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Abstract
This paper presents a novel algorithm (CVSTSCSP) for determining discriminative features from an optimal combination of
temporal, spectral and spatial information for motor imagery brain computer interfaces. The proposed method involves four
phases. In the first phase, EEG signal is segmented into overlapping time segments and bandpass filtered through frequency filter
bank of variable size subbands. In the next phase, features are extracted from the segmented and filtered data using stationary
common spatial pattern technique (SCSP) that can handle the non- stationarity and artifacts of EEG signal. The univariate feature
selection method is used to obtain a relevant subset of features in the third phase. In the final phase, the classifier is used to build
adecision model. In this paper, four univariate feature selection methods such as Euclidean distance, correlation, mutual infor-
mation and Fisher discriminant ratio and two well-known classifiers (LDA and SVM) are investigated. The proposed method has
been validated using the publicly available BCI competition IV dataset Ia and BCI Competition III dataset IVa. Experimental
results demonstrate that the proposed method significantly outperforms the existing methods in terms of classification error. A
reduction of 76.98%, 75.65%, 73.90% and 72.21% in classification error over both datasets and both classifiers can be observed
using the proposed CVSTSCSP method in comparison to CSP, SBCSP, FBCSP and CVSCSP respectively.

Keywords Brain computer interface . Stationary common spatial patterns . Motor imagery . Support vector machine . Linear
discriminant analysis . Feature extraction . Feature selection

Introduction

For people with neurological disorders, brain computer inter-
face (BCI) has provided a potential way to establish commu-
nication and restore lost motor functions by translating their
brain signals into device commands. BCI has garnered much
interest among researchers due to its practical applications in
computers, virtual gaming, assistive appliances, speech syn-
thesizers, and neural prostheses [1–5]. Several brain modali-
ties have been used to measure brain signals such as magne-
toencephalography (MEG), functional magnetic resonance

imaging (fMRI), positron emission tomography (PET), elec-
troencephalography (EEG), etc. Among these modalities,
EEG based BCI is the most widely used modality for analysis
of brain signals due to its non-invasive nature, low measure-
ment cost and high resolution. In EEG based BCI, electrodes
are placed on the scalp of the brain to capture electrical sig-
nals, that are generated by the neuronal activity of brain, for
the purpose of communication. Major EEG based BCI para-
digms include P300, visually evoked potential, sensorimotor
rhythms (motor–imagery) [6], etc. Among these, particular
attention has been received by motor-imagery based BCIs,
which involve visualization of the movement of a specific
body motor part [7, 8]. Motor imagery BCIs use variations
in sensory motor rhythms (μ and β rhythms) to translate brain
signals into control commands [9]. These variations are de-
tected over the sensorimotor cortex and are induced by exe-
cution or imagination of hand or leg movement [6]. The am-
plitude of sensorymotor rhythms reduces during motor imag-
ination or execution which is known as Event-Related
Desynchronization (ERD). The subsequent increment in the
amplitude of sensorymotor rhythms instantly after the
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execution or imagination of movement is called as Event-
Related Synchronization (ERS) [6, 10–12].

These brain signals undergo volume conductionwhich pro-
vides weak spatial resolution [6, 11]. To analyze a single trial
EEG, a BCI device is tuned to the subject specific character-
istics by calculating data dependent spatial filters. CSP meth-
od [2, 13, 14], a data-driven spatial filtering technique, is a
widely used spatial filter method in motor imagery BCI. CSP
is aimed at finding the spatial filters from multichannel EEG
signal which maximize variance of one class and at the same
time minimizes variance of the other class [2, 6, 14]. The
method is computationally simple and reflects the specific
activation of cortical areas by assigning weights to the elec-
trodes according to their importance. It also reduces the di-
mension of the data.

The major drawback of the CSP method is that it is
sensitive to the presence of artifacts in raw EEG data
and the non-stationary nature of EEG signals. Further,
CSP suffers from the small size problem as the number
of task-related trials is less as compared to the number of
electrodes [15]. The size of covariance matrices obtained
using CSP is of the order O(N2), where N is the number
of electrodes. If the covariance matrices in CSP are esti-
mated with a relatively small number of trials, the pres-
ence of a single trial contaminated with artifacts may not
provide an appropriate CSP filter. In such situation, CSP
suffers from the problem of overfitting [16, 17] and thus
leads to poor performance. A variant of CSP, Stationary
CSP (SCSP), is suggested in literature [17] that can han-
dle the artifacts and non-stationarity of EEG data.

However, CSP as well as SCSP, in its original formu-
lation, do not consider the spectral information of the
signal to derive the spatial filter. It is pointed out in the
literature [13, 14] that a specific set of frequency bands
helps in discriminating the two different motor imagery
tasks. A set of the frequency range for EEG is defined
according to its distribution over the scalp or biological
significance [6, 18]. These frequency bands are referred as
delta (1–4 Hz), theta (4–7 Hz), alpha (7–12 Hz), beta
(12–30 Hz), and gamma (30–40 Hz). Most of the relevant
information gained from motor imagery signals lies in mu
(7–12 Hz) and beta (12–30 Hz) bands of brain EEG
which typically falls in the frequency bands of 7–30 Hz
[2]. CSP spatial filters are thus applied to EEG signals
filtered from these relevant frequency bands (mu and beta
bands) to optimize the performance of a motor imagery
BCI. It is possible that frequency subbands other than mu
(7–12 Hz) and beta (12–30 Hz) are more relevant to dis-
tinguish motor imagery tasks. Manual tweaking, as well
as exhaustive search, can help in determining the best
frequency bands, but this is computationally intensive. It
is thus desirable to automatically find optimal subject-
specific frequency bands that relate to brain activities

associated with motor imagery tasks in order to achieve
higher accuracy.

In literature, several research works [19–21] suggested
methods to determine spatial filters from a predefined filter
bank of fixed sized non-overlapping subband frequency fil-
ters. Working in this direction, Novi et al. (2007) proposed
Subband CSP (SBCSP) [19] that used data filtered from dif-
ferent fixed sized subbands to extract features by applying
CSP followed by linear discriminant analysis to distinguish
motor imagery tasks. The features from subbands were ranked
using recursive feature elimination (RFE) method based on
SVM. In Filter Bank CSP (FBCSP) method [20], maximal
mutual information criterion was used to select optimal
spatio-temporal filters from data filtered using different fixed
size frequency bands. SBCSP and FBCSP methods employ
manual setting of fixed sized (bandwidth 4 Hz) frequency
subbands in the range of 4–40 Hz. Thus, any other relevant
subbands that can possibly be present in the given frequency
band range were not explored in these two methods, which
may lead to poor performance.

The efficacy of the CSP/SCSP also depends on the choice
of time segment of the EEG taken relative to the visual cue
presented to the subject [22, 23]. Typically, time segment of
1 s after the cue is taken for computation of CSP/SCSP spatial
filters. However, the generation of motor imagery related EEG
rhythms varies with the subject involved and relevant time
segment cannot be identified manually [22]. Thus, there is a
need to identify subject specific and task related frequency
filter and relevant time segment EEG data for better perfor-
mance of motor imager tasks.

To determine the subject specific optimal frequency bands,
the research work [21] has proposed the Combined Variable
Sized Common Spatial Patterns method (CVSCSP) that gen-
erates a variable size frequency subbands filter bank.
However, CVSCSP is not able to detect the irregularities in
performance of a given subject that arise due to use of irrele-
vant time segment of a trial. Further, it cannot handle the
artifacts and non-stationarity of the signal. In this paper, we
have proposed a modified version of the CVSCSP that is more
robust to artifacts and include utilizes relevant temporal fea-
tures. In the proposed method, in order to capture the relevant
temporal features for a given subject, we segment the data
from each trial into three different overlapping time segments.
The obtained data from each time segment is then bandpass
filtered using the variable size frequency subbands. Spatial
features are extracted using SCSP to handle artifacts and
nonstationarity from the bandpass filtered data of different
time segment separately. Finally, the extracted features are
combined to form a high dimensional feature vector. Thus,
the proposed model is able to take an advantage of temporal,
spatial and frequency information of the data simultaneously.
However, the high dimension feature vector obtained may
contain irrelevant features. In order to obtain relevant subset
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of features, univariate feature selection method is used to rank
the obtained features. We have investigated four well-known
univariate feature selection methods to rank features.

The proposed method involves four phases: In the first
phase, we segment the raw data into overlapping time segment
data, generate filter bank of variable sized frequency subbands
to filter the data. In the second phase, a combination of SCSP
and linear discriminant analysis is used to compute features
from filtered data. The obtained features are ranked using
univariate feature selection method in the third phase.
Finally in the fourth phase, a classification model is learnt
using the ranked features. We have also performed Friedman
statistical test [24] to determine the statistical difference
among the proposed method and the existing methods i.e.
CSP, SBCSP, FBCSP and CVSCSP.

The major contributions of this paper include:

(a) The proposed method utilized relevant temporal, spectral
and spatial information to distinguish motor imagery
tasks.

(b) Four univariate filter feature selection methods are inves-
tigated to find a reduced subset of relevant features for
motor imagery tasks classification.

(c) The performance of the proposed method is compared
with the existing methods on two publicly available
datasets. Friedman statistical test is employed to show
that the proposed method statistically significantly
outperformed the existing methods.

Rest of the article is organized as follows: BRelated works^
section includes related research works of motor imagery BCI.
In BCombined variable sized subband and temporal filter
based stationary common spatial patterns (CVSTSCSP)^ sec-
tion, we discuss the proposedmethod. BExperimental data and
results^ section illustrates the experimental setup and results.
Finally, in BConclusion and future directions^ section, conclu-
sion of the article with some future insights are discussed.

Related works

CSP is one of primary spatial filtering techniques used in
the area of motor imagery BCI. However, CSP performs
poorly due to problems like non-stationarity of EEG sig-
nals, artefacts generated from eye movements, electro-
myographic activity or any other muscular movement, ir-
relevant frequency filtering, etc. [2, 17]. CSP variants like
common spatio-spectral pattern (CSSP) and common
sparse spectral spatial pattern (CSSSP) include time delay
embedding to optimize spectral filters simultaneously
with the optimization of CSP filters. These methods are
able to overcome some of the limitations faced by CSP.
However, due to multiple time delay embedding and

regularization of classifier parameters, space and time
complexity of these techniques is quite high [25].
Another variant of CSP i.e. the stationary common spatial
pattern (SCSP) has been proposed to reduce the effect of
non-stationary characteristics of the EEG signal by intro-
ducing a penalty term in the CSP’s target function [17].
Further in this direction, to take care of non-stationary and
variable nature of EEG signals, non-homogenous spatial
filters (distinct frequency and time dependent spatial fil-
ters) have been used [26]. In a similar kind of research
work [23, 27], spatial and spatio-spectral filters are esti-
mated by a generalized CSP framework using an optimi-
zation constraint and specific target function for improv-
ing classification performance and reducing the instability
caused by non-stationarity of EEG signals. Subject trans-
fer based composite local temporal correlation CSP has
been proposed to deal with noise and inter subject vari-
ability using the concept of local temporal based covari-
ance matrices and composite approach based subject in
the research work [9]. All these methods, performs simul-
taneous optimization of spatial or spectral filters within
CSP optimization criterion.

On the other hand, instead of simultaneous optimization of
a spectral filter within CSP, some of the other variants of CSP
select significant features from multiple frequency bands to
improve classification performance. Subband CSP [19] ex-
tracted spatial filters features from a non-overlapping fixed
size subband frequency filter bank and used LDA score fusion
for classification. SBCSP uses RFE SVM based feature selec-
tion to remove irrelevant subband features. In the research
work [20], mutual information has been used as a feature
selection criterion that considers the nonlinear correlation be-
tween the features from different frequency bands and the
class variable. In another research work [28], sparse filter band
CSP has been proposed that uses overlapping fixed sized
subbands of a frequency band to optimise the CSP feature
selection with the lasso estimate. In the similar research direc-
tion, spatial spectral filters are optimised in [29] with the aim
of minimizing Bayesian classification error while maximizing
mutual information among the frequency bands. However, all
these variants of CSP, uses fixed size subband filters for fea-
ture extraction. The research work proposed by [23] have
suggested the use of backtracking search optimization algo-
rithm for relevant frequency band and time segment selection
for motor imagery BCI. However, evolutionary algorithms are
computationally intensive. Also, these methods require tuning
of more number of parameters such as kind of selection, cross-
over operator, population size, fitness function to achieve op-
timal solution [30]. Hence, evolutionary algorithms are not
suitable for real time BCI application. Further, most of the
research work discussed in literature considers features based
on temporal, spatial and spectral content separately or in com-
bination of two and not all of the three simultaneously.
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Combined variable sized subband
and temporal filter based stationary common
spatial patterns (CVSTSCSP)

Figure 1 shows the flow diagram of the four phases used in
proposed CVSTSCSP model. A brief description of each of
these phases is given below:

Preprocessing

& Data segmentation

In the proposedmethod, we segment the raw data into three
overlapping time windows [TS1:0.5–2.5, TS2: 1.0–3.0,
TS3:1.5–3.5]. The data from time window [0.0–0.5 and 3.5–
4.0] has not been used to avoid the overlapping from resting
data [22].

& Generation of Frequency Band and Bandpass Filtering

In this step, we generate frequency subbands of variable
size from a defined frequency range, a minimum bandwidth
and a defined frequency granularity i.e. the length between
the central frequencies of two contiguous bands. The gen-
erated set of frequency subbands act as a filter bank of var-
iable size subbands. The process to generate variable sized
frequency filter bank explicitly does not need information
of relevant subbands to distinguish given two motor imag-
ery tasks. As an example, various subbands generated for
frequency range (7–32), a minimum bandwidth and granu-
larity of 5 Hz can be seen in Fig. 2. These variable sized set
of subbands act as overlapping subband filter bank. The
data obtained from each of the time segment is bandpass

filtered from this filter bank of variable sized subband
filters.

Feature extraction

SCSP To extract relevant features filtered data, stationary com-
mon spatial patterns (SCSP) [17] technique is utilized, which
is a variant of CSP spatial filtering technique. In CSP, spatial
filters are derived from the simultaneous diagonalization of
the covariancematrices of the EEG signal data from each class
that can be achieved by solving the optimization problem of
the following Rayleigh criterion maximization function:

R wð Þ ¼ WTΣ1W

WT Σ1 þΣ2f gW ð1Þ

whereΣ1andΣ2 are normalized average covariance matrices
of class1 and class 2 respectively and W is a spatial filter
matrix. However, CSP suffers from problems like presence
of artifacts and stationarities within the signal. In SCSP, to
minimize the effect of non-stationarity, a measure of station-
arity has been used which is given by the sum of absolute
differences between the projected average variance of all trials
and the projected variance in each trial. The difference be-
tween normalized average covarianceΣ1orΣ2 and the covari-
ance matrix of each trial k for each class is given by:

Δ kð Þ
c ¼ s Σk

c−Σc

� � ð2Þ

where s is an operator for making symmetric matrix positive
definite. The average difference matrix for class c (c = 1, 2) is
given as:

Δc ¼ 1

K
∑K

k¼1Δ
k
c ð3Þ

Fig. 1 Flow Diagram of the
proposed CVSTSCSP model
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The modified Rayleigh Criterion maximization function is
given as:

R wð Þ ¼ WTΣ1W

WT Σ1 þΣ2f gWþ αP Wð Þ ð4Þ

where P Wð Þ ¼ WT Δ1 þΔ2

� �
W is penalty term and α is a

constant determined using method proposed in [31]. The
transformed matrix Z for a given trial X, is given as:

Z ¼ WX ð5Þ

Feature fp is computed as:

fp ¼ log
var Zp

� �
∑2r

p¼1var Zp

� �
 !

ð6Þ

where Zp are the first and last r rows of Z.

LDA SCSP features, extracted from each combination of TSth

time segment and kth subband, are transformed using linear
discriminant analyser which provides a projection matrix

WTS;k
lda that minimizes intra class variance STS;kW and maxi-

mizes inter class variance STS;kB given by:

STS;kB ¼ mTS;k
2 −mTS;k

1

� �
mTS;k

2 −mTS;k
1

� �T
ð7Þ

and

STS;kW ¼ ∑ f p∈c1 fTS;kp −mTS;k
1

� �
fTS;kp −mTS;k

1

� �T
þ ∑ f p∈c2 fTS;kp −mTS;k

2

� �
fTS;kp −mTS;k

2

� �T
ð8Þ

The cost function for TSth time segment and kth subband,
which needs to be maximized, is given by:

JTS;k ¼ WTS;k
lda

T
STS;kB WTS;k

lda

WTS;k
lda

T
STS;kW WTS;k

lda

ð9Þ

where mTS;k
1 and mTS;k

2 are means of class 1 and class 2 fea-
tures for TSth time segment and kth subband respectively. The
score for TSth time segment and kth subband is defined as

sTSk ¼ WTS;k
lda fTS;kp ð10Þ

The scores obtained from each combination of TSth time
segment and kth subband are fused to form a 3*k-dimensional
feature vector
sTS11 ; sTS12 …sTS1k ; sTS21 ; sTS22 …sTS2k ; sTS31 ; sTS12 …sTS3k

� �
T cor-

responding to each trial.

Feature selection

Feature vector derived may enclose features from irrel-
evant time segment and subband for a given mental
task. These irrelevant features may deteriorate the per-
formance of decision model. In order to gain proper
insight about the features and their relevance to a class
variable, univariate feature selection techniques have
been used in literature [32]. A subset of feature are
selected on the basis of a selection criterion. The re-
duced and relevant set of features will require reduced
space and less computation time for leaning a model
and will also provide improved classification perfor-
mance. Thus, the ranking of features is carried out in
the third phase using following univariate feature selec-
tion approaches:

& Euclidean distance: Euclidean distance [32] is a
Pythagorean Theorem based simple distance mea-
sure. It measures the distance between the data
points belonging to two classes. Euclidean distance
between the two classes c1 and c2 for including the
feature f is given by:

D1;2 fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ f
1−μ f

2

� �
μ f
1−μ f

2

� �q
ð11Þ

Fig. 2 Various subbands obtained
fromminimum bandwidth (5 Hz.)
and granularity (5 Hz.) in a
frequency range (7–32 Hz)
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where μ f
i is the mean of feature f for class ci. The high value of

D1,2 characterizes that the two classes are highly
distinguishing. It is simple and fast. However, it assumes that
the samples are distributed about its mean spherically.

& Correlation: Correlation [33] is adopted as a measure of
goodness between two variables (feature f and class vari-
able c) with the assumption that a good feature is highly
correlated to class label. The linear correlation coefficient
between class ci (i = 1, 2) and feature f is given by:

R fð Þ ¼ ∑i f−μ f
i

� �
ci−μc

i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i f−μ f

ið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i ci−μc
ið Þ2

q ð12Þ

where μ f
i is the mean of feature f and μc

i is the mean of class
ci. The value of r lies between −1 and 1. Higher the magnitude
of R, more relevant is that feature f.

& Mutual information: The mutual information [34] mea-
sures the nonlinear correlation between two random vari-
ables. The mutual information I(c; f) between class ci (i =
1, 2) and feature f is given by:

I ci; fð Þ ¼ H cið Þ−H ci j fð Þ ð13Þ
where H(ci) is the entropy function for class variable c given
by:

H cið Þ ¼ −∑2
i¼1P cið ÞlogP cið Þ ð14Þ

and H(ci| f) is the change in entropy value of class variable c
by observing feature f is given by:

H ci j fð Þ ¼ −∑N f
f¼1P fð Þ ∑2

i¼1P ci j fð ÞlogP
�
ci j f

�� �
ð15Þ

where P(ci) is the probability density function for class vari-
able ci and P(ci | f) is the conditional probability density func-
tion. Higher the magnitude of I(ci; f), more relevant is that
feature f to the class variable ci. Given an initial set of features,
a subset of features that provides maximal mutual information
is selected for classification.

& Fisher discriminant ratio (FDR): FDR [35] is a ranking
approach that ranks the features on the basis of following
measure:

FDR fð Þ ¼ μ f
1−μ f

2

� �2
σ2
1 þ σ2

2

ð16Þ

whereμi andσi denotemean and variance of the i
th class features,

respectively. Higher value of FDR depicts the data of different
classes is more separable and less scattered around their mean.

Classification

After obtaining relevant features, a decision model is built.
Two well-known classifiers such as linear discriminant anal-
ysis (LDA) [36] and support vector machine (SVM) [33] are
investigated in this paper.

Experimental data and results

Dataset description and parameter setting

Dataset 1: BBCI competition III dataset Iva^

Fraunhofer FIRST and Campus Benjamin Franklin of the
Charite - University Medicine Berlin have provided this
dataset [37]. The given dataset is composed of motor
Imagery EEG signals generated during right hand and right
foot motor imagination. Five healthy subjects (aa, al, av., aw
and ay) were employed for acquisition of data. Each subject’s
dataset consists of EEG signals of 280 trials. The signals were
measured using 118 EEG channel locations from extended
international 10/20 electrode montage system. During each
trial, the subject was provided with a visual cue shown for
3.5 s showing which of the three motor imagery tasks, the
subject needs to perform: left hand motor imagery, right hand
motor imagery, and right foot motor imagery. The captured
EEG data was preprocessed using a bandpass filter of 0.05–
200 Hz and then fed to digitization at 1000 Hz and
downsampled at 100 Hz. The resting window between two
adjacent experiments was randomly taken from a time period
of 1.75–2.25 s. EEG trials only for the right-hand motor im-
agery and right-foot motor imagery were given for competi-
tion purpose. These parameter settings are provided by the
BCI competition.

Dataset 2: BBCI competition IV dataset Ia^

Berlin BCI group, Fraunhofer FIRST and Campus Benjamin
Franklin of the Charité University Medicine Berlin have pro-
vided this dataset [38]. Seven healthy subjects (ds1a, ds1b,
ds1c, ds1d, ds1e, ds1f and ds1g) were employed for acquisi-
tion of data. Each subject’s dataset consists of EEG signals of
200 trials. The signals were measured using 59 EEG channel
locations from extended international 10/20 electrode mon-
tage system. For the period of each trial, the subject was pro-
vided with a visual cue shown for 4 s. For each subject, two
classes of motor imagery were selected from the three classes
left hand motor imagery, right hand motor imagery, and foot
motor imagery at a time. The whole dataset is divided into two
categories: Calibration Data and Evaluation Data. The cap-
tured EEG Signals were bandpass filtered between 0.05 and
200 Hz and then fed to digitization at 1000 Hz and
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downsampled at 100 Hz. The resting window between two
adjacent experiments was randomly taken from a time period
of 2–4 s. These parameter settings are provided by the BCI
competition.

For experimental analysis, we have used the data from each
trial that belongs to the overlapping time windows [0.5 to 2.5,
1.0 to 3.0, and 1.5 to 3.5 s] [22] after the onset of stimulus
which yields a total of 200-time units per electrode in a trial or
an EEG signal matrix of 118 × 200 per trial for Dataset 1 and
59 × 200 [21, 31, 39] per trial for Dataset 2. Variable size
subbands is generated from a given frequency band [7–
30 Hz] at a variable bandwidth (bw) = [3,4,…7 Hz] and gran-
ularity (gr) = [3,4,…7 Hz]. Thus, the smallest considered
bandwidth of variable subbands is not very small thus infor-
mation loss would be minimal. The time segmented data is
then bandpass filtered using the different variable sized
subbands filter bank. Stationary CSP in combination with
LDA is then used for extracting features. SCSP penalty pa-
rameter μ = 0.1 (decided using cross-validation) is used for all
the experiments on both datasets. In literature [18], it is shown
that r= 1 or r = 2 is a good choice and adding more number of
spatial patterns does not enhance the classification perfor-
mance. Therefore, in this research work, the number of spatial
patterns has been fixed to r = 1 [19–21]. Hence for each time
segment and variable size band combination, we obtain two
features for each trial and LDA analysis converts the obtained
two features from each combination of time segment and
subband into one feature. Univariate feature selectionmethods
are then used to rank these features. To achieve the best per-
formance of learning machine, grid search is employed to
obtain SVM regularization parameter C and the Gaussian ker-
nel parameter σ which varied from 1 to 500 and 1 to 100
respectively. The optimal value so obtained were C = 100
and σ = 10 based on experimentation.

The performance of the CKSSCSP is compared with
existing methods (CSP, SBCSP, FBCSP and CVSCSP) in
terms of average classification error. The classification error
is reported as average of 10 runs of 10-fold cross-validation
classification error for each subject. In our experiment, for
comparison with existing methods, we have performed exper-
iments on the parameters that were suggested in the existing
works [19–21]. Therefore, in this work, a fixed size bw = 4 Hz
is considered for SBCSP, FBCSP and for CVSCSP bw = 4 Hz,
gr = 4 Hz and Euclidean distance based feature selection are
used for performance evaluation. Different values of bw and
gr ranging from 3 to 7 Hz have been used for evaluating the
variation in the performance of each subject using proposed
method CVSTSCSP.

Results and discussion

Figures 3, 4, 5 and 6 show variations in classification error of
the proposed method CVSTSCSP with the choice of single

time segments (TS1:0.5–2.5, TS2: 1.0–3.0, TS3:1.5–3.5), and
all three segments (ALL_TS)) of Dataset 1 and Dataset 2 for
SVM and LDA classifiers respectively using different univar-
iate feature selection methods. The classification error is re-
ported in terms of average classification error of 10 runs of 10-
fold cross-validation for all subjects. The following can be
noted from Figs. 3 and 4 for Dataset 1:

& Using correlation based feature selection, there is an over-
all decrease of 23.04%, 30.9% and 24.68% in average
classification error using LDA classifier and a decrease
of 10.65%, 24.29% and 24.77% in average classification
error using SVM classifier with the use of all relevant
features from the three time segments ALL_TS in
CVSTSCSP as compared to relevant features from single
time segment TS1, TS2 and TS3 in CVSTSCSP
respectively.

& Using FDR based feature selection, there is an overall
decrease of 25.12%, 32.25% and 24.98% in average clas-
sification error using LDA classifier and a decrease of
9.33%, 23.65% and 24.45% in average classification error
using SVM classifier with the use of all relevant features
from the three time segments ALL_TS in CVSTSCSP as
compared to relevant features from single time segment
TS1, TS2 and TS3 in CVSTSCSP respectively.

& Using Euclidean based feature selection, there is an over-
all decrease of 6%, 3.2% and 12.68% in average classifi-
cation error using LDA classifier and a decrease of
16.89%, 16.53% and 35.38% in average classification er-
ror using SVM classifier with the use of all relevant fea-
tures from the three time segments ALL_TS in
CVSTSCSP as compared to relevant features from single
time segment TS1, TS2 and TS3 in CVSTSCSP
respectively.

& Using mutual information based feature selection, there is
an overall decrease of 35.7%, 32.5% and 41.3% in aver-
age classification error using LDA classifier and a de-
crease of 17.09%, 13.98% and 41.04% in average classi-
fication error using SVM classifier with the use of all
relevant features from the three time segments ALL_TS
in CVSTSCSP as compared to relevant features from sin-
gle time segment TS1, TS2 and TS3 in CVSTSCSP
respectively.

& The combination of CVSTSCSP with mutual information
based feature selection performs best and the combination
of CVSTSCSP with Euclidean distance based feature se-
lection performs worst among all combinations of feature
selection with CVSTSCSP with SVM classifier.

& The combination of CVSTSCSP with mutual information
based feature selection performs best and the combination
of CVSTSCSP with correlation based feature selection
performs worst among all combinations of feature selec-
tion with CVSTSCSP with LDA classifier.
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& On an average, minimum average classification error
of 5.1% and 4.48% is obtained using mutual infor-
mation based feature selection for Dataset 1 with
SVM and LDA classifier respectively. Finally, we
can also observe from Figs. 3 and 4 that classifica-
tion error has reduced significantly with the use of
all relevant features from the three time segments
ALL_TS as compared to relevant features from sin-
gle time segment TS1, TS2 and TS3 in the proposed
CVSTSCSP method with SVM as well as LDA
classifier.

Following deductions can be made from Figs. 5 and
6 for Dataset 2:

& Using correlation based feature selection, there is an over-
all decrease of 39.93%, 17.28% and 33.18% in average
classification error using LDA classifier and a decrease of
43.75%, 32.91% and 41.12% in average classification er-
ror using SVM classifier with the use of all relevant fea-
tures from the three time segments ALL_TS in
CVSTSCSP as compared to relevant features from single
time segment TS1, TS2 and TS3 in CVSTSCSP
respectively.

& Using FDR based feature selection, there is an overall
decrease of 39.98%, 17.42% and 33.20% in average clas-
sification error using LDA classifier and a decrease of
43.69%, 32.84% and 41.05% in average classification er-
ror using SVM classifier with the use of all relevant fea-
tures from the three time segments ALL_TS in

Fig. 4 Comparison of average classification error for Dataset 1 for the proposed method CVSTSCSP using LDA classifier

Fig. 3 Comparison of average
classification error for Dataset 1
for the proposed method
CVSTSCSP using SVM classifier
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CVSTSCSP as compared to relevant features from single
time segment TS1, TS2 and TS3 in CVSTSCSP
respectively.

& Using Euclidean based feature selection, there is an
overall decrease of 29.38%, 15.62% and 23.22% in
average classification error using LDA classifier and
a decrease of 38.07%, 28.25% and 31.31% in average
classification error using SVM classifier with the use
of all relevant features from the three time segments
ALL_TS in CVSTSCSP as compared to relevant fea-
tures from single time segment TS1, TS2 and TS3 in
CVSTSCSP respectively.

& Using mutual information based feature selection, there is
an overall decrease of 38.98%, 14.94% and 31.93% in
average classification error using LDA classifier and a
decrease of 43.42%, 33.48% and 41.21% in average clas-
sification error using SVM classifier with the use of all
relevant features from the three time segments ALL_TS in
CVSTSCSP as compared to relevant features from single
time segment TS1, TS2 and TS3 in CVSTSCSP
respectively.

& The combination of CVSTSCSP with mutual information
based feature selection performs best and the combination
of CVSTSCSP with Euclidean distance based feature

Fig. 6 Comparison of average classification error for Dataset 2 for the proposed method CVSTSCSP using LDA classifier

Fig. 5 Comparison of average
classification error for Dataset 2
for the proposed method
CVSTSCSP using SVM classifier
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selection performs worst among all combinations of fea-
ture selection with CVSTSCSP with SVM classifier.

& The combination of CVSTSCSP with mutual information
based feature selection performs best and the combination
of CVSTSCSP with correlation based feature selection
performs worst among all combinations of feature selec-
tion with CVSTSCSP with LDA classifier.

& On an average, a minimum average classification error of
6.46% is obtained using correlation based feature selec-
tion with SVM classifier and a minimum average classifi-
cation error of 7.68% is obtained using FDR based feature
selection with LDA classifier for Dataset 2.

& Finally, we can also observe from Figs. 5 and 6 that clas-
sification error has reduced significantly with the use of all
relevant features from the three time segments ALL_TS as
compared to relevant features from single time segment
TS1, TS2 and TS3 in the proposed CVSTSCSP method
with SVM as well as LDA classifier

Tables 1 and 2 show the comparison of average classifica-
tion error of all the existing methods with the proposed ap-
proach CVSTSCSP for dataset1 with LDA and SVM classi-
fiers respectively. From Tables 1 and 2, the following obser-
vations can be deduced for Dataset 1:

& The proposed method CVSTSCSP performs best among
all methods and achieves a minimum classification error
of 0.04 and 0.05 with LDA and SVM classifier
respectively.

& There is an overall decrease of 80.72% and 82.2% in clas-
sification error with the use of CVSTSCSP in comparison
to CSP with LDA and SVM classifier respectively.

& An overall decrease of 82.0% and 79.82% in classification
error can be observed using the proposed method
CVSTSCSP in comparison to SBCSP with LDA and
SVM respectively.

& A decrease of 82.3% and 84.2% classification error has
been achieved with CVSTSCSP in comparison to FBCSP
with LDA and SVM classifier respectively.

& A deduction in classification error of 86.2% and 89.1%
has also been obtained with the proposed method
CVSTSCSP in comparison to CVSCSP method.

& An average decrease of 81.1%, 80.9%, 83.3% and 87.7%
can be observed using the proposed method CVSTSCSP
in comparison to CSP, SBCSP, FBCSP and CVSCSP re-
spectively over all classifiers and all subjects of Dataset 1.

Tables 3 and 4 shows the comparison of average classifi-
cation error of all the existing methods with the proposed
approach for Dataset 2 with LDA and SVM classifiers respec-
tively. From Tables 3 and 4, following observations can be
deduced for Dataset 2 as above:

Table 1 Comparison of classification error of different methods with
LDA at a bandwidth bw = 4 Hz for Dataset 1

Subject CSP SBCSP FBCSP CVSCSP CVSTSCSP

aa 0.23 0.16 0.16 0.13 0.06

al 0.10 0.02 0.03 0.03 0.00

av 0.35 0.26 0.35 0.27 0.14

aw 0.14 0.15 0.07 0.14 0.00

ay 0.20 0.36 0.33 0.23 0.02

Mean error 0.20 0.19 0.19 0.16 0.04

Table 2 Comparison of classification error of different methods with
SVM at a bandwidth bw = 4 Hz for Dataset 1

Subject CSP SBCSP FBCSP CVSCSP CVSTSCSP

aa 0.23 0.19 0.19 0.15 0.06

al 0.10 0.01 0.01 0.01 0.00

av 0.33 0.28 0.26 0.28 0.17

aw 0.16 0.22 0.07 0.13 0.01

ay 0.15 0.35 0.37 0.15 0.02

Mean Error 0.19 0.21 0.18 0.14 0.05

Table 3 Comparison of classification error of different methods with
LDA at a bandwidth bw = 4 Hz for Dataset 2

Subject CSP SBCSP FBCSP CVSCSP CVSTSCSP

ds1a 0.25 0.30 0.27 0.33 0.20

ds1b 0.33 0.47 0.45 0.41 0.16

ds1c 0.30 0.36 0.26 0.20 0.04

ds1d 0.21 0.12 0.10 0.09 0.01

ds1e 0.14 0.12 0.17 0.08 0.02

ds1f 0.17 0.21 0.19 0.18 0.06

ds1g 0.22 0.09 0.07 0.08 0.06

Mean error 0.23 0.24 0.22 0.20 0.08

Table 4 Comparison of classification error of different methods with
SVM at a bandwidth bw = 4 Hz for Dataset 2

Subject CSP SBCSP FBCSP CVSCSP CVSTSCSP

ds1a 0.27 0.30 0.28 0.30 0.21

ds1b 0.35 0.47 0.45 0.41 0.14

ds1c 0.30 0.41 0.25 0.19 0.04

ds1d 0.23 0.20 0.12 0.09 0.00

ds1e 0.17 0.16 0.19 0.10 0.01

ds1f 0.17 0.24 0.20 0.18 0.06

ds1g 0.21 0.11 0.09 0.08 0.01

Mean error 0.24 0.27 0.23 0.19 0.07
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& The proposed method CVSTSCSP performs best among all
methods and achieves aminimum classification error of 0.08
and 0.07 with LDA and SVM classifier respectively.

& There is an overall decrease of 79.8% and 76.7% in clas-
sification error with the use of CVSTSCSP as compared to
CSP with LDA and SVM classifier respectively.

Fig. 7 Comparison of classification error for all subjects of Dataset 1 at different bandwidth and granularity values
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Fig. 8 Comparison of classification error for all subjects of Dataset 2 at different bandwidth and granularity values
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& An overall decrease of 78.7% and 72.1% in classification
error can be observed using the proposed method as com-
pared to SBCSP with LDA and SVM respectively.

& A decrease of 82.2% and 79.4% classification error has
been achieved with CVSTSCSP in comparison to FBCSP
with LDA and SVM classifier respectively.

& A deduction in classification error of 85.2% and 84.38%
have also been obtained while comparing the proposed
method and CVSCSP method.

& An average decrease of 78.5%, 75.4%, 80.8% and 84.80%
in classification error can be observed using the proposed
method CVSTSCSP in comparison to CSP, SBCSP,
FBCSP and CVSCSP respectively over all classifiers
and all subjects of Dataset 2.

An average decrease of 79.7%, 78.20%, 82.1% and
86.26% in classification error over both datasets and both
classifiers can be observed using the proposed method
CVSTSCSP in comparison to CSP, SBCSP, FBCSP and
CVSCSP respectively.

Figures 7 and 8 show the variations in classification error
with different combinations of bandwidth (bw) and
granularilty (gr) values for different subjects of Dataset 1
and Dataset 2 respectively. We can observe from Figs. 7 and
8 that the classification error varies with the choice of band-
width (bw) and granularilty (gr). Also, the minimum classifi-
cation error is achieved with different combination of bw and
gr for different subjects. It can also be noted that the classifi-
cation error is more sensitive to the choice of bw in compar-
ison to gr. Further, it can be observed that larger values of gr

Table 5 Average Ranking of Algorithms

Method Friedman Ranking

mi-CVSTSCSP-All_TS 3.167

corr-CVSTSCSP-All_TS 3.208

fdr-CVSTSCSP-All_TS 3.208

eucl-CVSTSCSP-All_TS 7.417

mi-CVSTSCSP-TS2 8.458

fdr-CVSTSCSP-TS2 8.875

mi-CVSTSCSP-TS1 8.958

fdr-CVSTSCSP-TS1 9.000

corr-CVSTSCSP-TS2 9.167

corr-CVSTSCSP-TS1 9.250

fdr-CVSTSCSP-TS3 9.583

corr-CVSTSCSP-TS3 9.833

mi-CVSTSCSP-TS3 10.333

eucl-CVSTSCSP-TS2 11.792

eucl-CVSTSCSP-TS1 12.250

eucl-CVSTSCSP-TS3 13.125

CVSCSP 17.208

FBCSP 17.917

CSP 18.458

SBCSP 18.792

Table 6 p-values obtained using
friedman statistics while
comparing with the control
method (mi-CVSTSCSP -All
Segments (R0)) at the signifi-
cance level of 0.05

Algorithm(Ri) z = (R0-Ri)/SE pHolm/pHochberg/
pHommel

SBCSP 6.46936462 0.002631579

CSP 6.33135151 0.002777778

FBCSP 6.1070802 0.002941176

CVSCSP 5.81380234 0.003125

eucl-CVSTSCSP-TS3 4.12314172 0.003333333

eucl-CVSTSCSP-TS1 3.7608573 0.003571429

eucl-CVSTSCSP-TS2 3.57108927 0.003846154

mi-CVSTSCSP-TS3 2.96728191 0.004166667

corr-CVSTSCSP-TS3 2.76026224 0.004545455

fdr-CVSTSCSP-TS3 2.6567524 0.005

corr-CVSTSCSP-TS1 2.51873929 0.005555556

corr-CVSTSCSP-TS2 2.48423601 0.00625

fdr-CVSTSCSP-TS1 2.41522946 0.007142857

mi-CVSTSCSP-TS1 2.39797782 0.008333333

fdr-CVSTSCSP-TS2 2.36347454 0.01

m-CVSTSCSP-TS2 2.19095815 0.0125

eucl-CVSTSCSP-All_TS 1.75966718 0.016666667

corr-CVSTSCSP-All_TS 0.01725164 0.025

fdr-CVSTSCSP-All_TS 0.01725164 0.05
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and bw leads to a degraded performance as the number of
bands generated are less in number and may not consists of
the relevant subset of subbands to a particular subject.

To find the statistical difference among all the experimental
methods, Friedman statistical tests [20] have been conducted
in this study. The null hypothesis assumes that the perfor-
mance of all the methods is equivalent in terms of classifica-
tion error. Table 5 shows the statistical ranking of all the meth-
od obtained using Friedman’s statistical test. It can be ob-
served from Table 5 that the proposed method CVSTSCSP
in combination with mutual information based feature selec-
tion (mi-CVSTSCSP–All_TS) performs the best, which has
achieved the least rank value of 3.167. The p value calculated
using Iman and Davenport statistic [20] is 3.06E-37 which
confirms the significant difference among the all the methods
used in our experimental study. Thus, we can reject the null
hypothesis and state that the proposed method is statistically
significant.

To compare all other methods with the best ranked method
i.e. control method (mi-CVSTSCSP–All_TS), p values are
computed using a defined post hoc methods (Hommel,
Holm andHochbergmethods) [32]. Table 6 shows the p values
obtained for defined post hoc methods. The bold value high-
lights the significant difference of the control method (mi-
CVSTSCSP–All_TS) with all other methods at a significance
level of 0.05 using the post hoc methods.

Conclusion and future directions

Many Feature extraction techniques have been used in the area
of BCI for recognition of motor imagery tasks. CSP is one of
the popular spatial feature extraction method used in the area
of motor imagery EEG classification. The performance of
CSP is highly dependent on subject specific characteristics
like frequency band, relevant time segment within a trial, spa-
tial filters, and presence of artifacts in the EEG signal.

In this paper, we proposed a four-phase method
CVSTSCSP to determine relevant features from a set of spec-
tral, temporal and spatial features to reduce the classification
error to distinguish motor imagery tasks. In order to determine
relevant temporal information, the EEG signal is segmented
into three overlapping time segments. Further, to choose the
relevant spectral features, we have used variable sized
subband filter bank. To reduce the effect of artifacts and
non-stationarity, SCSP is used for feature extraction. In order
to select a reduced subset of relevant subset of features from
high-dimensional feature vector, we have used univariate fea-
ture selection method. We have investigated four univariate
feature selection methods such as Euclidean distance, correla-
tion, mutual information and Fisher discriminant ratio. Two
well-known classifiers LDA and SVM are used to the build
decision model. It is observed that with the use of relevant

temporal information in the proposed CVSTSCSP method,
the performance improves in terms of the classification error
in comparison to the CVSCSP method, which consider the
whole signal. The combination of CVSTSCSP with mutual
information based feature selection achieves minimum classi-
fication error for Dataset 1 and comparable classification error
for Dataset 2 among all combinations of CVSTSCSP with
different feature selection method. It is also noted that the
classification error is more sensitive to the choice of band-
width (bw) in comparison to granularilty (gr). Experimental
results demonstrate that the proposed method CVSTSCSP
outperforms the existing methods such as CSP, SBCSP,
FBCSP and CVSCSP in terms of classification error.
Friedman statistical test has been performed to confirm the
significant difference among the all the methods used in our
experimental study.

For evaluation of the proposed method, we have conducted
all the experiments on two class motor imagery EEG data
only. In future, we will extend the proposed method for
multiclass classification. Univariate feature ranking methods
have been used in this study. Although these methods are
simple, efficient to implement and select relevant features.
But these methods ignore the correlation among the subset
of relevant features, which may degrade the performance.
Multivariate feature selection methods have been suggested
in research work [33] which provide relevant and non-
redundant subset of features. We will utilize multivariate fea-
ture selection methods in our future works. The proposed
method uses static selection of subject specific time segment.
In future work, we will extend our research work for automat-
ic selection of subject specific time segment.
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