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Abstract
Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in
medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the
data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV
signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of
information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence.
Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification
of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted
sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define
the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was
compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results
showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.
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Introduction

The variations in R-R intervals are called heart rate variability
(HRV), which is usually served as an index of the autonomic
nervous system activities. Many applications have been intro-
duced to analyze the heart signal in medicine. HRV analysis
not only has received much attention in detection, prediction,
classification, or even treatment of cardiovascular diseases but
also for the understanding of the psychological disorders and
states [1–3]. To address this goal, several computer-aided

algorithms recruited for offline/online monitoring of HRV.
Generally, in the design of a typical HRV monitoring proce-
dure, several components may be incorporated, including data
acquisition step, pre-processing the data, feature extraction
algorithms, feature reduction, and classification (pattern clas-
sification or recognition) modules. However, it is noted that
except for the data acquisition step, a schememay comprise of
one or more component, but not necessarily all.

Depending on the utilization, different criteria are consid-
ered in designing algorithms. For instance, in offline compu-
tations, usually a high precision algorithm is contemplated,
and in others, specifically in online applications, benchmarks
also focus on the computational speed. In some literature,
more attention has been placed on the assumption of the
non-stationarity of the bio-signals [4, 5]. This category of
research highlights the use of nonlinear techniques because
it is believed that using traditional linear approaches may fail
in demonstrating the important info. To date, several nonlinear
indices have been introduced, some inspired by chaos theory
or predictability of the signal, and the others based on the
statistical methodologies. Correntropy (corrEn) was recently
introduced [6] as a new nonlinear index to assess the similarity
of a time-series. This approach integrates time structure and
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statistical distribution of the signal. Cauchy-Schwarz diver-
gence (CSD) is another similarity index [7] which quantifies
the difference between the information content of the data.
The commonality of these two algorithms (corrEn and CSD)
is that both utilize information theoretic descriptors. Usually, a
kernel-based approach is applied to both measures. It is used
to handle the harmful effects of the outliers and improve the
accuracy. Eliminating the outliers and applying the useful da-
ta, enables a faster convergence.

Recently, meditation attracted the scientific attention of re-
searchers extensively. Therefore, physiological effects of
meditation techniques on the circulatory system have been
scrutinized using HRV signals. Earlier, HRV dynamics during
meditation were explored using nonlinear features, including
Poincare plots [8, 9], fractal scaling [10], multi-fractal analysis
[11], dynamical complexity [12], recurrence plot analysis
[13], Hilbert transform [14], higher order spectra [15],
Lyapunov exponents [16, 17], and some entropy measures
[16, 18]. Though, there is not any published article, exploring
the differences in HRV fluctuations similarity in the normal
state and meditation practices.

In this paper, two similarity indices were inspected to
examine the resemblance of the HRV signal in two differ-
ent meditation techniques. One of them utilizes a probabil-
ity density function (PDF) and the other applies a nonlinear
approach. The former is known as CSD and the latter is
recognized as BcorrEn^. Since the measures are strongly
dependent on the kernel bandwidth, the role of choosing
kernel sizes was also evaluated in this study. In addition,
the proficiency of each similarity index in the HRV classi-
fication is appraised. We also examine the ability of feature
level fusion in classification performances. To this end,
three fusion rules, including division, product, and weight-
ed sum rules are proposed. For the first time, we propose a
weighted sum rule, which recruits the p-values of the sta-
tistical test to define the weights.

Material and methods

HRV recordings during spontaneous normal breathing
(SNB), and pre/during the meditation practices, including
Chinese Chi meditation (CCM) and Kundalini Yoga med-
itation (KYM) available at the Physionet database were
studied [14]. Two similarity indices were extracted to char-
acterize HRV signals (Feature Extraction). A novel feature
level fusion approach was introduced and the features
combined using three different fusion rules. The normal-
ized combined/non-combined features were input the clas-
sifier to separate psychological states. The effect of param-
eterization of the features and the classifier was consid-
ered. The total procedure is diagrammed in Fig. 1.

Data selection

We studied the HRV signals of healthy meditators and non-
meditators available in Physionet database [14, 19]. The med-
itation techniques comprise KYM (as trained by Yogi Bhajan)
and CCM.

Wearing a Holter, the electrocardiogram (ECG) signal re-
cordings of four well qualified Kundalini yoga performing
group were obtained for about one and a half hours. A
15 min ECG signal was recorded primarily as pre KYM
(pKYM). Then, successive breathing and chanting exercises
were done during the Kundalini yoga practice (dKYM), while
participants sit in a cross-legged posture.

HRV recordings of CCM were accessible in two states pre
and during the CCM performances (pCCM and dCCM).Most
of the participants were skilled in meditation and having
started the CCM for about one to three months before the trial.
Wearing a Holter monitor, each of participants done one hour
of CCM. Sitting and listening to the taped instructions of the
master, the volunteers breathe spontaneously while imagining
the opening and closing of a perfect lotus in their stomach.

HRV signals of non-mediating control group accessible in
Physionet database [14, 19] was employed. The participants
of this group comprise of 11 healthy subjects which breathe
spontaneously during sleep hours. The general health level of
the groups was comparable [14]. The sampling rate was fixed
at 128 Hz.

Participant information is summarized in Table 1.

Feature extraction

Correntropy

A nonlinear mapping of the signal to the kernel space provides
a similarity parameter that is called corrEn [20]. Applying
corrEn, the data is first transformed into a high-dimensional
reproducing kernel Hilbert space and then the Bconventional^
correlation is computed. This feature takes advantage of the
statistical distribution and the time structure of the data, simul-
taneously. Precisely, corrEn is capable of preserving nonlinear
specifications and higher order data moments [21].
Additionally, it is robust in dealing with impulsive noise and
its computational complexity is low [22]. These benefits make
it an appropriate signal processing technique for characteriz-
ing nonlinear dynamics [23]. Previously, this method has been
successfully used as a nonlinear method for analyzing bio-
signals [24, 25]. It was shown that corrEn is linked with the
regularity of HR signals during sleep disturbances [25].

Considering two time-series X ϵ RM×N; X=[x1, x2, Λ, xN]
and Y ϵ RM×N; Y=[y1, y2, Λ, yN].M denotes the dimension and
N represents the sample number. CorrEnt is defined as Eq. (1):

V X ; Yð Þ ¼ E < Φ Xð Þ;Φ Yð Þ >½ � ¼ E κσ X ; Yð Þ½ � ð1Þ
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where a radial kernel function is shown by κσ, in which σ is a
kernel size (bandwidth). A nonlinear mapping is introduced
by Φ, which maps data to a high dimensional kernel Hilbert
space. E represents the mean operator and <∙,∙> is the inner
product. As a result, the corrEn can be rewritten as follows:

V X ; Yð Þ ¼ 1

N
∑N

i¼1κσ xi; yið Þ ð2Þ

The most common kernel function in corrEn is the
Gaussian kernel, which is formulated as (3):

κσ xi; yið Þ ¼ exp
xi−yik k2
2σ2

 !
ð3Þ

where ‖⋅‖ denotes Euclidean norm.
In this study, the kernel size (k) was set in the range of 1 to

10 with the step size of 1; k = 1, 2, 3, …, 10.

The Cauchy-Schwarz divergence

Consider the probability density functions f(X) and g(Y) for
two time-series X and Y. Basically, CSD is derived from the
Cauchy-Schwarz inequality [26] for inner products and calcu-
lates the distance between the density functions. It also recruit-
ed as a similarity index. The Cauchy–Schwarz divergence is
effortlessly computable. It is affine transformations invariant
in terms of input data transformation [27]. Earlier, for exam-
ining the time series similarity, an algorithm was presented
that used Cauchy–Schwarz divergence [28]. The algorithm
was tested on various databases, including the heart signals
of arrhythmia patients. The usefulness of the proposed algo-
rithm in the databases with varying length was shown by its
high speed and high accuracy.

Equation (4) shows the CSD formulization:

CSD f ; gð Þ ¼ −ln
< f ; g >

fk k gk k ð4Þ

Since the probability densities are in the range of zero and one,
the logarithm argument is non-negative and its maximum value is
1. If f=g, then CSD=0, else it is a positive value. A few problems
occur with such an approach: (1) the signals are discrete, so the
actual densities (f and g) is not clear. (2) The computational cost of
statistical density estimators is very high because they require rath-
er large sample sizes. To overcome these problems, usually, some
kind of density estimation is performing [29].

In this study, the estimation of both corrEn and CSD was
realized using incomplete Cholesky decomposition [30]. In
addition, different kernel sizes (k) were evaluated (k was in
the range of 1 to 10 with the step size of 1; k = 1, 2, 3,…, 10).

Feature level fusion

Feature level fusion approaches were adopted in this study.
Consider a feature vector of A for corrEn measures and B for
CSD. Three different fusion rules were examined as follows.

1- Product rule.

Pr f ¼ A� B ð5Þ

2- Division rule.

Dr f ¼ A=B ð6Þ

Fig. 1 The proposed
methodology

Table 1 Subject characteristics in
groups of meditators and non-
meditators

Kundalini yoga meditation
pKYM & dKYM

Chinese Chi meditation
pCCM & dCCM

Spontaneous nocturnal
breathing (SNB)

Number of subjects 4 8 11

Age range 20–52 26–35 20–35

Mean age 33 29 29

Gender 2 women, 2 men 5 women, 3 men 8 women, 3 men
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Fig. 2 Feature level fusion rules
(a) product; (b) division; and (c)
weighted sum

Fig. 3 The architecture of PNN
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3- Weighted sum rule.

Wsr f ¼ ∑5
i¼1WiAþW

0
iB ð7Þ

whereW denotes the weights and i = 1,2,..5 correspond to the
five predefined classes (pCCM, dCCM, pKYM, dKYM, and
SNB).

In weighted sum rule, the following assumption is adopted:
the contribution of some features is more than the other mea-
sures. To address this problem, the indices were weighted
regarding their significance in each class. This significance
was defined based on the statistical p-values. If the
corresponded p is lower than 1 × 10−4, then W=2. For 1 ×
10−4 < p < 1 × 10−3, W=1.5; for 1 × 10−3 < p < 1 × 10−2, W=1;
for 0.01 < p < 0.05, W=0.5; and for p≥0.05, W=0 were
considered.

Figure 2 shows the three feature level fusion rules,
schematically.

Classification

Probabilistic neural network

The HRV classification was performed using probabilistic
neural network (PNN) to separate SNB from each pCCM,
dCCM, pKYM, and dKYM state. Before inputting the fea-
tures to the PNN, they were normalized (Norm_F) as follows:

Norm F ¼ 2
F−Fmin

Fmax−Fmin

� �
−1 ð8Þ

The efficiency of PNN in biomedical pattern recognition
and signal classification has been established in the previous

Fig. 5 Variations of CSD in different states. X-axis shows the kernel bandwidth and y-axis depicts the CSD values

Fig. 4 Variations of corrEn in different states. X-axis shows the kernel bandwidth and y-axis depicts the corrEn values
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literature [31]. The PNN classifier is allocated to the group of
feed forward based networks which applies the radial basis
function using the sigma adjustment values (σ). To better un-
derstand how this classifier works, Fig. 3 shows the PNN
architecture, schematically.

In this study, to discriminate between SNB and each
pCCM, dCCM, pKYM, and dKYM group, a 5-fold cross-
validation fashion was adopted. Randomly dividing data into
5 equal parts the cross-validation is performed, while 4 parts
are allocated to the training and one for the test. Additionally,
the performance of PNN was appraised for 20 different sigma
values (in the range of 0.05 to 1 with the step size of 0.05; σ =
0.05, 0.1, 0.15, …, 1). To evaluate the classification perfor-
mances, accuracy was calculated as Eq. (9):

Acc ¼ TP þ TN
TP þ FP þ FN þ TN

ð9Þ

where TP, TN, FP, and FN denote true positives, true nega-
tives, false positives, and false negatives, respectively.

K-nearest neighbor

K-nearest neighbor (kNN) is a supervised and nonparametric
procedure. In this techniques, by computing Euclidean dis-
tance, the new sample query result is categorized based on
the closeness of the k-nearest samples accessible in the feature
space. Applying a short time for training, it results in a good
performance [32, 33]. In this study, different k values (k1)
were tested to evaluate the classification results (k1 was set
in the range of 2 to 11 with the step size of 1; k1 = 2, 3,…, 11).

Results

Variation of mean corrEn values with varying kernel sizes
were shown in Fig. 4 for HRV signals during different states.

As seen in Fig. 4, the lowest variations in the corrEn were
observed for the large kernel sizes in all states. Considering
the lower kernel sizes, the differences of corrEn values in

Fig. 6 The percentiles of the features in different states. a corrEn and (b) CSD. X-axis shows the kernel bandwidth and y-axis depicts the feature values
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different psychological states were more pronounced. For k =
1, the mean corrEn values were 0.9146, 0.7128, 0.6039,
0.5635, and 0.8679 for pCCM, dCCM, pKYM, dKYM, and
SNB, respectively. The corresponding corrEn values were de-
creased to 0.1317, 0.067, 0.04, 0.0741, and 0.0801 for k = 10.
Therefore, the lowest corrEn values were assigned to the HRV
signals of KYM (both pKYM and dKYM) states.

Figure 5 shows variations of mean CSD values with vary-
ing kernel bandwidth in different states.

Adopting k = 1, for pCCM, dCCM, pKYM, dKYM, and
SNB, the average CSD values were 2.47×10−5, 2.524×10−5,
6.418×10−4, 3.902×10−4, and 9.131×10−7, respectively;
which decreased to 3.44×10−6, 4.72×10−6, 1.722×10−4,
9.52×10−5, 2.259×10−7, for k = 10. The largest CSD values
were obtained for KYM states (pKYM and dKYM) and the
minimum value was found for SNB.

Totally, the variations of corrEn and CSD across lower
kernel values are larger than those across higher kernel sizes.
Additionally, diverse similarity measures were attained for
different psychological states.

The distribution of the features were evaluated and themedian
and statistical parameters of dispersion are shown in Fig. 6.

Since the distribution of the features is not-normal (Fig. 6),
the Wilcoxon ranksum test was used to compare two states for
statistical differences. Table 2 lists the p-values.

Figure 7 summarizes the performance of the classifier
using the corrEn similarity measure.

In discriminating pCCM from SNB, the accuracy of 100%
was achieved using k = 10 and σ = 0.05. Figure 7a shows that
the average accuracy was maximum for σ = 0.05 and mini-
mum for σ = 1. Discrimination between pCCM and SNB
showed the highest average recognition rate of 85% for σ =
0.05, which dropped to 56% for σ = 1. The maximum average
classification results of 72.81% was obtained for k = 10.

For k = 9 and k = 10 with σ = 0.05, the accuracy was 100%
for dCCM vs. SNB classification. In this case, the highest

average rate of 89.38% and the lowest mean rate of 55% were
reached for σ = 0.05 and σ = 0.6, respectively. Additionally,
the highest average recognition rate was 62.81% for k = 6.

Figure 7b shows the KYM vs. SNB classification results.
The pKYM vs. SNB classification was performed with the
highest rate of 100% for σ = 0.05 and k = 1,2,3, and 4. In this
case, the maximum correct rate (90.83%) and minimum cor-
rect rate (66.67%) were achieved for σ = 0.05 and σ = 0.55 to
1, respectively. In addition, the maximum average accuracy
(72.92%) was obtained for k = 6.

Figure 7c shows the classification results of two classes
(pCCM vs. dCCM and pKYM vs. dKYM). For pCCM and
dCCM classification, the highest rate of 100% was obtained
for σ = 0.05 and k = 7–9. The maximum average rates were
93.85% for σ = 0.05 and 76.92% for k = 1 and k = 2.

Compared to the other states, higher recognition rates were
achieved for pKYM and dKYM classification. For σ = 0.05
and k = 1,2,5,6,7,8,9,10; for σ = 0.1 and k = 1,2,6,7,8,9,10; for
σ = 0.15 and k = 1,2,7,8,9,10; for σ = 0.2 and k = 2,8,9,10;
and for σ = 0.25 and k = 10, the accuracy was 100%. In addi-
tion, the average maximum correct rates were 95.71% for σ =
0.05 and 82.86% for k = 10.

The performances of the CSD similarity index for classify-
ing different states are shown in Fig. 8.

Figure 8a shows the classification results of CCM vs SNB;
the top frame illustrates the pCCM vs. SNB and the bottom
displays the dCCM vs. SNB. For the former, the highest rate
of 100% was achieved for σ = 0.05 and k = 1. In this case, the
maximum average accuracies were 90.63% for σ = 0.05 and
80.94% for k = 6, 7, 8. For the latter, the recognition rate of
100% was obtained for σ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 and
k = 1, for σ = 0.05, 0.1, 0.15 and k = 2, and for σ = 0.05 and
k = 3. In this case, the highest average rates of 95.63 and
85.63% were obtained for σ = 0.05 and k = 1, respectively.

The KYM vs. SNB classification results are shown in Fig.
8b; the top frame illustrates the pKYM vs. SNB and the

Table 2 Statistical differences between the groups (* denotes p < 0.05, which shows significant difference)

Kernel size pCCM vs. SNB dCCM vs. SNB pKYM vs. SNB dKYM vs. SNB

CSD corrEn CSD corrEn CSD corrEn CSD corrEn

k = 1 2.65 × 10–5* 0.35 7.9 × 10–4* 0.24 1.5 × 10–3* 0.18 1.5 × 10–3* 0.026*

k = 2 2.65 × 10–5* 0.31 3.6 × 10–3* 0.27 1.5 × 10–3* 0.14 1.5 × 10–3* 0.040*

k = 3 2.65 × 10–5* 0.15 3.6 × 10–3* 0.15 1.5 × 10–3* 0.10 1.5 × 10–3* 0.14

k = 4 5.29 × 10–5* 0.09 3.6 × 10–3* 0.20 1.5 × 10–3* 0.08 1.5 × 10–3* 0.18

k = 5 1.85 × 10–4* 0.07 3.6 × 10–3* 0.35 1.5 × 10–3* 0.040* 1.5 × 10–3* 0.23

k = 6 1.85 × 10–4* 0.040* 9.1 × 10–3* 0.49 1.5 × 10–3* 0.040* 1.5 × 10–3* 0.41

k = 7 1.85 × 10–4* 0.033* 0.026* 0.66 1.5 × 10–3* 0.026* 1.5 × 10–3* 0.57

k = 8 1.85 × 10–4* 0.033* 0.033* 0.66 1.5 × 10–3* 0.040* 1.5 × 10–3* 0.75

k = 9 3.18 × 10–4* 0.026* 0.033* 0.66 1.5 × 10–3* 0.026* 1.5 × 10–3* 0.95

k = 10 3.18 × 10–4* 0.020* 0.050 0.66 1.5 × 10–3* 0.026* 1.5 × 10–3* 0.85
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bottom presents the dKYM vs. SNB. For pKYM vs. SNB, the
maximum average rates were accomplished for σ = 0.05 and
k = 1 with the rates of 87.5 and 75%, respectively. However,
the accuracy of 100% was attained using σ = 0.05 and k = 1.
For dKYM vs. SNB, the average classification accuracies
have increased sharply. The mean recognition rate of 100%
was obtained for σ = 0.05 and σ = 0.1. Considering kernel
sizes, the highest average rate of 84.58% was accomplished
for k = 1. In addition, for all sigma values and k = 1 and k = 2,
the accuracy was 100%.

For pCCM vs. dCCM classification (Fig. 8c, top frame),
the highest mean accuracies were 93.08 and 73.08% for σ =
0.05 and k = 8, respectively. However, the recognition rates
were 100% for σ = 0.05 and k = 2, 3, 4. For pKYMvs. dKYM
classification (Fig. 8c, bottom frame), the average classifica-
tion accuracies were maximum for σ = 0.05 (85.71%) and k =
1 and k = 2 (69.29%). However, the recognition rate was
85.71% for σ = 0.05 and all kernel sizes.

The feature level fusion was performed using three fusion
rules. To simplify, we only reported the maximum accuracy
and the parameters for which the maximum accuracy was
obtained in Table 3. For comparison, the classification results
of any non-fusion feature are also summarized in Table 3.

The results showed that two fusion approaches, including
weighted sum and division rules, outperformed the other
schemes. For these two fusion methodologies, a greater num-
ber of selected parameters have resulted in the accuracy of
100%. However, regarding the maximum accuracy of the
classification, the product rule resulted in a lower accuracy
rate than the other fusion and non-fusion strategies.
Additionally, the results showed that discrimination of two
classes of dKYM and dCCM performed better than other clas-
ses. Exactly, in the most cases, the highest accuracy was ob-
tained. According to the classification results, the best values
for σ and k are 0.05 and 1, respectively.

The results of the data classification using kNN are given in
Table 4.

The results showed that applying division rule as a fusion
approach, the accuracy of 100% was achieved for discrimina-
tion of all states. The second best results were obtained with
the other two fusion rules. In these cases, the maximum

�Fig. 7 PNN classification accuracies using corrEn for different k and
varying σ parameter. a top: pCCM vs. SNB, bottom: dCCM vs. SNB;
(b) top: pKYM vs. SNB, bottom: dKYM vs. SNB; (c) top: pCCM vs.
dCCM, bottom: pKYM vs. dKYM
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accuracy of 100% was found for discriminating all classes,
except for pCCM. Regarding the maximum accuracy, a lower
accuracy rate was gotten for corrEn. Moreover, the kNN re-
sults revealed that dKYM and pKYM classes were classified
with higher recognition rates, compared with other classes.
According to Table 4, the best value for k was 5.

Comparing the performance of two classifiers (kNN and
PNN), it can be concluded that:

& Better classification performances were achieved using
PNN.

& In terms of classification accuracy, for both classifiers
(PNN and kNN), division rule outperformed the other
strategies, in which the maximum accuracy of 100% was
achieved for classifying all states.

& For both classifiers, the best classification results were
achieved for dKYM.

Discussions

In this paper, a comparison between two information
theoretic similarity indices (CSD and corrEn) was done
to classify HRV signals. In addition, three feature level
fusion approaches were examined. To this effect, the
product rule, division rule, and weighted sum rule were
evaluated. An innovative approach was introduced to
define the weights of each feature in the weighted
sum fusion rule. The discriminative ability of the fea-
tures was determined using the p-values of the statistical
test. The system performances were evaluated by chang-
ing the kernel size of the features and adjustable param-
eter of the classifiers (sigma for PNN and k1 for kNN).

It has previously been shown that HRV characteristics are
affected by meditation. Li et al. [12] studied the HRV com-
plexity in CCM and KYM groups. They concluded that the
dynamical complexity of HRV declines during meditation.
Song et al. [11] showed more HRV regularities and lower
degree of multifractalities during CCM. Analyzing recurrence
plots confirmed that the nonlinear HRV interactions were
dropped during meditation [13].

�Fig. 8 PNN classification accuracy using CSD for different k and
varying σ parameter. a top: pCCM vs. SNB, bottom: dCCM vs. SNB;
(b) top: pKYM vs. SNB, bottom: dKYM vs. SNB; (c) top: pCCM vs.
dCCM, bottom: pKYM vs. dKYM
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Our results are consistent with the previous findings. It has
shown that the similarity measures of HRV signals were af-
fected by the psychological state. The results showed that the
lowest corrEn values were achieved for the HRV signals of
pKYM and dKYM states. The lower corrEn might be attrib-
uted to the lower stress levels and lower sympathetic reactions
in the dKYM. In contrast, the highest corrEn has belonged to
the pCCM and SNB. The highest CSD was attained for
pKYM and the lowest was obtained for the SNB. As the
kernel size increases, the mean similarity measures decrease,
as well as their variations.

The critical role of parameter selection in classification per-
formances has been also shown. Both kernel size of the features
and sigma/k1 parameters affected the classification accuracies. In
addition, our results showed the benefit of feature level fusion
strategies in HRV classification. Previously, the role of feature

level fusion in increasing the performance of the classification of
psychological data has been shown [34, 35].

By combining the similarity indices derived from corrEn
and CSD, valuable information of HRV signals is achieved
which led to superior classification results. The CSD was un-
able to show the nonlinear similarity of the signals, which is
accessible with corrEn. Consequently, the information of
these two features is complimentary. Although the high clas-
sification performances (100%) were achieved by each fea-
ture, fusion strategies (especially division rule) obtained a
higher number of maximum accuracies (Tables 3 and 4).
Totally, the best results were obtained using PNN.

The classification of HRV signals during mediation has not
been documented sufficiently. Previously, a system was pro-
posed to classify HRV signals of Samadhi and non-Samadhi
groups based on time and frequency features [36]. The

Table 3 The highest accuracy of the combined and non-combined features in classification of SNB and each psychological state using PNN

SNB vs. ↓

pCCM dCCM pKYM dKYM

Fusion

Division rule Max ACC (%) 100 100 100 100

k & σ k = 1 & σ = 0.05 k = 1, 2 & σ = 0.05 k = 1 & σ = 0.05, 0.1,
0.15, 0.2, 0.25,
0.3, 0.35, 0.4

k = 1 & σ = 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35

k & σ k = 2 & σ = 0.2, 0.15 k = 2 & σ = 0.05,
0.1, 0.15

k = 2 & σ = 0.05, 0.1

k & σ k = 3 & σ = 0.05 k = 3 & σ = 0.05

Product
rule

Max ACC (%) 93.75 93.75 91.67 100

k & σ k = 1, 2, 3, 4, 5, 6, 7
& σ = 0.05

k = 1 & σ = 0.05, 0.1,
0.15, 0.2, 0.25, 0.3,
0.35, 0.4

k = 1, 2 & σ = 0.05 k = 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 & σ = 0.05

k & σ k = 1, 2 & σ = 0.1 k = 2 & σ = 0.05, 0.1 k = 1, 2, 3, 4, 5, 6 & σ = 0.1

k & σ k = 3 & σ = 0.05 k = 1, 2 & σ = 0.15

k & σ k = 1 & σ = 0.2

Weighted
sum rule

Max ACC (%) 100 100 100 100

k & σ k = 1, 2, 3, 4, 6 & σ = 0.05 k = 1 & σ = 0.05, 0.1,
0.15, 0.2, 0.25, 0.3

k = 1 & σ = 0.05 k = 3, 4, 5, 6, 7, 8, 9, 10
& σ = 0.05, 0.1

k & σ k = 2 & σ = 0.05, 0.1 k = 3, 4, 5, 6 & σ = 0.15

k & σ k = 3 & σ = 0.05 k = 3 & σ = 0.2

CSD

Max ACC (%) 100 100 100 100

k & σ k = 1 & σ = 0.05 k = 1 & σ = 0.05, 0.1,
0.15, 0.2, 0.25, 0.3

k = 1 & σ = 0.05 k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
& σ = 0.05, 0.1

k & σ k = 2 & σ = 0.05, 0.1, 0.15 k = 1, 2, 3, 4, 5, 6 & σ = 0.15

k & σ k = 3 & σ = 0.05 k = 1, 2, 3 & σ = 0.2

k & σ k = 1, 2 & σ = 0.25

corrEn

Max ACC (%) 100 100 100 100

k & σ k = 10 & σ = 0.05 k = 9, 10 & σ = 0.05 k = 1, 2, 3, 4 & σ = 0.05 k = 10 & σ = 0.05

Max ACC, Maximum Accuracy; k, kernel size of the features; σ, the PNN adjustable parameter
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accuracy of 94.8% was attained using Fisher discriminant
analysis. In another study, Lyapunov exponent and entropy
were calculated to characterize HRV dynamics during CCM
and pCCM [16]. Three machine learning systems were eval-
uated, including Quadratic, fisher, and kNN. Quadratic classi-
fier achieved the maximum accuracy of 92.31%.

To sum up, the results of this study established that new
combined similarity indices of HRV signals could be served as
an appropriate quantity to correctly discriminate different psy-
chological states.

One of the limitations of this study is the number HRV
signals for evaluating the proposed algorithm. It is suggested
that the framework be assessed on a big data in the future. In
addition, the number of signals in different categories is not
the same in the existing database. This imbalance classes can
affect classifier recognition rates. In the future, the class im-
balance problem should be taken into account.

Conclusion

Classification of HRV signals in different psychological states
has recently become a challenging topic. In this study, we
attempted to characterize the HRV signals in different states,
including pCCM, dCCM, pKYM, dKYM, and SNB. To ad-
dress this issue, two features were extracted which quantified
the similarity of the time-series, known as CSD and corrEn. In
addition, a novel feature level fusion approach was presented
based on the p-values of the similarity indices. The experi-
mental results on the two forms of meditation (KYM and
CCM) confirmed the proficiency of the proposed feature level
fusion strategy for classifying HRV in the psychological
states. Specifically, the results suggested that combination of
CSD and corrEn information of the HRV signals based on
weighted sum and division rules can improve the accuracy
of the classifiers. In addition, the role of parameter selection
on classification performances has been shown. The maxi-
mum accuracy of 100% was achieved.

Funding BThis research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors^.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Karimi Moridani, M., Setarehdan, S. K., Motie Nasrabadi, A., and
Hajinasrollah, E., Analysis of heart rate variability as a predictor of
mortality in cardiovascular patients of intensive care unit.
Biocybern. Biomed. Eng. 35:217–226, 2015.

2. MM Hassan, S., Huda, J. Y., Jelinek, H. F., and Almogren, A.,
Multistage fusion approaches based on a generative model and
multivariate exponentially weighted moving average for diagnosis
of cardiovascular autonomic nerve dysfunction. Inform. Fusion 41:
105–118, 2018.

3. Bevilacqua, F., Engstrom, H., and Backlund, P., Changes in heart
rate and facial actions during a gaming session with provoked bore-
dom and stress. Entertain. Comput. 24:10–20, 2018.

4. Huikuri, H. V., Makikallio, T., Airaksinen, K., Mitrani, R.,
Castellanos, A., and Myerburg, R. J., Measurement of heart rate
variability: A clinical tool or a research toy? J. Am. Coll. Cardiol.
34:1878–1883, 1999.

5. Acharya, U. R., Kannathal, N., OngWai, S., Luk Yi, P., and
TjiLeng, C., Heart rate analysis in normal subjects of various age
groups. Biomed. Eng. Online 3:24–28, 2004.

6. Santamaria, I., Pokharel, P. P., and Principe, J. C., Generalized
correlation function: Definition, properties and application to blind
equalization. IEEE Trans. Signal Process. 54:2187–2197, 2006.

7. Hasanbelliu, E., Giraldo, L. S., and Principe, J. C., Information
theoretic shape matching. IEEE Trans. Pattern Anal. Mach. Intell.
36:2436–2451, 2014.

8. Goshvarpour, A., Goshvarpour, A., and Rahati, S., Analysis of
lagged Poincare plots in heart rate signals during meditation.
Digit. Signal Process. 21:208–214, 2011.

9. Goshvarpour, A., and Goshvarpour, A., Poincare indices for ana-
lyzing meditative heart rate signals. Biomed. J. 38:229–234, 2015.

10. Alvarez-Ramirez, J., and E Rodriguez, J. C., Echeverria fractal
scaling behavior of heart rate variability in response to meditation
techniques. Chaos Solitons Fractals. 99:57–62, 2017.

11. Song, R., Bian, C., and Ma, Q. D. Y., Multifractal analysis of heart-
beat dynamics during meditation training. Physica A. 392:1858–
1862, 2013.

12. J Li, J. H., Zhang, Y., and Zhang, X., Dynamical complexity chang-
es during two forms of meditation. Physica. A. 390:2381–2387,
2011.

13. Goshvarpour, A., and Goshvarpour, A., Recurrence plots of heart
rate signals duringmeditation. I. J. ImageGraph. Signal Process. 2:
44–50, 2012.

14. Peng, C.-K., Mietus, J. E., Liu, Y., Khalsa, G., Douglas, P. S.,
Benson, H., and Goldberger, A. L., Exaggerated heart rate oscilla-
tions during two meditation techniques. Int. J. Cardiol. 70:101–
107, 1999.

15. Goshvarpour, A., andGoshvarpour, A., Comparison of higher order
spectra in heart rate signals during two techniques of meditation:
Chi and Kundalini meditation. Cogn. Neurodyn. 7:39–46, 2013.

16. Goshvarpour, A., and Goshvarpour, A., Classification of heart rate
signals during meditation using Lyapunov exponents and entropy.
I. J. Intell. Syst. Appl. 2:35–41, 2012.

17. Goshvarpour, A., and Goshvarpour, A., Chaotic behavior of heart
rate signals during Chi and Kundalini meditation. I. J. Image
Graph. Signal Process. 2:23–29, 2012.

18. Gao, J., J Fan, B.W.W., Zhang, Z., Chang, C., Hung, Y. S., Fung, P.
C., and Sik, H. H., Entrainment of chaotic activities in brain and
heart during MBSR mindfulness training. Neurosci. Lett. 616:218–
223, 2016.

19. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M.,
Ivanov, P. C., Mark, R. G.,Mietus, J. E., Moody, G. B., Peng, C.-K.,
and Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic
signals. Circulation 101(23):e215–e220, 2000.

20. Liu, W., Pokharel, P. P., and Principe, J. C., Correntropy: A local-
ized similarity measure. In: The IEEE International Joint
Conference on Neural Network Proceedings, pp 4919–4924, 2006.

21. Garde, A., Sornmo, L., and Jané, R., Correntropy-based analysis of
respiratory patterns in patients with chronic heart failure. In:
Proceedings of the 31st annual international conference of the

109 Page 14 of 15 J Med Syst (2018) 42: 109



IEEE engineering in medicine and biology society: Engineering the
future of Biomedicine, pp 4687–4690, 2009.

22. Pokharel, P. P., Liu, W., and Principe, J. C., A low complexity
robust detector in impulsive noise. Signal Process. 89:1902–1909,
2009.

23. Liu, W., and PP Pokharel, C. P. J., Correntropy: Properties and
applications in non-Gaussian signal processing. IEEE Trans.
Signal Process. 55(11):5286–5298, 2007.

24. Melia, U., Guaita, M., Vallverdú,M., Montserrat, J. M., Vilaseca, I.,
Salamero, M., Gaig, C., Caminal, P., and Santamaria, J.,
Correntropy measures to detect daytime sleepiness from EEG sig-
nals. Physiol. Meas. 35(10):2067–2083, 2014.

25. Guaita, M., Melia, U., Vallverdú, M., Caminal, P., Vilaseca, I.,
Montserrat, J. M., Gaig, C., Salamero, M., and Santamaria, J.,
Regularity of cardiac rhythm as a marker of sleepiness in sleep
disordered breathing. PLoS One 10(4):e0122645, 2015.

26. Kullback, S., Information theory and statistics. New York: Wiley,
1959.

27. Czarnecki, W. M., and Tabor, J., Multithreshold entropy linear clas-
sifier: Theory and applications. Expert. Syst. Appl. 42:5591–5606,
2015.

28. Nguyen, C., Lovering, C., and Neamtu, R., Ranked time series
matching by interleaving similarity distances. In: IEEE
International Conference on Big Data (Big Data), 11–14
Dec. 2017, Boston, MA, USA, 2017.

29. Czarnecki, W. M., and Tabor, J., Extreme entropy machines:
Robust information theoretic classification. Pattern. Anal. Appl
2(2):383–400, 2017.

30. Seth, S., and Príncipe, J. C., On speeding up computation in infor-
mation theoretic learning. In: International Joint Conference on
Neural Networks (IJCNN 2009), 14–19 June 2009, Atlanta, GA,
USA, pp 2883–2887, 2009.

31. Ghongade, R., Deshmukh, M., and Joshi, D., Arrhythmia classifi-
cation using morphological features and probabilistic neural net-
works. Computational Intelligence on Power, Energy and
Controls with their impact on Humanity (CIPECH), 80–84, 2014.

32. Han, J., Pei, J., and Kamber, M., Data mining: Concepts and tech-
niques. 3rd edition, Elsevier, 2011.

33. Larose, D. T., Discovering knowledge in data: An introduction to
data mining. John Wiley & Sons, 2014.

34. Goshvarpour, A., Abbasi, A., and Goshvarpour, A., Fusion of heart
rate variability and pulse rate variability for emotion recognition
using lagged Poincare plots. Australas. Phys. Eng. Sci. Med. 40:
617–629, 2017.

35. Goshvarpour, A., Abbasi, A., Goshvarpour, A., Daneshvar, S., A
novel signal-based fusion approach for accurate music emotion
recognition. Biomedical Engineering Applications, Basis and
Communications, 28: 1650040 [10 pages], 06, 2016.

36. Phongsuphap, S., and Pongsupap, Y., Analysis of heart rate vari-
ability during meditation by a pattern recognition method. Comput.
Cardiol. 38:197–200, 2011.

J Med Syst (2018) 42: 109 Page 15 of 15 109


	A Novel Feature Level Fusion for Heart Rate Variability Classification Using Correntropy and Cauchy-Schwarz Divergence
	Abstract
	Introduction
	Material and methods
	Data selection
	Feature extraction
	Correntropy
	The Cauchy-Schwarz divergence

	Feature level fusion
	Classification
	Probabilistic neural network
	K-nearest neighbor


	Results
	Discussions
	Conclusion
	References


