware hence; the exper-
iment considers all samples of the corresponding types in an
effort to obtain a total of 550 samples. Table 3 [77] lists the
samples’ family and descriptions.

The current study also utilizes benign applications collect-
ed from Google Play store [78]. The play store provides
Android applications of various categories, such as business,
books, comics, communication, education, entertainment,
family, lifestyle, medical, music, shopping, transport, tools,
and social interactions. These applications provide many types
of contents for users of the Android-powered phones, tablets,
and Android TV devices. Table 4 lists the benign samples
based on frequency. To achieve an equal condition and to
obtain unbiased content, 25 applications were unloaded into
each of the 34 categories.

VirusTotal scan was used to exclude the malware from the
benign applications [79]. This subsidiary of Google delivers a
free online service, which analyzes suspicious files, URLs,
and various malware types, including Android packages. A
total of 850 applications were downloaded and 300 applica-
tions were discarded based on the following reasons. First, we
only considered applications with a VirusTotal scan result of
0, suggesting that the application is malware-free. We also
excluded applications with scan results of more than 0 in the
benign dataset. Second, certain applications were placed in
multiple categories, for instance, some applications in books
and references were placed in the comic category.

Data 

collection 

Application 

reverse 

engineering

Feature 

extraction

Machine 

learning 

classification

Patient

Blockchain

Fig. 5 Methodology stages
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Accordingly, we excluded similar applications in any category
so as to avoid duplicates. Third, we set our total target

frequency of samples as 550 for each of the malware and
benign applications. We set this target to observe the result
by using a similar number of samples. The combined malware
and benign datasets, therefore, amounted to 1100 samples.

Application of reverse engineering

The general process in static analysis is reverse engineering,
which involves reversing the application compilation to attain
its programming codes. This was applied for the purpose of
analyzing the malware and benign applications. The Android
OS depends on the Android application package (APK) as a
file system. This operating system uses Java programming
language with the .apk file extension. Figure 6 illustrates the
reverse engineering procedure. This method reverses the files
to the Java programming codes through a tool called Jadx
[80]. It then selects the features from the codes. In detail, this
engineering tool is able to reverse the compiled .apk to .java
extension files (java code).

Given that many lines of code are involved, there is a need
to investigate the keywords used in the malware and benign
datasets. This is done via the Bgrep^ command and the output
is saved in the .csv file. Unix users normally use this command
to find and grab any desired keyword according to user de-
mand. This study uses the same command to find malicious
strings and keywords for the features. Figure 7 depicts a sam-
ple screenshot of the extracted information, showing a
malware application and its secure hash algorithm (SHA)
name, folder name, and java file. The string contains B/sys-
tem/bin/chmod^. The figure also shows five malware samples
that have one java file contains B/system/bin/chmod^ string.

After we grabbed the strings, it is essential to clean the data.
In this regard, certain strings were confused with one another,

Table 3 List of Android root exploit malware

Root exploit
family Frequency

Descriptions

Asroot 8 Asroot is similar to the word in Unix terminal, that is, login as root. Asroot is a standalone program that is capable of
executing without OS service and installation procedure.

BaseBridge 120 BaseBridge conducts a silent installation of additional applications without user approval.

DroidDream 16 Whenever the user clicks the application icon on the home screen or when an intent ACTION_MAIN is received by the
application, DroidDream directly hijacks the entry activity of the host application.

DroidDeluxe 1 Without querying the user to grant the root privileges, DroidDeluxe leverages known root exploits to bypass the built-in
security sandbox.

DroidCoupon 1 DroidCoupon obfuscates the file names that are associated with root exploits (e.g., impersonate as picture file with .png file
type).

DroidKungfu 1 34 DroidKungfu contains encrypted root exploit scripts and decrypts these scripts during runtime conditions. It remotely
downloads and updates a new version via a network.DroidKungfu 2 30

DroidKungfu 3 309

DroidKungfu 4 20

zHash 11 zHash contains exploid file names, which are exactly the same as the publicly available file names.

Total 550

Table 4 List of benign
applications Category Frequency

Books and Reference 15
Business 20
Comic 21
Communication 23
Education 11
Entertainment 16
Finance 24
Games (Action) 18
Games (Adventure) 12
Games (Arcade) 10
Games (Board) 14
Games (Card) 15
Games (Casino) 18
Games (Casual) 13
Games (Education) 15
Games (Family) 15
Games (Music) 20
Games (Puzzle) 11
Games (Racing) 11
Games (Role Playing Games) 23
Games (Simulation) 12
Games (Sports) 9
Games (Strategy) 16
Games (Word) 15
Health and Fitness 19
Live Wallpaper 17
Media and Video 18
Medical 17
Music and Audio 11
News and Magazine 23
Personalization 16
Photography 11
Productivity 17
Shopping 24
Total 550
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for example, the word cat, one of the Linux commands, may
be confused with other words, such as concatenate, locate, or
similar words which contain cat strings. Following the
cleaning of data, this experiment proceeded to identifying
and observing the full exact line of the codes. The cat com-
mand, which is specifically used for Linux platform, was
pulled out. Once the filter process data are completed, the next
step is to extract the features.

Feature extraction

The process of feature extraction involves searching for any
suspicious strings in all the samples (malware and benign).
This process of searching for the feature in the 1100 samples
involved a period of 1 month. We managed to discover only
31 features. This was accomplished based on the time con-
straint of the current study. The 31 features were derived from
the system command, directory path, and code-based features.
Their proportion amounted to 12, 10 and 9, respectively.

System command

The system command feature consists of a terminal, process,
and an ADB command. Some examples are adb_enabled and
cat. As an illustration, cat is a maintained command; cat is an
abbreviation for Bconcatenate^. This command is most fre-
quently used in the Unix-type OS. It allows users the access

to view files, create single or multiple files, concatenates files,
and redirects output via a terminal.

The ADB command is a terminal command line tool that
allows communication between the user and the Android em-
ulator to be connected to the Android-powered device [81].
This communication tool allows users to easily connect to
their ownmobile devices via desktop computers or notebooks.
As a result, malware practitioners misuse this tool to gain
malicious actions, particularly in gaining root privileges.
These system commands are unique elements because they
are unchanged and similar to other Linux-based OS com-
mands globally. The architecture of the Android depends on
the Linux layer, hence, this feature increases the reliability of
future detection methods, for a longer period of time. Figure 8
depicts the system command features’ existence. As an exam-
ple, cat appeared 21 times in the malware samples but only
once in the benign samples. The startservice –n appeared 359
times in the malware samples, but none in the benign samples.

Directory path

Android has its own OS directory path and its architecture is
similar to the Linux kernel. For instance, /system/bin/mount
and /proc., are paths that authorize an attempt to enter and gain
access to the kernel directories for the purpose of obtaining
root privileges without user consent. These sensitive directory
paths were included in the current experiment as features.

Android 
application

Reverse 
engineering

Files with .java 
extension 

Find 
strings

Cleaning 
data

Fig. 6 Reverse engineering
process

Fig. 7 Example screenshot of chmod directory feature
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Figure 9 shows one of the directory paths (/system/xbin/su)
that appeared 361 times in the malware samples but only 38
times in the benign samples.

Code-based features

The third type of feature is code-based features. Figure 10 illus-
trates the tool for executing the command, createSubprocess,
which appeared 83 times in the malware samples but not at all
in the benign samples. One other feature which did not appear
in the benign samples is Forked. This feature is the string in an
argument or a parameter, which occurred 76 times in the
malware samples. Other code-based features that are included
in static analysis encompass: setPtyWindowSize (code to exe-
cute process), three code execution processes (exec(),
exec(Bsh^), exec(Bsu^)), stderr (to detect standard error), stdin
(standard input), and stdout (standard output). After discussed
these three categories of features, the next section combines all
these categories for exploratory analysis.

Exploratory analysis

Exploratory analysis is an approach that analyzes a dataset and
summarizes its characteristics with visual methods. It is also
known as exploratory data analysis (EDA). This approach dis-
closes an analysis that is beyond formal modeling or any
hypothesis-testing task. It was originally proposed by John
Tukey [82] to encourage researchers and statisticians to show a
graph and to explore a dataset by highlighting the interesting
features.

Figure 11 depicts a graph that combines the malware and
benign samples, their occurrences, and categories. The figure
indicates that from 60 to 500, malware class elevates the area,
except for one feature (exec ()). This is because exec () has the
highest occurrences in both categories. However, malware
class only exists from 300 to 500 which indicates that root
exploit utilizes this feature the most.

From another perspective that looks at similar distance, the
directory path type showed four features which include two fea-
tures of system command and two features of code-based fea-

Fig. 8 System command
occurrences

Fig. 9 Directory path occurrences
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tures. The graph provided demonstrates that the directory path is
more significant than system command and code-based feature.
Once all the features are recognized, the next stage involve using
the bio-inspired PSO method for feature selection.

Feature selection

To optimize the efficiency of the root exploit detection, it is
important to select unique features because they play a crucial

part in the machine learning prediction. This process also
helps to remove noisy and irrelevant data, thereby, increasing
the accuracy of the results of the machine learning algorithms
[69, 83–85]. This study adopts the bio-inspired PSO to select
the unique features of which eight were selected out of 31.
Table 5 tabulates these features before and after the PSO
decision.

Table 5 shows that the PSO had selected eight relevant
features for detecting the unknown root exploit. It is worth

Fig. 11 All 31 features in categories

Fig. 10 Code-based occurrences
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noting that at the time of writing, two of the eight features,
adb_enabled and startservice –n are novel elements, undiscov-
ered in previous studies. They are the android debug bridge
(ADB) type of features. Once this stage is completed, the step
that follows is the machine learning classification phase.

Machine learning classification

In this phase, the steps involved building the machine
learning predictive model. In constructing the machine
learning model, the classifiers were run in the Waikato
Environment for Knowledge Analysis (Weka) [86]. The
initial step of building the model was to prepare the
Comma Separated Values (.csv) file with the static features
(0 and 1). This file contains nine columns and 1101 rows.
The nine columns consist of eight features with one class
column at the end (M for malware and B for benign). The
1101 rows represent the samples used in this experiment
(1100 samples) with an addition of one feature header
name, hence, the total number of rows equaled to 1101.
Given that our experiment uses static analysis, each sample
takes the number of 1 or 0 only, where 1 is if the feature
exists @ occur and 0 if the feature is non-existence @ non-
occur.

Following the setting of the total number of features, the
.csv files were converted to Attribute-Relation File Format
(.arff) file using Weka. This is because the ARFF is an
ASCII text file format, which was developed specifically for
Weka. The .arff file loads faster when compared with the .csv

file loads [87]. As mentioned earlier, boosting (adaboost,
logitboost, multiboost and realadaboost) was applied as a
method for the machine learning classification. Figure 12
shows the multiple types of boost used to convert the
Decision Stump classifier into a strong learner that enhances
the results of detecting root exploit.

We conduct this root exploit detection experiment on a
desktop computer that was equipped with Intel Core i7-4770
CPU of 3.40 GHz, 16 GB of RAM, andMicrosoft Windows 7
Professional as an operating system. The following section
presents the evaluation results obtained from the experiment.

Evaluation

Evaluation involves two benchmarks: (1) training and testing;
and (2) cross validation. In the first benchmark, the evaluation
utilized 70% of the samples for training the machine learning
algorithm. To detect unknown root exploit for future needs, it
is crucial to use the samples that were excluded from the
training. In this regard, we utilized the remainder 30% of the
samples for testing the detection.

Subsequent to testing and training is cross validation. In
this process, we applied 10-fold cross validation, a technique
that randomly selects parts of the data for training and the
remainder for testing. These actions (training and testing)
were repeated 10 times so as to achieve significant results.
In particular, the datasets were randomly split into ten subsets
of equal sizes and this was repeated ten times. In each repeti-
tion, nine subsets were combined to form the training set for
constructing the predictive model, while the remainder of one
subset, was used as the test set. This test set was excluded from
the training set as they were used to detect unknown root
exploit malware in this study.

In order to evaluate the root exploit detection with eight
bio-inspired PSO features, we assessed the performance ma-
trix of the machine learning classifiers. Table 6 lists each eval-
uation in terms of accuracy, True Positive Rate (TPR), recall,
precision, f-measure and False Positive Rate (FPR), ROC,
MCC, and PRC. It further lists the benchmark performance
evaluation and its descriptions. The results in both training and
testing, and cross validation benchmark are according to these
evaluation measures.

Training and testing

Table 7 projects that Logitboost is the best boost for the eval-
uation conducted in this study. It lists the best results which are
highlighted in bold. Here, Logitboost serves as the best boost
for the Decision Stump machine learning classifier; it jotted
the best accuracy, f-measure, MCC, ROC, and PRC. (Fig. 13
depicts the multiple results of all the boost used to illustrate a
clearer comparison).

Table 5 Before and after PSO features selection

Before PSO After PSO

.exec() chown .exec(Bsu^)

.exec(Bsu^) cp –rp /system/bin/chmod

.exec(sh) createSubprocess /system/bin/secbin

/data/local/tmp/rootshell echo adb_enabled

/proc Forked cat

/system/bin/chmod kill chmod

/system/bin/mount mount -o remount setPtyWindowSize

/system/bin/profile pm install startservice -n

/system/bin/rm pm uninstall

/system/bin/secbin Ps

/system/bin/sh setPtyWindowSize

/system/bin/su startservice –n

/system/xbin/su Stderr

adb_enabled Stdin

cat Stdout

chmod
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Figure 13 shows the advantage of using each boost for each
evaluation. Although Logitboost was the best in several as-
pects, it also gained the worst FPR mark, among the other
boosts (0.006), with the highest record of mistakes in classi-
fying the wrong root exploit. The next best boost in line is
Adaboost which jotted good values in all aspects including the
FPR. The section below uncovers more discoveries based on
the cross validation evaluation benchmark.

Cross validation

The cross validation results are arranged similarly to the pre-
vious section, where Table 8 highlights the best value in bold
and Fig. 14 depicts the overall results. It was observed that
Logitboost performed well in accuracy (90%), f-measure
(89.3%), MCC (0.812), ROC (0.905), and PRC (0.937).

In contrast, multiadaboost gained the best value in FPR
(0.4), classifying lesser mistakes among other boosts. The
range difference in FPR between them is significantly large
as noted in adaboost (1.3), logitboost (2.2), and realadaboost

(3.3). Following this, we compare the best results gathered
from this study with the results of past studies.

Comparison

The best results gathered from this study were compared with
the results of past research using static analysis. The purpose is
to investigate the features’ performance in distinguishing
malware and benign samples as well as to obtain the capability
of the machine learning classifiers. The identified previous
studies were used for comparison based on two reasons. One
is that they too had adopted Malgenome as their malware
dataset (similar to our dataset). Second is that these selected
studies had published in reputable journals which is reliable
for research comparison. Table 9 presents the comparison in
terms of accuracy and TPR results.

In this study, the static analysis offers results that contained
the accuracy and TPR of Logitboost (eight features) which
was noted to be of the highest value among Bayesian and
Naïve Bayes (both ten features). This outcome shows that

PSO Boosting Classification Detection
Fig. 12 Machine learning classification

Table 6 List of evaluation measures

Evaluation
measure

Descriptions Equation

Higher value indicates better
performance

Accuracy Correctly predicts instances as either malware or
benign

Accuracy ¼ TPþTN
TPþFPþTNþFN

True Positive Rate
(TPR)

Correctly predicts instances as malware TPR = TP/(TP +FN)

Recall (similar to
TPR)

Measures the algorithm performance in identifying
malicious samples

Recall = TP/(TP + FN)

Precision Measures whether the prediction is true or otherwise Precision = TP/(TP + FP)

F-measure Measures the weighted harmonic mean of precision
and recall

F−measure ¼ 2�precision�recall
precisionþrecall

MCC The value closer to 1 indicates good classifier
performance.

Takes true and false negative and positive
into account

ROC Tradeoff between the TPR and FPR
values

PRC Measures the precision and sensitivity
value.

Lower value indicates better
performance

False Positive Rate
(FPR)

Incorrectly predicts the sample as malware, when it is
actually benign

FPR = FP/(FP + TN)
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fewer features are capable of increasing the efficiency of ma-
chine learning prediction in detecting unknown malware.
Moreover, the PSO-inspired method is suitable in selecting
the best features in minimal amounts to assist the machine
learning prediction.

However, in the TPR comparison, the differences between
Logitboost (87%) and others (85% and 85.4%) were small,

about 2% in difference. These results are different from pre-
vious studies because of the dataset samples. As mentioned
earlier, the current study only utilized a malware set of 550 as
compared to other studies in the table, which utilized a
malware set of 1000 and 2925. In this regard, future studies
may consider finding more root exploit samples to improve
the rate of detection. However, the experiments in [38, 59]

Table 7 Classifier result in training and testing

Evaluation measure Adaboost Logitboost Multiadaboost Realadaboost
Percent (%)

Higher value indicates better performance Accuracy 91 93 82 92

True Positive Rate (TPR) 81.4 85.7 63.4 87

Recall 81.4 85.7 63.4 87

Precision 99.6 99.3 99.6 96.6

F-measure 89.7 92 77.6 91.5

0.001 until 1

MCC 0.831 0.862 0.685 0.846

ROC 0.907 0.932 0.842 0.932

PRC 0.905 0.932 0.843 0.931

Lower value indicates better performance (0.001 until 1) FPR 0.001 0.006 0.001 0.03

Fig. 13 Visual results of training and testing

112 Page 16 of 23 J Med Syst (2018) 42: 112



focused mostly on general malware types, whereas, in this
study, we focused specifically on root exploit.

In a simulated environment, our study was capable of de-
tecting root exploit and this would further protect the mobile
device from being utilized in blockchain. The accuracy rate
was 93% and the TPR was 87%. In order to test the effective-
ness of a practical environment, we developed a system called
the Root exploit detection system (RODS).

Root exploit detection system (RODS)

In the previous section, it was mentioned that Logitboost had
recorded the best detection rate in identifying zero-day root
exploit in the simulated evaluation stage. For this reason, in
the interest to test the bio-inspired features, we designed a
system called as RODS with Logitboost, as displayed in
Fig. 15.

Table 8 Classifier results in cross validation

Evaluation measure Adaboost Logitboost Multiadaboost Realadaboost
Percent (%)

Higher value indicates better performance Accuracy 90 90 83 90
TPR 80.7 82.4 66.2 82.7
Recall 80.7 82.4 66.2 82.7
Precision 98.4 97.4 99.5 96.2
F-measure 88.7 89.3 79.5 89
0.001 until 1
MCC 0.808 0.812 0.698 0.802
ROC 0.903 0.905 0.891 0.903
PRC 0.933 0.937 0.922 0.936

Lower value indicates better performance FPR 1.3 2.2 0.4 3.3

Fig. 14 Visual results for cross validation
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We constructed the framework of the system on a PC
that was outfitted with Intel Core i7-4770 CPU of
3.40 GHz, 16 GB of RAM, MySQL database and
Microsoft Windows 7 proficient as a working framework
with Java as the principle programming language. In mo-
bile device, the user may use Web browser such as Opera
or Chrome to use this system. The RODS was developed
based on three vital stages – application reverse, feature
@ attribute extraction and prediction of the root exploit.
At the initial stage, the RODS will analyse the Android
application (.apk extension) by assigning a unique id
along with the name of the application file. This is to keep
the file from being duplicated with the same application in
the database. Thereafter, the system inspects the whole
code that ends with Java augmentation (.java). This step
proceeds with the procedure by searching in all the files
that were incorporated in the nested folders in each appli-
cation. This is to extract our proposed PSO-inspired root
exploit features as parameters (exec(Bsu^), /system/bin/
chmod, /system/bin/secbin, adb_enabled, cat, chmod,
setPtyWindowSize, and startservice -n). Finally, the sys-
tem utilizes features for the Logitboost to predict the class
of the inspected application as malware or benign.
Figure 16 demonstrates the upload zone stated on the
main page of the site.

System results

To assess the effectiveness of our prediction root exploit
system, it is essential to utilize a distinctive dataset which
are different from those of the simulation stage. As this
study had utilized Malgenome for the simulation, this
section applied a different dataset which is the root exploit
in Drebin [88]. It means that these samples were excluded
from our machine learning detection model. This is im-
portant to detect unknown root exploit. Table 10 lists the
root exploit in detail. These samples include the
Droidrooter and Rooter families with each family
representing three applications. Meanwhile, Fig. 17 dis-
plays the prediction results (i.e. M indicates as malware
and B stands as benign).

Once the system finishes processing, our system is able to
predict all the five samples as root exploit, as shown in Fig. 17.
The figure shows the red line which indicates the sha256 of
each root exploit. Based on this, it proves that our system is
capable of predicting root exploit that had been undiscovered
before as the Drebin samples were different from the evalua-
tion part.

Based on previous evaluations, (fourth section) the ef-
fectiveness of our proposed bio-inspired PSO features and
the boost machine learning classifier used in the

Table 9 Result comparison

Type of analysis References Classifiers Feature selection Result (%) Dataset Number of features

Accuracy TPR Benign Malware

Static Ours Logitboost PSO 93 87 550 550 Eight

[38] Bayesian Mutual information 89.7 85 1000 1000 Ten
[59] Naïve bayes Information gain 88.4 85.4 3938 2925

Bio-inspired PSO 

features 

Prediction stage 

with Logitboost

ResultCloud

SQL Server

Storage database

Reverse engineer

Application reverse Feature extraction Prediction

Fig. 15 Root exploit system architecture
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simulation stage during training and testing, as well as
cross validation, is evident. Furthermore, the RODS is
also able to detect root exploit in the Drebin dataset on
a practical basis.

Therefore, the prediction noted in this section proves that
the PSO proposed features with a unique ADB type, and the
boost classifier, are capable of predicting unknown root ex-
ploit in Android’s medical device. This would protect the de-
vice from root exploit attacks, hence, making it safe for users
in the blockchain environment.

Discussion

As has been informed, this study investigated the root exploit
features by utilizing machine learning classifiers with multiple
types of boost to detect unknown root exploit. This study also
developed the RODS to evaluate the proposed method
practically.

System detection for the blockchain

Figure 18 shows the system being installed in the medical
device based on the Android operating system. Clearly,
the proposed system would hinder the attackers from
deploying root exploit and hacking into the medical de-
vice. As a result, the medical field and their professionals
may utilize the medical data in the blockchain system
with assurance because it is safe. One example drawn
from this study showed that a patient who utilizes the
Android-based mobile device to monitor his/her heartbeat
and send the heartbeat record to the blockchain. By
installing the RODS with our proposed bio-inspired fea-
tures combined with boost machine classifiers, the patient
is able to avoid from the root exploit attacks. Conversely,
if the mobile device is unable to avoid an attack by root
exploit, the attacker may gain control of the Android op-
erating system and install multiple types of malware such
as botnet, Trojan, key logger and spyware. Consequently,
the attacker would be able to steal all the passwords in the
mobile device and start observing the data in the
blockchain for personal gains.

However, in the interest to achieve better performance
in detecting root exploit, we need to consider certain im-
perative issues. The first issue is the difference in method:
static and dynamic analysis. As this study employed static
analysis (inspecting the malware code) as a method, it had
also omitted the dynamic behaviour observation (execute
the malware and observe its behaviour). In particular, stat-
ic analysis is unable to detect benign application class that
receives updates and further evolves to root exploit form.
To avoid this situation, we plan to retrieve the code of the
application in two circumstances: (1) once after the appli-
cation update, and (2) to capture the code at least once a
month. The scanning process consumes a minimal amount
of time prior to static analysis thereby, accelerating the
process rapidly. Root exploit is a type of malware that
alters the kernel of the operating system to further gain
control of all levels of the system including fake behavior

Fig. 16 First page of the system

Table 10 Root exploit information in Drebin

Sha256 Size (kilobyte) Family

1f5a97fb0cbaa2e10e1f080571ae081d9d85fc95519ef59a85b83ca366b10df2 13 Rooter

226dc739a76faf5127a245b9cc759d4db3086710d4e71594c5578ae642774f5c 950 DroidRooter

94112b350d0feceff0a788fb042706cb623a55b559ab4697cb10ca6200ea7714 862 DroidRooter

94ea44688feb558e2786e52fbfa46d90984e40c0980e28035fd2311d5f17f8e3 13.7 Rooter

add10b0368753ec38de0dca15550d824ac141f0c86f2f123f30551bd82e82415 13 Rooter

edf568790907e970da583855e9b923b2f897fbeb4faf41b87436b23e262b821a 953 DroidRooter
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and hiding its presence from dynamic analysis methods.
Therefore, static analysis is encouraged to capture the ap-
plication code before root exploit takes over the OS.

The second issue is that static analysis, on its own, is unable
to detect all types of malware thoroughly [89] while dynamic
analysis is able to evade obfuscation [90]. Thus, it is advisable
to conduct static with dynamic analysis together so as to ef-
fectively detect malware. This is because each aproach has its
own strengths and weaknesses. Combining both types of anal-
ysis increases the efficiency of malware countermeasures.

Conclusion and future work

Root exploit is one of the most dangerous malware types;
it attacks victim’s mobile device to gain root privileges.

Once it gains root privileges, the attackers are capable of
running malicious process stealthily, bypassing permis-
sion security, installing any possible types of malware to
a victim’s mobile device and then stealing the private keys
to compromise the blockchain-based medical data man-
agement (BMDM) transactions. As a result of this, it is
important to detect unknown root exploit malware in
Android-based devices. In this study, we presented a
bio-inspired method with machine learning to detect root
exploit. We also investigated three types of features,
namely system command, directory path, and code-based
features, along with the novel android debug bridge
(ADB). This study adopted the PSO algorithm to select
the best strings and we used four types of boost (adaboost,
realadaboost, logitboost, and multiboost) for the machine
learning classifiers. The best accuracy of the experimental
result of this study exceeded 92% in detecting unknown
root exploit in the simulation. This study also developed a
system called the RODS which had successfully detected
all the samples of root exploit in another dataset, Drebin.

In the data collection phase, this study used a total of
550 malware and 550 benign samples. Thus, future work
may include more samples in the dataset to expand the
accuracy of static detection. For malware samples,
Androzoo [91] may be considered as one of the interests
for future research or other samples obtained from any
antivirus companies.

The future study also possibly adds more types of fea-
tures. This may increase the accuracy and robustness of the
results [92–94]. For instance, the novel features in ADB
commands in this paper are available for addition; and
would enhance the future research in detecting root exploit.
Finally, implementing the proposed feature set (i.e.,

Fig. 17 Second page displayed the results
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Android medical device

ROOT EXPLOIT 
DETECTION 

SYSTEM
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system command, directory path, and code-based features)
may be beneficial in detecting malware variants, such as
botnets, worms, and Trojans.

Acknowledgements This work was supported by Universiti Malaysia
Pahang, under the Grant Faculty of Computer Systems and Software
Engineering (FSK1000), RDU180360.

References

1. Zapata, B. C., Fernández-alemán, J. L., Toval, A., and Idri, A.,
Reusable software usability specifications for mHealth applica-
tions. J. Med. Syst. 42:1–9, 2018.

2. Imtiaz, S. A., Krishnaiah, S., Yadav, S. K., Bharath, B., and
Ramani, R. V., Benefits of an android based tablet application in
primary screening for eye diseases in a rural population, India.
J. Med. Syst. 41(4):49, 2017.

3. Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M.,
Muhammad, K., and Sangaiah, A. K., A hybrid model of internet
of things and cloud computing to manage big data in health services
applications. Futur. Gener. Comput. Syst., 2018.

4. Greene, T., Blockchain can help secure medical devices, improve
patient privacy, 2017. [Online]. Available: https://www.
networkworld.com/article/3184614/security/blockchain-can-help-
secure-medical-devices-improve-patient-privacy.html. [Accessed:
06-Feb-2018].

5. Puthal, D., Malik, N., Mohanty, S. P., Kougianos, E., and Yang, C.,
The blockchain as a decentralized security framework. IEEE
Consumer Electronics Magazine 7(2):18–21, 2018.

6. De, N., Hacks, scams and attacks: Blockchain’s 2017 disasters,
2018. [Online]. Available: https://www.coindesk.com/hacks-
scams-attacks-blockchains-biggest-2017-disasters/. [Accessed: 01-
Apr-2018].

7. Ma, Y., and Sharbaf, M. S., Investigation of static and dynamic
android anti-virus strategies. In: 10th International Conference on
Information Technology: New Generations (ITNG), Las Vegas,
Nevada, 2013, 398–403.

8. Schmidt, A. et al., Smartphone malware evolution revisited: an-
droid next target? In: IEEE Conference Publications, Montreal,
Quebec, Canada, 2009, 1–7.

9. Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V., and Liviu, I.,
Rootkits on smart phones: attacks, implications and opportunities.
In: HotMobile ‘10 Proceedings of the Eleventh Workshop on
Mobile Computing Systems & Applications, Annapolis, Maryland,
2010, 49–54.

10. Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wagner, D., A
survey of mobile malware in the wild. In: Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), Illinois, USA, 2011, 3–14.

11. Khan, S., Gani, A., Wahab, A. W. A., and Singh, P. K., Feature
selection of denial-of-service attacks using entropy and granular
computing. Arab. J. Sci. Eng., 2017.

12. Tahaei, H., Salleh, R., Razak, M. F. A., Ko, K., and Anuar, N. B., Cost
effective network flow measurement for software defined networks: A
distributed controller scenario. In: IEEE Access, 2018, 1–17.

13. Narudin, F. A., Feizollah, A., Anuar, N. B., and Gani, A.,
Evaluation of machine learning classifiers for mobile malware de-
tection. Soft. Comput. 20(1):343–357, 2014.

14. Afifi, F., Anuar, N. B., Shamshirband, S., and Choo, K.-K. R.,
DyHAP: Dynamic hybridANFIS-PSO approach for predictingmo-
bile malware. PLoS One 11(9):1–21, 2016.

15. Lee, J., Lee, S., andHeejo, L., Screening smartphone applications using
malware family signatures. Comput. Secur. 52:234–249, 2015.

16. Apvrille, A., and Strazzere, T., Reducing the window of opportunity
for android malware Gotta catch ‘em all. J. Comput. Virol. 8(1):61–
71, 2012.

17. Feizollah, A., Anuar, N. B., Salleh, R., and Wahab, A. W. A., A
review on feature selection in mobile malware detection. Digit.
Investig. 13:22–37, 2015.

18. Alhendawi, K. M., Predicting the effectiveness of web information
systems using neural networks modeling: framework & empirical
testing. International Journal of Software Engineering and
Computer Systems (IJSECS) 4(1):61–74, 2018.

19. Pirbhulal, S., Zhang, H.,Wu,W.,Mukhopadhyay, S. C., and Zhang,
Y.-T., Heart-beats based biometric random binary sequences gener-
ation to secure wireless body sensor networks. IEEE Trans.
Biomed. Eng.:1–9, 2018.

20. Pirbhulal, S., Zhang, H., Mukhopadhyay, S., Li, C., Wang, Y., Li,
G., Wu, W., and Zhang, Y. T., An efficient biometric-based algo-
rithm using heart rate variability for securing body sensor networks.
Sensors 15(7):15067–15089, 2015.

21. Pirbhulal, S., Zhang, H., Wu, W., and Zhang, Y. T., A novel bio-
metric algorithm to body sensor networks. In:Wearable Electronics
Sensors, Smart Sensors, Measurement and Instrumentation. Vol.
15, 2015, 57–79.

22. Pirbhulal, S., Zhang, H., Wu, W., and Zhang, Y.-T., A comparative
study of fuzzy vault based security methods for wireless body sen-
sor networks. In: Proceedings of the International Conference on
Sensing Technology (ICST), Nanjing, China, 2016, 1–6.

23. Pirbhulal, S., Zhang, H., and Wu, W., HRV-based biometric
privacy-preserving and security mechanism for wireless body sen-
sor networks. In: Wearable Sensors Applications, Design and
Implementation, 2017, 12-1-27.

24. Ullah, F., Edwards, M., Ramdhany, R., Chitchyan, R., Babar, M.
A., and Rashid, A., Data exfiltration: A review of external attack
vectors and countermeasures. J. Netw. Comput. Appl. 101:18–54,
2017 2018.

25. Tian, Z.,Wang, B., Zhou, Z., and Zhang, H., The research on rootkit
for information system classified protection. In: 2011 International
Conference on Computer Science and Service System (CSSS),
2011, 890–893.

26. Anuar, N. B., Papadaki, M., Furnell, S., and Clarke, N., An inves-
tigation and survey of response options for intrusion response sys-
tems (IRSs). In:Proceedings of the 9th Annual Information Security
South Africa Conference, 2010, 1–8.

27. Razak, M. F. A., Anuar, N. B., Salleh, R., and Firdaus, A., The rise
of ‘malware’: Bibliometric analysis of malware study. J. Netw.
Comput. Appl. 75:58–76, 2016.

28. Zin, S. M., Anuar, N. B., Kiah, M. L. M., and Pathan, A.-S. K.,
Routing protocol design for secure WSN: Review and open re-
search issues. J. Netw. Comput. Appl. 41:517–530, 2014.

29. Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. R.,
and Shamshirband, S., A study of machine learning classifiers for
anomaly-based mobile botnet detection. Malays. J. Comput. Sci.
26(4):251–265, 2013.

30. Yaakob, N., Khalil, I., Kumarage, H., Atiquzzaman, M., and Tari,
Z., By-passing infected areas in wireless sensor networks using
BPR. IEEE Trans. Comput. 64(6):1594–1606, 2015.

31. Shabtai, A., Mimran, D., Rokach, L., Shapira, B., and Elovici, Y.,
Mobile malware detection through analysis of deviations in appli-
cation network behavior. Comput. Secur. 43:1–18, 2014.

J Med Syst (2018) 42: 112 Page 21 of 23 112

https://www.networkworld.com/article/3184614/security/blockchain-can-help-secure-medical-devices-improve-patient-privacy.html
https://www.networkworld.com/article/3184614/security/blockchain-can-help-secure-medical-devices-improve-patient-privacy.html
https://www.networkworld.com/article/3184614/security/blockchain-can-help-secure-medical-devices-improve-patient-privacy.html


32. Lin, Y., Lai, Y., Chen, C., and Tsai, H., Identifying android mali-
cious repackaged applications by thread-grained system call se-
quences. Comput. Secur. 39:340–350, 2013.

33. Feizollah, A., Shamshirband, S., Anuar, N. B., Salleh, R., and Kiah,
M. L. M., Anomaly detection using cooperative fuzzy logic con-
troller. In: 16th FIRA RoboWorld Congress (FIRA), Kuala Lumpur,
Malaysia, 2013, 220–231.

34. Xie, L., Zhang, X., Seifert, J.-P., and Zhu, S., pBMDS : A behavior-
basedmalware detection system for cellphone devices. In: 3rd ACM
Conference on Wireless Network Security Location: Stevens
Institute Technology, Hoboken, NJ, 2010, 37–48.

35. Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S., Crowdroid:
behavior-based malware detection system for android. In:
Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, Chicago, Illinois, USA, 2011,
15–26.

36. Feizollah, A., Anuar, N. B., Salleh, R., and Amalina, F.,
Comparative study of K-means and mini batch K-means clustering
algorithms in android malware detection using network traffic anal-
ysis. In: International Symposium on Biometrics and Security
Technologies (ISBAST), 2014.

37. Allahham, A. A., and Rahman, M. A., A smart monitoring system
for campus using Zigbee wireless sensor networks. International
Journal of Software Engineering and Computer Systems (IJSECS)
4(1):1–14, 2018.

38. Yerima, S. Y., Sezer, S., and McWilliams, G., Analysis of Bayesian
classification-based approaches for android malware detection. IET
Inf. Secur. 8(1):25–36, 2014.

39. Chess, B., and McGraw, G., Static analysis for security. IEEE
Security & Privacy Magazine 2(6):76–79, 2004.

40. Sharif, M., Yegneswaran, V., Saidi, H., Porras, P., and Lee, W.,
Eureka: a framework for enabling static malware analysis. In:
Lecture Notes in Computer Science. Vol. 5283, 2008, 481–500.

41. Chang, T.-K., and Hwang, G.-H., The design and implementation
of an application program interface for securing XML documents.
J. Syst. Softw. 80(8):1362–1374, 2007.

42. Aafer, Y., Du, W., and Yin, H., DroidAPIMiner: mining API-level
features for robust malware detection in android. In: Security and
Privacy in Communication Networks, 2013, 86–103.

43. Talha, K. A., Alper, D. I., and Aydin, C., APK auditor: Permission-
based android malware detection system. Digit. Investig. 13:1–14,
2015.

44. Huang, C.-Y., Tsai, Y.-T., and Hsu, C.-H., Performance evaluation
on permission-based detection for android malware. In:
Proceedings of the International Computer Symposium ICS 2012
Held at Hualien, Taiwan. Vol. 21, 2012, 111–120.

45. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G.,
and Alvarez, G., PUMA: permission usage to detect malware in
android. In: Advances in Intelligent Systems and Computing,
2013, 289–298.

46. Seo, S.-H., Gupta, A., Mohamed Sallam, A., Bertino, E., and Yim,
K., Detecting mobile malware threats to homeland security through
static analysis. J. Netw. Comput. Appl. 38:43–53, 2014.

47. Wei, T., Lee, H., Tyan, H.-R., Liao, H. M., Jeng, A. B., and Wang,
J., DroidExec: root exploit malware recognition against wide vari-
ability via folding redundant. In: 17th International Conference
Advanced Communication Technology (ICACT), PyeongChang,
Korea, 2015, 161–169.

48. Anuar, N. B., Sallehudin, H., Gani, A., and Zakari, O., Identifying false
alarm for network intrusion detection system using hybrid data mining
and decision tree.Malays. J. Comput. Sci. 21(2):101–115, 2008.

49. Kotsiantis, S. B., Supervised machine learning: A review of classi-
fication techniques. Informatica 31:249–268, 2007.

50. Yerima, S. Y., Sezer, S., McWilliams, G., and Muttik, I., A new
android malware detection approach using Bayesian classification.
In: IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), Barcelona, Spain, 2013,
121–128.

51. Peng, H. et al., Using probabilistic generative models for ranking
risks of android apps. In: ACM Conference on Computer and
Communications Security, (CCS), Raleigh, North Carolina, USA,
2012, 241–252.

52. Sarma, B., Li, N., Gates, C., Potharaju, R., Nita-rotaru, C., and
Molloy, I., Android permissions: a perspective combining risks
and benefits. In: SACMAT ‘12 Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies, New
Jersey, USA, 2012, 13–22.

53. Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., and Rieck, K.,
DREBIN: effective and explainable detection of android malware
in your pocket. In: 21th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2014, 1–15.

54. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J.,
Bringas, P. G., and Álvarez Marañón, G., Mama: Manifest analysis
for malware detection in android. Cybern. Syst. 44(6–7):469–488,
2013.

55. Shabtai, A., Fledel, Y., and Elovici, Y., Automated static code anal-
ysis for classifying android applications using machine learning. In:
Ninth International Conference on Computational Intelligence and
Security, Nanning, Guangxi Zhuang Autonomous Region China,
2010, 329–333.

56. Yerima, S. Y., Sezer, S., and Muttik, I., Android malware detection
using parallel machine learning classifiers. In: Eight International
Conference on Next Generation Mobile Apps, Services and
Technologies, (NGMAST), St. Anthony’s College of the University
of Oxford, UK, 2014, 37–42.

57. Peiravian, N., and Zhu, X., Machine learning for android malware
detection using permission and API calls. In: International
Conference on Tools with Artificial Intelligence (ICTAI),
Herndon, VA, USA, 2013, 300–305.

58. Sheen, S., Anitha, R., and Natarajan, V., Android based malware
detection using a multifeature collaborative decision fusion ap-
proach. Neurocomputing 151:905–912, 2015.

59. Yerima, S. Y., Sezer, S., and Muttik, I., High accuracy android
malware detection using ensemble learning. IET Inf. Secur. 9(6):
313–320, 2015.

60. Apvrille, L., and Apvrille, A., Pre-filtering mobile malware with
heuristic techniques. In: The 2nd International Symposium on
Research in Grey-Hat Hacking (GreHack), Grenoble, France,
2013, 1–16.

61. Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu, K.-P.,
DroidMat: android malware detection through manifest and API
calls tracing. In: Seventh Asia Joint Conference on Information
Security, Tokyo, Japan, 2012, 62–69.

62. Samra, A. A. A., Kangbin, Y., and Ghanem, O. A., Analysis of
clustering technique in android malware detection. In: Seventh
International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), Taichung, Taiwan,
2013, 729–733.

63. Aung, Z., and Zaw, W., Permission-based android malware detec-
tion. International Journal of Scientific & Technology Research
2(3):228–234, 2013.

64. Cilibrasi, R., and Vitányi, P. M. B., Clustering by compression.
IEEE Trans. Inf. Theory 51(4):1523–1545, 2005.

65. Crussell, J., Gibler, C., and Chen, H., Attack of the clones: detecting
cloned applications on android markets. In: Computer Security –

112 Page 22 of 23 J Med Syst (2018) 42: 112



ESORICS 2012. Lecture Notes in Computer Science. Vol. 7459,
2012, 37–54.

66. Beverly, R., Garfinkel, S., and Cardwell, G., Forensic carving of
network packets and associated data structures. Digit. Investig. 8:
S78–S89, 2011.

67. Paturi, A., Cherukuri, M., Donahue, J., and Mukkamala, S., Mobile
malware visual analytics and similarities of attack toolkits. In:
Collaboration Technologies and Systems (CTS), San Diego, CA,
USA, 2013, 149–154.

68. Spolaôr, N., Cherman, E. A., Monard, M. C., and Lee, H. D., A
comparison of multi-label feature selection methods using the prob-
lem transformation approach. Electron. Notes Theor. Comput. Sci.
292:135–151, 2013.

69. Razak, M. F. A., Anuar, N. B., Othman, F., Firdaus, A., Afifi, F.,
and Salleh, R., Bio-inspired for features optimization and malware
detection. Arab. J. Sci. Eng., 2017.

70. Kennedy, J., and Eberhart, R., Particle swarm optimization. In:
IEEE International Conference on Neural Network, Perth, WA,
Australia. Vol. 4, 1995, 1942–1948.

71. Ng, W. W. Y., Zhou, X., Tian, X., Wang, X., and Yeung, D. S.,
Bagging-boosting-based semi-supervised multi-hashing with
query-adaptive re-ranking. Neurocomputing 275:916–923,
2017.

72. Friedman, J., Hastie, T., and Tibshirani, R., Additive logistic regres-
sion. Ann. Stat. 28(2):337–374, 2000.

73. Webb, G. I., MultiBoosting: A technique for combining boosting
and wagging. Mach. Learn. 40(2):159–196, 2000.

74. Firdaus, A., Anuar, N. B., Razak, M. F. A., and Sangaiah, A. K.,
Bio-inspired computational paradigm for feature investigation and
malware detection: Interactive analytics. Multimedia Tools and
Applications 76(280):1–37, 2017.

75. Karim, A., Salleh, R., Khan, M. K., Siddiqa, A., and Choo, K.-K.
R., On the analysis and detection of mobile botnet. Journal of
Universal Computer Science 22(4):567–588, 2016.

76. Zhou, Y., and Jiang, X., Android malware genome project, 2012.
[Online]. Available: http://www.malgenomeproject.org/.

77. Zhou, Y., and Jiang, X., Dissecting android malware: characteriza-
tion and evolution. In: IEEE Symposium on Security and Privacy,
San Francisco, CA 2012, no. 4, 95–109.

78. Google, Google play store, 2014. [Online]. Available: https://play.
google.com/store?hl=en. [Accessed: 01-Jan-2014].

79. VirusTotal, VirusTotal, 2016. [Online]. Available: https://www.
virustotal.com/. [Accessed: 24-Aug-2016].

80. Skylot, Jadx, 2015. [Online]. Available: https://github.com/skylot/
jadx. [Accessed: 01-Feb-2014].

81. Android Developer, Android debug bridge (ADB), 2017. [Online].
Available: http://developer.android.com/tools/help/adb.html.
[Accessed: 01-Jan-2017].

82. Tukey, J. W., Exploratory data analysis: past, present, and future,
1993.

83. Jensen, R., and Shen, Q., Computational intelligence and feature
selection: rough and fuzzy approaches. Wiley-IEEE Press, 2008.

84. Adewole, K. S., Anuar, N. B., Kamsin, A., Varathan, K. D., and
Razak, S. A., Malicious accounts: Dark of the social networks.
J. Netw. Comput. Appl. 79:41–67, 2017.

85. Firdaus, A., Anuar, N. B., Karim, A., and Razak, M. F. A.,
Discovering optimal features using static analysis and genetic
search based method for android malware detection. Front. Inf.
Technol. Electron. Eng. 9184:1–27, 2017.

86. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H., The WEKA data mining software: An update. ACM
SIGKDD Explorations 11(1):10–18, 2009.

87. Williams, G., ARFF Data, 2010. [Online]. Available: http://
datamining.togaware.com/survivor/ARFF_Data0.html. [Accessed:
10-Sep-2015].

88. Technische Universität Braunschweig, The Drebin dataset, 2014.
[Online]. Available: https://www.sec.cs.tu-bs.de/~danarp/drebin/.
[Accessed: 01-Jan-2015].

89. Moser, A., Kruegel, C., and Kirda, E., Limits of static analysis for
malware detection. In: Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007), 2007, 421–430.

90. Louk, M., Lim, H., Lee, H., and Atiquzzaman, M., An effective
framework of behavior detection- advanced static analysis for
malware detect ion. In: Internat ional Symposium on
Communications and Information Technologies (ISCIT), 2014,
361–365.

91. Allix, K., Bissyandé, T. F., Klein, J., and Le Traon, Y., AndroZoo:
collecting millions of android apps for the research community. In:
MSR ‘16 Proceedings of the 13th International Conference on
Mining Software Repositories, Austin, Texas, 2016, 468–471.

92. Amin, M. R., Zaman, M., Hossain, M. S., and Atiquzzaman, M.,
Behavioral malware detection approaches for android. In: IEEE
International Conference on Communications, ICC 2016, 2016.

93. Enck, W., Defending users against smartphone apps: techniques
and future directions. In: Proceedings of the 7th International
Conference on Information Systems Security, Kolkata, India,
2011, 49–70.

94. Zhongyang, Y., Xin, Z., Mao, B., and Xie, L., DroidAlarm: an all-
sided static analysis tool for android privilege-escalation malware.
In: Proceedings of Computer and Communications Security (CCS),
Hangzhou, China, 2013, 353–358.

J Med Syst (2018) 42: 112 Page 23 of 23 112

http://www.malgenomeproject.org
https://play.google.com/store?hl=en
https://play.google.com/store?hl=en
https://www.virustotal.com
https://www.virustotal.com
https://github.com/skylot/jadx
https://github.com/skylot/jadx
http://developer.android.com/tools/help/adb.html
http://datamining.togaware.com/survivor/ARFF_Data0.html
http://datamining.togaware.com/survivor/ARFF_Data0.html
https://www.sec.cs.tu-bs.de/~danarp/drebin

	Root Exploit Detection and Features Optimization: Mobile Device and Blockchain Based Medical Data Management
	Abstract
	Introduction
	Related work
	Blockchain based medical data management (BMDM)
	Root exploit
	Malware analysis
	Static analysis and machine learning
	Particle swarm optimization (PSO)
	Boosting
	Adaboost
	Realadaboost
	Logitboost
	Multiboost


	Methodology
	Data collection
	Application of reverse engineering
	Feature extraction
	System command
	Directory path
	Code-based features

	Exploratory analysis
	Feature selection
	Machine learning classification

	Evaluation
	Training and testing
	Cross validation

	Comparison
	Root exploit detection system (RODS)
	System results

	Discussion
	System detection for the blockchain

	Conclusion and future work
	References


