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Abstract
Appendectomy is the most common abdominal surgical procedure performed in children in the United States. In order to assist
care providers in creating treatment plans for the postoperative management of pediatric appendicitis, we have developed a
predictive statistical model of outcomes on which we have built a prototype decision aid application. The model, trained on 3724
anonymized care records and evaluated on a separate set of 2205 cases from a tertiary care center, achieves 97.0% specificity,
25.1% true sensitivity, and 58.8% precision. We have also built an interactive decision support tool augmented with simple
visualization techniques designed for clinicians to use in the course of making care decisions (e.g., discharge) and in patient/
stakeholder communication. Its focus is on end-user ease of use and integration into existing clinician workflows, and is designed
to evolve its predictions as more and better data become available.
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Introduction

The volume of healthcare data is rising at an exponential rate;
harnessing its utility through data-driven prediction of
healthcare outcomes has long been touted as a useful tool
for the future of medicine. Unfortunately, there are consider-
able obstacles to widespread adoption of data-driven predic-
tion models and the translation of research in machine learn-
ing and similar domains to real world medical care [1, 2].
Focusing on a segment of the healthcare system and patient
encounter is necessary to simplify initial attempts within this
space.

Surgery represents a finite care experience with three dis-
tinct phases. The preoperative phase focuses on establishing
the diagnosis and ends with assessment of risk and benefit of

surgical intervention. The intraoperative phase revolves
around the surgical procedure taking place, ideally lasting
only for the duration of the procedure. The final postoperative
phase involves the recovery from surgically treated disease
and the stress induced by the surgical intervention, typically
ending with discharge from an acute care setting.

While a large body of work with machine learning has
focused on diagnosis and the preoperative phase of surgical
care, less attention has been placed on optimizing the postop-
erative phase. The postoperative phase has been the focus of
numerous quality improvement efforts to streamline or Bfast
track^ care in order to optimize outcomes such as decreasing
length of stay (LOS), but most of these efforts are based on
anecdotal experience and are not data driven.

Appendicitis represents the most common surgical emer-
gency for which children undergo abdominal surgery.
Approximately 30 to 40% of appendicitis cases are for com-
plicated appendicitis where often the appendix has ruptured
[3]. The postoperative management of complicated appendi-
citis compared to acute, early appendicitis is highly variable
with higher rates of complications, longer hospitalizations,
higher readmission rates, and higher costs [4]. Any efforts to
decrease in hospital LOS for these complex patients must be
balanced with concerns over readmission to the acute care
setting [5].

The purpose of our study is twofold: to develop a statistical
model to provide data-driven recommendations for the
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postoperative management of complicated appendicitis; and
create an interface to this model suitable for use by clinicians
(i.e., not computing experts) making care decisions and advis-
ing patients. We aimed to identify factors that would optimize
LOS while also providing providers and patients with infor-
mation regarding complications, including readmission.

The result of this work is a prototype smart protocol appli-
cation driven by an iteratively-refined data model and a visual
interface, and suggestions of effective mechanisms for pro-
jects in similar domains.

Method

Creating a mechanism for care providers to incorporate data
into their work via evidence-based smart protocols requires a
careful marriage of predictive data models and end-user inter-
face (UI): the goal is to allow medical professionals to access
rich data models without discouraging their adoption because
of complexity or other ease-of-use factors.

Predictive data model

Children’s Healthcare of Atlanta (CHOA) serves as a compre-
hensive regional referral center for pediatric patients in the
southeastern United States. Within the CHOA system exist
two free-standing children’s hospitals that routinely provide
surgical care for acute conditions. We collected data from
5929 appendectomy cases from 2009 to 2014 that included
more than 120 pre-, intra- and post-operative appendectomy
attributes. These data were segmented into training (2009–
2010 and 2012–2013) and validation (2011, 2014) sets,
consisting of 3724 and 2205 cases, respectively. We focused
on complicated appendicitis cases, defined as those with LOS
of more than two days [11]: 1919 training cases and 1113
validation cases were complicated. We defined a case as hav-
ing a negative outcome if any of the following were true for a
particular patient: an occurrence of urinary tract infection
(UTI), sepsis, deep/organ-space or superficial surgical site in-
fection (SSI), or pneumonia; a follow up procedure was per-
formed (reoperation); the patient returned to the emergency
room (return to the system); or the patient was readmitted to
the hospital (readmission). The data not collapsed into the
negative outcomes variable were used as features in the fol-
lowing manner:

& All columns in with two choices were treated as Boolean
variables (e.g. Gender, Open/Laparoscopic)

& All numeric columns remained as such (e.g. Age, Height)
& All remaining columns were vectorized by making a

Boolean column for the presence of each choice (e.g. 1st
IVAntibiotic, 1st Procedure)

The requirements for the model were that it be evidence
driven, respond to queries within 2 s (a general man-machine
Bconversational^ guideline [6]), require simple input from the
user, reflect results for similar patients to the current patient,
and report confidence intervals for probability of negative
outcome and LOS.

User interface

Our model operates as follows, starting from the context of all
historical patient data:

& Select the column that has the highest correlation with the
negative outcomes variable on the remaining data.

& Ask the user to indicate the patient’s value for the column.
& Go to the first step after filtering the data based on the

previous answer.

– For numeric answers, the model chooses the 50% of re-
maining subjects closest to the value the user answered.

– For non-numeric answers, the model selects the data
matching the answer.

By choosing an iterative technique, the model provides at
each stage an estimate of the LOS and chance of negative
outcome for the patient along with confidence estimates.
This allows users to make their own choices about how much
effort to produce (i.e., how many questions to answer) while
still receiving useful information at every step.

This iterative approach extracts a tree of relevant patient/
care variables wherein different questions may be asked de-
pending on prior answers (forming a Bpathway^ through the
tree for a specific patient and time). The tree itself may change
over time as data about new patients becomes available; as a
result, the model can adapt to changes in care protocols, driven
by tools such as this one or by other factors like changes to
antibiotic regimens.

Design alternatives

We considered several machine learning models as alterna-
tives to our approach, which we call Bdynamic filtering^.
These included traditional techniques such as naïve Bayes,
decision trees, nearest neighbors, and random forest classi-
fiers, as well as cascades of the same. These methods are
designed to take in a key subset of features deemed to be most
predictive of negative outcomes, and predict whether a patient
would have a negative outcome. Though we are able to cal-
culate sensitivity, specificity, and positive predictive value,
these alternative methods do not yield confidence estimates.
Furthremore, the runtime performance of these models was
also considerably slower, usually significantly longer than
our 10 s threshold for a given step.
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Results

Predictive data model

Negative outcomes were identified in 455 of the 1919 training
(23.7%) and 250 of 1113 validation (22.5%) complicated ap-
pendicitis cases. The incidence of negative outcomes in early
appendicitis cases were – 125 of 1805 for training (6.9%) and
16 of 1092 for validation (1.46%) cohorts. The initial model
from this data achieves 97.0% specificity, 25.1% true sensi-
tivity, and 58.8% precision (or an overall accuracy of 87%:
88%/59% negative/positive predicted value; 75%/3% false
negative/positive error rates).

User interface

Figure 1 displays the opening query of the UI. These questions
represent the tension between a strictly data-driven approach
and one that is created with an eye to clinician experience and
face validity. While these three data items are all prominently
featured in the various variable tree pathways, they are not the
three most salient variables in all pathways. However, clini-
cians are likely to know the answers to these questions without
having to refer to a reference, lowering the barrier to the first
usage set and building investment in a usage session.
Moreover, these questions are clinically relevant and build
face-validity with clinicians as a tool that asks relevant ques-
tions. Finally, there is value in consistency in UI design, which
dramatically varying question paths violates.

The model filters the data based on the answers; once the
initial questions are answered, subsequent questions are dy-
namically selected based on which remaining variable has the
highest correlation with the combined negative outcomes,
based on the current slice of relevant data. The dynamic ap-
proach to generating questions asks the most relevant ques-
tions based on past answers, which in turn reduces the total
number of questions required to generate an accurate predic-
tion for the patient.

At any given point, based on the user’s answered questions,
the interface displays an outcomes table augmented with vi-
sual representations of its data (Figs. 2 and 3). The table con-
tains the number of similar patients along with their average
LOS and the probability of a negative outcome, each of which
have 95% confidence intervals.

If the next question is a discrete choice (such as a yes/no, or
choice of medication), the interface will display how the
choices impact the outcome statistics. An example of this is
shown in Fig. 2, where a user is prompted for a second post-
operative oral antibiotic choice: it is clear that most patients
were not given a second antibiotic.

The system groups similar questions into a single
Bmultiprompt^ question when any of the group is dynamically
selected: in Fig. 4, all recorded comorbidities are queried at the
same time. The multiprompt question accomplishes two use-
ful effects over completely independent questioning. The first
is consistency: the question ordering, and consequently the
information flow, is the same for multiprompt subparts be-
tween patients, and that ordering matches natural expectations

Fig. 1 Initial question prompt given to every user
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of related questions appearing together. Secondly, the
multiprompt question helps to reduce decision fatigue on the
user: fewer dialogs give the appearance of fewer questions.

The model will continue to generate questions to the user
until they have selected a response that causes the number of
similar patients to drop below 10, in which case the current
statistics will be displayed.

We have implemented this system as a web-based applica-
tion optimized for mobile platforms, which are the most
regularly-used devices among clnical staff; the use of a web-
based environment rather than a native application also by-
passes application deployment problems.

Design alternatives

The presentation of the data in a purely tabular form isolates it
from important context, such as prediction deviations from
overall averages; the relative deviation of prospective choices;
and uncertainty estimates. Visual presentations of data are an

obvious candidate for helping make these aspects more imme-
diately apparent, but we are faced with several challenges:

& Clinical users may access the tool on a range of devices, so
the designmust both adapt to these screen orientations and
resolutions, while alsomaintaining familiarity across these
contexts.

& The performance of the overall system needs to be within
Bconversational^ (~2 s) UI bounds [6].

& Visualization of both the predicted result and the model’s
uncertainty are both important components.

& Complex visualizations that require extensive training are
unlikely to be adopted.

We therefore chose to insert a few key visual elements for
our initial prototype: an outcome cell’s color is assigned ac-
cording to whether it is better (blue) or worse (red). We then
calculate a z-score of the current cell data against the overall
patient data and scale the transparency of the color to the score
(i.e., a higher probability of differing means corresponds to

Fig. 2 A clinical outcomes table with care options, outcome predictions, and visualizations of those outcomes compared to all pediatric appendectomy
patients and ones most similar to the patient information provided

Fig. 3 Current statistics based on user’s responses to the initial question
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more opaque colors). The patient count within a row is also
represented by a bar within the cell whose width corresponds
to the percentage of the overall dataset.

In the course of development, we explored other visualiza-
tion designs. The relationship between the overall data distri-
bution and the distribution of each of the rows in the outcome
table is essentially a box or violin plot comparison (see Fig. 5).
However, the space constrained nature – both overall and the

fixed-width space of the tabular presentation – means that
kind of straightforward technique is not a suitable choice.

We attempted a series of variations bar graph-esque cell
colorings, which presented the mean of the distribution by
bar width, but also indicated the spread of the distribution
and how it overlapped (or not) with the overall mean (see
Fig. 6). We used various color mappings and gradients to
show where distributions crossed over the overall confidence
interval thresholds, and tried a variety of mappings of the
distribution widths into fixed column widths. However, none
of the attempts yielded easily-intelligible results.

Discussion

We developed a statistical model and interface to provide data-
driven recommendations for the postoperative management of
complicated appendicitis in children. Our models identify fac-
tors that would optimize LOS and provide clinicians and pa-
tients with information about complications and readmissions.
The result of this work is a prototype smart protocol applica-
tion driven by an iteratively-refined data model and under
evaluation by pediatric appendectomy care providers. Efforts
such as this are needed in healthcare. Tian, et al. [11] analyzed
care in children’s hospitals for appendicitis and found signif-
icant variations in standards of care existed, and most likely
contribute to higher costs. Raval et al. [12] identify that there
is room for improvement in hospitals with high volume for

Fig. 4 A multiprompt question. Here the highest correlated question was one of these yes/no comorbidities, but rather than ask them one at a time, to
reduce decision fatigue all are presented together

Fig. 5 Violin plot example, reused from PLoS Pathogens via https://
commons.wikimedia.org/wiki/File:Violinplot-hiv-paper-plot-pathogens.
png

J Med Syst (2018) 42: 52 Page 5 of 8 52

https://commons.wikimedia.org/wiki/File:Violinplot-hiv-paper-plot-pathogens.png
https://commons.wikimedia.org/wiki/File:Violinplot-hiv-paper-plot-pathogens.png
https://commons.wikimedia.org/wiki/File:Violinplot-hiv-paper-plot-pathogens.png


appendicitis care. There has also been a significant amount of
research in using machine learning [9] and more traditional
statistical techniques [10] in order to predict outcomes of var-
ious procedures. By combining these types of predictive ap-
proaches with a smart protocol we expect to both decrease
negative outcomes and LOS for complex appendicitis.

Several themes are prominent within the design of comput-
ing systems for use by health care professionals. Carefully
considering design choices from a user-centered perspective
and iteratively developing systems are considered key
methods for successfully-adopted systems [13, 14].
Developing algorithmic solutions in isolation of the social
constructs of care is a common failing and reason that systems
useful from a purely data or technical perspective are not
adopted by care professionals [14, 15].

Visualization has been applied to many aspects of health-
related problems. The CareFlow system [16] also addresses the
issue of helping clinicians understand the outcomes of past
patients along different care pathways, using Sankey-style flow
diagrams with temporal care data mined from EMRs. Like our
own, the MIVA system [17] targets a well-defined and specific
care scenario (ICU care), and is a real-time biometric visual
dashboard designed to reduce cognitive load, with prototype
evaluations showing improvements over paper charts.

This work rests between these two in terms of the
Bcriticality^ of the work: it is more tailored and more integrat-
ed into existing care workflows than the CareFlow system, but
does not address real-time data nor time-sensitive care deci-
sions like MIVA. Furthermore, there has been a significant
amount of research in the concept of fast track care [7, 8], an

evidenced-based protocol to improve care outcomes and re-
duce hospital LOS. Making data-driven predictions based on
similar patients for the post-operative care of appendicitis
available provides a mechanism to create data-driven deci-
sions. Our work therefore offers another data point along the
spectrum of health care model and software design.

Currently, the UI is being utilized by clinicians and shared
with patients and families. Feedback for the users are being
collected and patient satisfaction with the decisions surround-
ing discharge and likelihood of complications is being collect-
ed. Furthermore, outcomes such as adherence with postoper-
ative management guidelines, LOS, and complications are
being tracked. Initial anecdotal feedback has been positive
from both the clinician and patient perspective as the tool
facilitates communication and transparency between
stakeholders.

Several items have been identified as limitations and op-
portunities for future refinement. Most prominently, many
care variables comprise dozens of possible choices (e.g.,
drug/ dosage/delivery combinations), which presents a usabil-
ity barrier if users are forced to choose a single item from a
long scrolling list or menu. We achieved a small amount of
aggregation by combining clearly identical elements (e.g.,
BC I P RO F LOXAC I N 7 5 0 MG TABLET ^ v s .
BCIPROFLOXACIN 750 MG TAB^), but not enough to re-
duce many variables to a dozen or fewer choices.

The core challenge is to form meaningful categories that
are statistically coherent (i.e., result in an acceptable amount
of information loss from a data modeling perspective) but are
also semantically coherent (i.e., an end user instantly knows

Fig. 6 Rejected design alternative mapping box/violin distribution data onto fixed-width space
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that item X belongs in category A). Work on characterizing
this information loss is underway. Forming semantically co-
herent categories is more formidable. Algorithmic approaches
(e.g., topic modeling) are unlikely to be useful; ad hoc expert
judgement may be the only feasible method, though automat-
ed heuristics for similar data variables may be possible.

On the visualization side, when users are answering the
question prompts, the existing visual representations of the
alternatives are hidden by the prompts. Either migrating our
existing data to the prompt dialog or developing other mech-
anisms for visual representations (e.g., Sankey diagrams to
show how patients Bflow^ between questions, similar to
CareFlow [16]).

Conclusion and future work

In order to assist care providers in creating treatment plans for
the postoperative management of pediatric appendicitis, we
have developed a predictive statistical model of outcomes on
which we have built a prototype decision aid application. Our
ultimate goal is to move from a set of interactive questions to a
full smart protocol by focusing on key decision points and
tests, which can give more illumination on a patient’s best
course of treatment. The visual representation of these deci-
sion points and available alternatives is critical to this goal. As
we improve our access to historical data – for example, en-
abling the analysis of hospital discharge criteria based on body
temperature by collecting daily temperature measurements –
new opportunities for visualization and visual analytics may
present themselves.

Through this and future work we demonstrate both the
utility of such a project and suggest effective mechanisms
(both technical and non-technical) for projects in similar
healthcare scenarios to employ visual analytic techniques for
clinicians to harness practice data and outcomes to guide clin-
ical care.
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