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Abstract
Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient’s
cardiac health. The device has been widely used to detect and monitor the patient’s heart rate. The data collected hence has the
highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the
most important element. The device is available in its new digital form, which is more efficient and accurate in performance with
the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet
transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the
detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based
filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and
highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately
by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed
R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH
arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of
RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of
the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor,
Huffman coding/adaptive, and slope predictor/fixed length packaging.

Keywords Electrocardiogram (ECG) .Run-length encoding (RLE) . Lowpass andHighpass filter .Continuouswavelet transform
(CWT) . Discrete wavelet transform (DWT) .Wavelet filter bank (WFB)

Introduction

Medical expenditures are on the all-time surge and high with
the fast growth in world population. Healthcare became an

important agenda of both individuals and governments. The
latest reports from World Health Organization purport that
dealing with aging population is the important thing today
[1]. The present healthcare structures and approaches are fac-
ing more significant challenges of dealing with the healthcare
problems of aging population. Accordingly, spotting human
diseases in a cost-effective, well timed and in a precise fashion
has taken center stage [2–5]. Electrocardiogram (ECG) mon-
itoring became ubiquitous because of its supremacy in the
diagnosis of heart-related diseases and is also making its
way both in hospitals and research areas [6].

The present medical fraternities are dependent on the usage
of large conventional ECG equipment with multiple elec-
trodes for ECG data acquisition. ECG equipment having
twelve electrodes is the norm of the day and suffers from the
capabilities of efficient data handling even on a short-term
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basis. As the equipment has portability limitations, the activ-
ities of the patient are measured only during data collection,
thus making continuous patient monitoring a tedious task. As
ECG acquisition devices are not only costly but need training
for home use, patients need to visit hospital frequently. The
frequent visits to the hospital have severe limitations like ir-
regular health monitoring, increase in hospital ‘s burden and
causing physical hardship to the patients. Hence, the need of
the day is a cheap, simple, portable, reliable and long-term
ECG signal monitoring system [7].

Many long-term ECG signal monitoring approaches have
been proposed during last few decades. First ECG signal mon-
itoring system based on system-on-chip was introduced in [8],
but this system consumes significant amounts of energy as it
transmits raw data. Hence, a joint system for both ECG detec-
tion and data compression is highly required. An ECG mon-
itoring system used in processing ECG signal for wireless
transmission is shown in Fig. 1 [9].

The ECG monitoring system has three main functions
namely, ECG signal analysis, data compression and wire-
less transmission. An ECG is a life-saving diagnostic tool
in the heart care segment and is the most important fea-
ture amongst all ECG features is its QRS complex. A
typical ECG signal is shown in Fig. 2. Hence, automatic
detection of a QRS complex is the most important aspect
of ECG signal processing and analysis. The performance
of any ECG detection algorithm mainly relies on the QRS
complex (R-peak) detector’s accuracy [10, 11]. Many al-
gorithms are presented in the literature to detect QRS
complex. Some of the QRS complex detection algorithms,
namely are time domain [12], ECG morphology [13],
time-frequency domain (Wavelet) [14–19], and combined
algorithms [20]. The wireless transmission of raw ECG
data consumes high power, and use of local storage in-
creases the device cost. So, data compression is required
to reduce the power consumption and device cost.

Several lossy and lossless ECG data compression tech-
niques have been reported in [21–24]. A comprehensive
review of existing ECG signal denoising and R-peak de-
tection is reported in [25]. Increasing detection accuracy
with the help of complex signal processing techniques is
the aim of most of the reported approaches. Low power
consumption and less hardware complexity are the two
crucial attributes of mobile ECG equipment. Low power
implementation of many ECG detection and data com-
pression techniques are reported in [21–25]. Until now,
most of the existing work separately concentrates either
on QRS complex detection or data compression tech-
niques. There are few techniques which use a single algo-
rithm to detect QRS complex as well compress ECG sig-
nal data [9, 26]. However, the techniques which use the
same algorithm to detect QRS complex and compress
ECG signal data possess high system complexity. Efforts
are made to find an efficient algorithm which can be used
to detect QRS complex and compress ECG signal data
with low system complexity.

In this work, an algorithm based on bi-orthogonal wavelet
transform is used to design the proposed QRS complex detec-
tion and to compress the ECG signal data. Here, run-length
encoding technique is proposed for lossless data compression.
The proposed design reduces the overall circuit complexity by
reducing the number of delay elements, adders, and multi-
plexers. Sensitivity, positive predictivity, data error rate, com-
pression ratio are the performance measures considered to
evaluate the performance of the proposed design.

The remaining paper is organized as follows: Section II
provides information about proposed design including wave-
let selection, ECG signal denoising, ECG detection, ECG data
compression and the complete architecture of the proposed
method. The performance evaluation and the simulation re-
sults of the proposed technique are detailed in Section III.
Finally, Section IV concludes the paper.

Fig. 1 Block diagram of ECG monitoring system [9]
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Proposed design

The methodology used to implement the proposed joint QRS
complex detector and data compression design is presented in
this section. Flowchart of the proposed R-peak detector with
data compression technique is shown in Fig. 3.

Different steps shown in the flowchart are as follows. Input
ECG signal is taken from Massachusetts Institute of
Technology Boston’s Beth Israel Hospital (MIT-BIH) arrhyth-
mia database [27] in .mat format. ECG signal from MIT-BIH
may be or may not be corrupted with different noises, but in
reality, ECG signals get corrupted due to the presence of var-
ious types of noises. In practice, Electrosurgical noise, muscle
contraction, instrumentation noise, baseline drift, 60 Hz power
line interference are different noise sources which corrupt the

ECG signal. A corrupted ECG signal is realized by adding
random noise to ECG signal from MIT-BIH arrhythmia data-
base. Adding random noise to the signal helps measure the
efficiency of the proposed algorithm to reject noise from the
signal. It is highly desirable to select a suitable denoising
algorithm form the existing ECG signal denoising and QRS
complex detection approaches available in the literature [25].
Reduced hardware complexity and a better detection accuracy
make the wavelet transform based denoising, and QRS com-
plex detection approaches as a most suitable technique when
compared to the other techniques time domain, ECGmorphol-
ogy, and combined approaches [2].

The biorthogonal wavelet transform with four levels of
decomposition is used to analyze a noisy ECG signal. The
typical frequency range of an ECG signal is from 0.5 Hz to

Fig. 2 Typical ECG waveform of
a single heartbeat

Fig. 3 Flowchart of the proposed
R-peak detector and data com-
pression technique
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150 Hz, and that of QRS complex is from 8 Hz to 20 Hz [28].
After the third level of decomposition, the frequency compo-
nents that are left behind are in the 45 Hz range. The output of
the third level wavelet filter bank is used as input to the fourth
level wavelet filter bank whose output contains signals in the
frequency range which matches with the frequency range of
QRS complex. These signals from the fourth level wavelet
filter bank are used for further processing as their frequency
component matches with that of the QRS complex. After
denoising, a QRS complex detector is designed in which in-
coming denoised ECG signal (A) is compared with a
predetermined threshold value (Vth). The most critical criteri-
on in fixing Vth value is that, neither an R-peak in the QRS
complex is missed, nor a false R-peak is detected. The reasons
for selecting a suitable value of Vth are as follows. If the value
of Vth is very small, a lot of false R-peaks are detected thus
reducing the detection accuracy and also the computational
efforts are increased. A large value of Vth may fail to detect
a true R-peak, thus affecting the detection accuracy. To mini-
mize the computational efforts and to improve the detection
accuracy, selection of Vth plays a very crucial role. An R-peak
is only detected if the value of A is greater than the set thresh-
old. After identifying the R-peaks, the time interval between
two consecutive R-peaks is computed. The detected data is
compressed using lossless data compression technique which
is RLE in this case, further utilized for the wireless transmis-
sion for medical assistance.

Dataset

ECG signal from various databases like MIT-BIH arrhythmia
database (MITDB), QT database (QTDB) [29] are used to
evaluate the proposed design. MITDB contains 47 half-hour
recordings of annotated ECG signals with a sampling frequen-
cy of 360 Hz and QTDB contains 105 records with a sampling
frequency of 250 Hz.

Selection of wavelet transform and wavelet
architecture

ECG signals exhibit slowly changing trends or oscillations
punctuated with transients. To accurately analyze an ECG
signal with abrupt changes, a new class of well-localized func-
tions in time and frequency are needed. Wavelet transform
which is a rapidly decaying wave-like oscillation that has zero
mean and exists for a finite duration satisfies this condition.
Continuous wavelet transform (CWT) and discrete wavelet
transform (DWT) are thus useful to analyze ECG signals.
DWT is ideally used to denoise and compresses signals and
images and useful in representing many naturally occurring
signals with fewer coefficients.

Accurate estimation of ECG signal parameters demands a
suitable choice of basis function which is either symmetric or

antisymmetric [30]. Peak detection is facilitated by detecting
extrema in case of symmetric basis and by identifying zero
crossing in case of antisymmetric basis. By reducing the num-
ber of steps, a basis function with minimal sign changes sim-
plifies the parameter estimation algorithm. As listed in
Table 1, biorthogonal wavelet transform satisfies the
abovementioned requirements, hence used in this work.

Due to low computational complexity, the biorthogonal
wavelet transform is considered to implement QRS complex
detectors [30]. Biorthogonal wavelet transform requires
decimator and undecimator based architectures with lowpass
and highpass filters as presented in [14, 31, 32].

In biorthogonal wavelet transform technique, ECG signal
is first filtered using a combination of lowpass and highpass
filters to yield lowpass and highpass sub-bands. As per
Nyquist criterion, after filtering, half the samples are thrust
aside. While realizing the filters, due to the smaller number
of coefficients, these filters result in reduced computational
complexity. These filters can also be used to reconstruct the
sub-bands while canceling any aliasing which occurs due to
downsampling. In the next level of decomposition, the sub-
bands are iteratively filtered by the technique above (combi-
nation of lowpass and highpass filters) to yield narrow sub-
bands. However, the cascading of filters increases hardware
complexity and power consumption in the circuit [33]. In this
work, to reduce the hardware complexity and power con-
sumption, a new demand-based wavelet filter bank architec-
ture is proposed. Figure 4 shows the proposed wavelet filter
bank architecture. In the proposed demand based wavelet fil-
ter bank architecture, ECG signal is first passed through a
cascade connection of three lowpass filters and then through
a highpass filter.

The proposed architecture only requires three lowpass fil-
ters, and a highpass filter when compared to the filter bank
architectures used in [14]. Also, hardware cost, as well as
power consumption of the proposed design, can be further
reduced by realizing the filters using FIR types. The transfer
function of lowpass and highpass filters are obtained as shown
in Eq. (1) and Eq. (2)

H zð Þ ¼ 0:125þ 0:375z−1 þ 0:375z−2 þ 0:125z−3 ð1Þ

G zð Þ ¼ −2þ 2z−1 ð2Þ

Comparison of proposed demand-based wavelet filter bank
architecture with [14] is discussed in Table 2.

A multiplier is a circuit element that requires more area and
power as a minimum of the four adders are required to imple-
ment a multiplier. As listed in Table 2, the proposed work
needs only seven multipliers against thirteen in [14] and
twenty-six in [24. In addition, the proposed work requires
only four adders as compared to sixteen in [14] and thirty-
two in [31].
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Hardware comparison in terms of area and power of the
proposed wavelet filter bank with the existing methods are
listed in Table 3. It is observed from Table 2 that the proposed
wavelet filter bank architecture requires four adders, sevenmul-
tipliers, and ten delay elements. Thus, the area needed to realize
these adders and multipliers are 1160 μm2 and 15,109.92 μm2,
respectively, which is comparatively lower than the existing
reported methods [14, 31]. In the proposed wavelet filter bank
architecture, the power consumed by adders and multipliers is
408 μWand 3047.17 μW, respectively, which is comparatively
lower than the existing reported methods [14, 31]. A complete

comparison between the proposed architecture and existing ar-
chitectures is presented in Table 3.

QRS complex detection

The incoming peaks are compared with a threshold value.
The threshold value is determined after passing the ECG
signal through wavelet filter bank. Two types of threshold
values namely hard threshold and soft threshold can be
used to compare the peak. The peaks which are having a
peak value less than the threshold are viewed to be zero in

Table 1 Properties of different wavelet transforms

Wavelet type Compact support Key properties Implementation

Orthogonal splines No Symmetry and regularity + orthogonality IIR/FIR

Semi-orthogonal splines Analysis or synthesis Symmetry and regularity + optimal time-frequency localization Recursive IIR/FIR

Shift-orthogonal splines No Symmetry and regularity + Quasi-orthogonality +fast decaying wavelet IIR

Biorthogonal Splines Yes Symmetry and regularity + compact support FIR

Fig. 4 (a) Recursive application
of wavelet filter bank. (b) Wavelet
filter bank. (c) Schematic of the
lowpass filter in wavelet filter
bank. (d) Schematic of a highpass
filter in wavelet filter bank
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both hard and soft thresholds. Thus, the functionality of
both hard and soft threshold values is same in the case of
those peaks with peak value less than the set threshold.
For the peaks with a peak value larger than a set thresh-
old, both hard threshold, and the soft threshold result in
different functionality. In case of the hard threshold, those
peaks having a value larger than the set threshold are
forced to approach towards one thus detecting the pres-
ence of a peak. In doing so, some features of the signal
are lost and hence using hard threshold degrades the com-
putational accuracy. In the soft threshold, the value of the
peaks is retained if the value of the peak is larger than the
threshold value. Hence, for the proposed QRS detector,
using soft threshold is more advantageous than using the
hard threshold. Eq. (3) defines the threshold value used in
this work.

Vth ¼ 0:8� A maxð Þ ð3Þ

A peak having a value larger than the defined threshold
value is considered to be an R-peak. Thus, by identifying the
R-peaks, the time interval between two consecutive R-peaks is
calculated.

The reason for selecting the above-said threshold
values is as follows. Different values of the threshold
are used to detect R peak. The threshold value neither
should result in false peak detection nor should miss a
peak. Further, setting a large value of threshold results
in missed peaks thus increasing the detection error rate.
Whereas, setting a small value of threshold results in in-
creased computation complexity and false detection thus
reducing the detection efficiency of the system. Different

values of Vth ranging from 0.7 to 0.9 are considered. Vth

close to 0.7 resulted in an increased false peak detection,
whereas, Vth close to 0.9 resulted in R-peaks being
discarded. Hence the threshold value is chosen to be
0.8 × A(maximum). Threshold values other than the pro-
posed either detect an extra number of ECG peaks or
detects less number of ECG peaks.

Data compression

Lossy and lossless are two types of compression techniques.
Compression ratio (CR) of lossy compression techniques is
high, but medical regulatory bodies do not approve these tech-
niques in many countries [9], thus prohibiting the commercial
use of lossy compression techniques is prohibited. In the loss-
less technique, as there is no chance of losing any information
about potential diagnostic value, the lossless technique is the
only option available and used in the proposed work. Many
lossless ECG compression techniques presented in the literature
[21–24] have focused on achieving high compression ratio.
Here in the proposed work, various data compression tech-
niques namely wavelet transform, Huffman coding/simple pre-
dictor, Huffman coding/adaptive, slope predictor/fixed length
packaging and run-length encoding are tested, but run-length
encoding is chosen based on its high compression ratio. In this
method, the detected R-peaks are represented by B1^ and B0^
represents the rest of the data. This data is then compressed by
replacing the zeros between two peaks by the number of zeros
between the peaks. Run-length encoding (RLE) is a well-
known, simple, and quick form of lossless data compression
technique which offers a significant amount of compression for
a specific type of data stream (in which the same data value
occurs in many consecutive data elements). The run-length
encoding decreases the size of a given signal, while at the same
time not losing any information from the original. Each packet
of Run-length encoding consists of two components, namely,
run_count which denotes the number of characters in the run,
and run_value which indicates the common value of the char-
acters in the run. For example, using RLE, the string of
datas 111,111,111,111,000,011,111,110,000,001,100 encoded
after string compression results in 1,214,071,602,120. This
can be interpreted as a sequence of twelve 1 s, four 0 s, seven

Table 2 Comparison of proposed architecture with existing methods

Design Technique Proposed [14] [31]

Lowpass filters 3 3 3

Highpass filters 1 4 4

Delay elements 10 13 NR

Adders 4 16 32

Multipliers 7 13 26

Table 3 Area and power comparison of adders and multipliers of proposed wavelet filter bank with existing ones

Method Number
of Adders

Area Required for
Adders (290 μm2

per adder [34])

Power Required for
Adders (102 μW
per adder [34])

Number of
Multipliers

Area Required for
Multipliers (2158.56
μm2 per Multiplier [35])

Power Required for
Multipliers (435.31
μW per adder [35])

[14] 16 4640 μm2 1632 μW 13 28,061.28 μm2 5659.03 μW

[31] 32 9280 μm2 3264 μW 26 56,122.56 μm2 11,318.03 μW

Proposed 4 1160 μm2 408 μW 7 15,109.92 μm2 3047.17 μW
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1 s, six 0 s, two 1 s and two 0 s. After that, RLE is applied to the
binary matrix. Compression ratio is calculated using Eq. (4).

CR ¼ N 0

N 1
ð4Þ

where, N0 = the number of uncompressed samples × bit width
of uncompressed samples and N1 = the number of compressed
samples × bit width of compressed samples.

Architecture

The block diagram of the complete architecture of pro-
posed design is shown in Fig. 5. The proposed design
mainly consists of three blocks. Namely, demand-based
wavelet filter bank architecture with a linear phase struc-
ture realization for ECG signal denoising, modified soft
threshold based QRS complex detector to detect R-peak,
and data compression to compress the detected ECG data
which is also used for the wireless transmission for med-
ical assistance. In the existing wavelet filter banks, Mallet
based wavelet filter bank architecture is used in which
signal is decomposed into two parts namely into approx-
imation and detail. Since all the peaks of ECG signal
present in the frequency range of 10 to 100 Hz, a
demand-based wavelet filter bank architecture with linear
phase structure realization is proposed in the present
work. The proposed wavelet filter bank consists of three
lowpass filters namely FB1, FB2, FB3, and a highpass
filter FB4.

It is found that the output of wavelet filter bank at fourth
level is smooth and less noisy compared to other levels.
Hence, fourth level wavelet filter bank is used for the pro-
posed design. After that soft threshold with value 0.8×
(max)A is chosen, which compares the output of wavelet filter
bank four with the set threshold value and detects the peaks.
After that, all detected peaks are considered as ‘1’ and unde-
tected peaks are considered as ‘0,’ and a binary matrix is
formed. Finally, data is compressed using RLE.

Performance results

The proposed work achieves an improved peak detection and
higher data compression rate. These results were discussed in
the following subsections.

QRS complex detection

ECG signal from various datasets namely MIT-BIH ar-
rhythmia database (MITDB) and QTDB [30] are used to
evaluate the proposed design. MIT-BIH arrhythmia data-
base contains forty-seven half-hours recording of annotat-
ed ECG signals with a sampling frequency of 360 Hz.
Whereas, the QT database contains 105 records with a
sampling frequency of 250 Hz.

The proposed technique is tested with three different types
of MIT-BIH arrhythmia database signals and QT database,
namely short time data (10s. data from MIT-BIH and QT
database), medium data (one-minute data from MIT-BIH
and QT database) and full-length data (1-h data from MIT-
BIH and QT database).

Further, false negative (FN) and false positive (FP) detec-
tions are used to evaluate the detection performance. FP is the
number of extra detected peaks and FN is the number of
missed peaks. Further, FN and FP are used to compute the
sensitivity (Se %), positive predictivity (+P %), data error rate
(DER %), the probability of missed detection (PD), and the
probability of false alarms (PFA). Se%, +P%, DER, and PD
are defined using Eq. (5) through Eq.

Se %ð Þ ¼ TP
TP þ FN

� 100 ð5Þ

þP %ð Þ ¼ TP
TP þ FP

� 100 ð6Þ

DER ¼ FP þ FN
Total number of QRS peaks

ð7Þ

PD ¼ 1−
TP

TP þ FN
ð8Þ

Fig. 5 Block diagram of
proposed joint ECG detection and
data compression scheme
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where true positive (TP) is the number of correctly detected R-
peaks. R-peak detection results for all records and different
size of data, namely ten seconds, one minute, and full-length
ECG data of MIT-BIH arrhythmia database are shown in
Tables 4, 5 and 6, respectively. Table 5 shows the results of
10 s ECG data; Table 5 shows results of 1-min ECG data and
Table 6 shows the results of 1-h ECG data.

As shown in Table 4, the proposed QRS complex detector
achieves the highest sensitivity and positive predictivity of

99.31% and 99.65% with the MIT-BIH arrhythmia database
of ten seconds. 108.mat and 214.mat signals from the MIT-
BIH arrhythmia database contain maximum noise [25]. The
proposed R-peak detector achieves the highest sensitivity and
positive predictivity of 90.90% and 100% on 108.mat and
100% sensitivity and positive predictivity on 214.mat.

From Table 5, the proposed R-peak detector achieves the
highest sensitivity and positive predictivity of 99.65% and
99.65%with theMIT-BIH arrhythmia database of oneminute.

Table 4 Performance of the proposed technique using 10 Second MIT-BIH Database

Record
No.

Total
(beats)

True positive
(TP)

False Negative
(FN)

False positive
(FP)

Failed detection
(FN + FP)

Failed detection
(%) (FN + FP)
× 100/total

Se (%) +P (%) DER (103)

100 13 13 0 0 0 0 100 100 0
101 11 11 0 0 0 0 100 100 0
102 12 12 0 0 0 0 100 100 0
103 11 11 0 0 0 0 100 100 0
104 13 13 0 0 0 0 100 100 0
105 14 14 0 0 0 0 100 100 0
106 10 10 0 0 0 0 100 100 0
107 12 11 1 0 1 8.33 91.66 100 0.83
108 11 10 1 0 1 9.09 90.90 100 .09
109 16 16 0 1 1 6.25 100 94.11 .06
111 12 12 0 0 0 0 100 100 0
112 14 14 0 0 0 0 100 100 0
113 09 09 0 0 0 0 100 100 0
114 10 10 0 0 0 0 100 100 0
115 10 10 0 0 0 0 100 100 0
116 14 14 0 0 0 0 100 100 0
117 9 9 0 0 0 0 100 100 0
118 12 12 0 0 0 0 100 100 0
119 10 10 0 0 0 0 100 100 0
121 10 10 0 0 0 0 100 100 0
122 15 15 0 0 0 0 100 100 0
123 9 8 1 0 1 11.11 90 100 .11
124 8 8 0 0 0 0 100 100 0
200 15 15 0 0 0 0 100 100 0
201 14 14 0 0 0 0 100 100 0
202 7 7 0 0 0 0 100 100 0
205 15 15 0 0 0 0 100 100 0
207 10 10 0 0 0 0 100 100 0
208 13 12 1 0 1 7.69 92.30 100 .076
209 15 15 0 0 0 0 100 100 0
210 16 16 0 0 0 0 100 100 0
212 15 15 0 0 0 0 100 100 0
213 18 18 0 0 0 0 100 100 0
214 13 13 0 0 0 0 100 100 0
215 18 18 0 0 0 0 100 100 0
217 12 12 0 0 0 0 100 100 0
219 13 13 0 0 0 0 100 100 0
220 12 12 0 0 0 0 100 100 0
221 13 13 0 0 0 0 100 100 0
222 13 13 0 0 0 0 100 100 0
223 13 13 0 0 0 0 100 100 0
228 12 12 0 0 0 0 100 100 0
230 14 14 0 0 0 0 100 100 0
231 10 10 0 0 0 0 100 100 0
232 9 9 0 1 1 .11 100 90 .11
233 17 17 0 0 0 0 100 100 0
234 15 15 0 0 0 0 100 100 0
Total 587 583 4 2 6 1.02 99.31 99.65 1.02
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Table 5 Performance of the proposed technique using 1-Minute MIT-BIH database

Record
No.

Total
(beats)

True positive
(TP)

False negative
(FN)

False positive
(FP)

Failed detection
(FN + FP)

Failed detection
(%) (FN + FP)
× 100/total

Se (%) +P (%) DER (103)

100 74 74 0 0 0 0 100 100 0
101 70 70 0 1 1 1.42 100 98.59 .014
102 73 73 0 0 0 0 100 100 0
103 70 70 0 0 0 0 100 100 0
104 74 73 1 0 1 1.35 98.64 100 .013
105 83 83 0 0 0 0 100 100 0
106 69 67 2 0 2 2.89 97.10 100 .028
107 71 71 0 0 0 0 100 100 0
108 58 58 0 0 0 0 100 100 0
109 91 91 0 0 0 0 100 100 0
111 69 69 0 0 0 0 100 100 0
112 85 85 0 0 0 0 100 100 0
113 58 58 0 0 0 0 100 100 0
114 55 55 0 0 0 0 100 100 0
115 63 63 0 0 0 0 100 100 0
116 79 79 0 0 0 0 100 100 0
117 50 50 0 0 0 0 100 100 0
118 73 73 0 0 0 0 100 100 0
119 65 65 0 0 0 0 100 100 0
121 60 59 1 0 1 1.66 98.33 100 .016
122 87 87 0 0 0 0 100 100 0
123 49 48 1 0 1 2.04 97.95 100 .020
124 50 50 0 0 0 0 100 100 0
202 53 53 0 0 0 0 100 100 0
205 89 89 0 0 0 0 100 100 0
209 92 92 0 0 0 0 100 100 0
210 91 89 2 0 2 2.19 97.80 100 .021
212 90 90 0 0 0 0 100 100 0
213 111 111 0 0 0 0 100 100 0
214 76 76 0 0 0 0 100 100 0
215 106 106 1 4 5 4.71 99.06 96.36 .047
217 72 72 0 0 0 0 100 100 0
219 74 74 0 0 0 0 100 100 0
220 72 72 0 0 0 0 100 100 0
221 79 78 1 0 1 1.26 98.73 100 .012
222 75 75 0 0 0 0 100 100 0
223 80 80 0 0 0 0 100 100 0
228 71 69 2 3 5 7.04 97.18 95.83 .070
230 79 79 0 0 0 0 100 100 0
231 63 63 0 0 0 0 100 100 0
233 103 103 0 0 0 0 100 100 0
234 92 92 0 0 0 0 100 100 0
Total 3144 3140 11 11 22 .699 99.65 99.65 .006

Table 6 Performance of the proposed technique using 1-h MIT-BIH database

Record No. Total beats True positive
(TP)

False negative
(FN)

False positive
(FP)

Se (%) +P (%) DER (103) Accuracy

100 2273 2273 0 0 100 100 0 100
102 2191 2187 4 0 99.8174 100 0.1826 99.99
103 2090 2083 7 0 99.665 100 0.3349 99.99
107 2139 2136 3 0 99.8597 100 0.1403 99.99
113 1795 1795 0 0 100 100 0 100
117 1538 1533 5 3 99.6749 99.8047 0.5202 99.99
122 2478 2476 2 0 99.9193 100 0.0807 99.99
123 1518 1518 0 0 100 100 0 100
220 2068 2048 20 0 99.0329 100 0.9671 99.99
234 2763 2752 11 0 99.6019 100 0.3951 99.99
Total 20,853 20,801 52 3 99.75 99.98 .26 99.93
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Also, the proposed R-peak detector achieves the highest sen-
sitivity and positive predictivity of 100% on 108.mat and
100% sensitivity and positive predictivity on 214.mat to
existing detection algorithms.

Comparison chart of Se, +P, and DER of the proposed algo-
rithm with different size of ECG dataset is shown in Fig. 6.

From Table 6, the proposed R-peak detector achieves the
highest sensitivity and positive predictivity of 99.75% and
99.98% with the MIT-BIH arrhythmia database of full-length.

The performance of the proposed QRS complex detector
under noisy conditions is shown in Fig. 7.

Figure 7(a) pictorially represents the 108.mat input ECG
signal taken from MIT-BIH arrhythmia database. To evaluate
the proposed QRS detection algorithm, a random noise source
as shown in Fig. 7(b) is generated and added to ECG signal in
Fig 6(c). Figure 7(c) shows a noisy input ECG signal. The
noisy input ECG signal is first filtered using a wavelet trans-
form based lowpass filter, wavelet filter bank 1(WFB1). The
output of the WFB1 is shown in Fig. 7(d). The output of the
WFB1 is further filtered using a wavelet transform based
lowpass filter also known as wavelet filter bank 2 (WFB2).
The output of WFB2 is shown in Fig. 7(e). The output of
WFB2 is then filtered using a wavelet transform based
lowpass filter known as wavelet filter bank 3 (WFB3). The
output of WFB3 is shown in Fig. 7(f). The output of WFB3 is
finally filtered using a wavelet transform based highpass filter
known as wavelet filter bank 4 (WFB4). The output of WFB4
is shown in Fig. 7(g). Figure 7(h) shows the detected R-peaks.
Figure 7(h) shows the 10 R-peaks in ten seconds of ECG data.
Table 4 also shows the same number of R-peaks for the
108.mat ECG data.

Performance comparison of existing techniques with the
proposed technique is shown in Table 7.
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Fig. 6 Comparison chart of Se, +P, and DER of the proposed algorithm
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Fig. 7 a 108 series of input ECG
signal taken from MIT-BIH
arrhythmia database, (b)
randomly generated noise signal,
(c) ECG signal contains noise, (d)
wavelet filter bank-1 output, (e)
Wavelet filter bank-2 output, (f)
Wavelet filter bank-3 output, (g)
Wavelet filter bank-4 output and
(h) final output.
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As shown in Table 7, the proposed technique has a better
detection performance compared to existing techniques. Some
methods like a genetic algorithm, filter bank also offer good
performance, but their computational complexities are rela-
tively high compared to proposed technique. The proposed
technique requires less hardware when compared to the
existing techniques like [14, 31] because of the use of modi-
fied demand based wavelet filter bank architecture, and linear
phase structure realization. Hence, the proposed technique is
better for both implantable as well as wearable cardiac pace-
maker applications.

Data compression

The proposed ECG data compression technique is tested using
QT database and MIT-BIH arrhythmia database. The bit com-
pression ratio (BCR) is calculated using the formula in Eq. (9):

BCR ¼ BWuncomp

BWcomp
ð9Þ

Here, BWuncomp is the bit width of the uncompressed sam-
ple and BWcomp is the bit width of the compressed sample. The

proposed ECG data compression technique gains a high com-
pression ratio of 17.1. The other existing data compression
techniques have very less compression ratio which is 2.66
for statistical Huffman coding, 2.17 for selective Huffman
coding and 2.28 for wavelet-based data compression tech-
nique. Comparison of proposed technique with existing tech-
niques is shown in Fig. 8.

Conclusion

In this work, a novel technique based on a biorthogonal wave-
let transform that is jointly used for QRS complex detection
and lossless ECG data compression aimed at implantable and
wearable ECG devices is proposed. The R-peak detector
achieves a high sensitivity of 99.75% and a positive
predictivity of 99.98%with the MIT-BIH arrhythmia database
and a sensitivity of 99.67% and positive predictivity of 99.9%
with the QT database. The RLE -based ECG data compression
technique provides a lossless compression ratio of 17.1The
proposed technique requires approximately 50% less hard-
ware compared to the existing techniques. The proposed
methodology can be further extended to analyze other bio-
medical signals.
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