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Abstract

Similarity measurement of lung nodules is a critical component in content-based image retrieval (CBIR), which can be useful in
differentiating between benign and malignant lung nodules on computer tomography (CT). This paper proposes a new two-step
CBIR scheme (TSCBIR) for computer-aided diagnosis of lung nodules. Two similarity metrics, semantic relevance and visual
similarity, are introduced to measure the similarity of different nodules. The first step is to search for K most similar reference
ROIs for each queried ROI with the semantic relevance metric. The second step is to weight each retrieved ROI based on its
visual similarity to the queried ROI. The probability is computed to predict the likelihood of the queried ROI depicting a
malignant lesion. In order to verify the feasibility of the proposed algorithm, a lung nodule dataset including 366 nodule regions
of interest (ROISs) is assembled from LIDC-IDRI lung images on CT scans. Three groups of texture features are implemented to
represent a nodule ROI. Our experimental results on the assembled lung nodule dataset show good performance improvement
over existing popular classifiers.
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Introduction In general, CAD systems extract the features of a lung

cancer image and apply a classifier to test the malignancy.

Computer-aided diagnosis (CAD) of lung cancer is an ex-
tremely important task, as lung cancer is the leading cause of
cancer mortality around the world [1]. Early detection and
diagnosis are critical as the chance of recovering in the early
phase of the cancer illness. Low-radiation dose computer to-
mography (CT) scans is one of the most common screenings
for lung cancer [2, 3]. Thus, a critical issue is the diagnosis of a
pulmonary nodule as benign or malignant with CT.

This article is part of the Topical Collection on Image & Signal
Processing

< Guohui Wei
bmie530@163.com

School of Science and Engineering, Shandong University of
Traditional Chinese medicine, Jinan 250355, China

Sino-Dutch Biomedical and Information Engineering School,
Northeast University, Shenyang, China

Department of Electrical and Computer Engineering, University of
Texas, El Paso, TX, USA

Usually the diagnosis performance of CAD systems is
assessed through the receiver operating characteristic (ROC)
curve or the area under the ROC curve (AUC). Lu et al. [4]
developed an intelligent system for lung cancer diagnosis with
32 samples. They obtained an AUC of 0.99. Orozco et al. [5]
used 11 features and SVM as classifier. They obtained a value
of 0.805 when evaluating 23 malignant nodules and 22 non-
nodules. Shen et al. [6] explored multi-crop convolutional
neural networks to handle the classification of lung nodule
malignancy suspiciousness. Its AUC value reached 0.93.
Content-based image retrieval (CBIR) is one of the CAD
methods, which can help doctors diagnose a given case by
retrieving a selection of similar annotated cases from large
medical image repositories [7]. Gundreddy et al. [8] proposed
a two-step CBIR scheme for classification of breast lesions, in
which two features were used to represent the breast lesions.
Jiang et al. [9] developed a scalable image retrieval CAD
system to assist radiologists in evaluating the likelihood of
malignancy of mammographic masses. Tsochatzidis et al.
[10] proposed a new texture descriptor to capture mass prop-
erties, and applied CBIR to diagnose mammographic masses.
Dubey et al. [11] used CBIR method to assist lung diagnosis,
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however, they just focused on the feature characteristic of lung
CT. Ma et al. [12] explored a context-sensitive similarity mea-
sure method to retrieve CT imaging signs. Few of them con-
centrated on lung nodule classification.

There are two important processes in CBIR, feature
extracting and similarity metric. The feature extracting is an
important task which can be sufficient to describe the image
accurately. The image similarity includes semantic relevant
and visual similarity [13, 14]. The semantic relevant depends
on the malignant or benign label of masses, which means that
if the two masses are both malignant masses, they are similar
on the semantic. Visual similarity is the feature similarity,
means that the retrieved image must be similar to the query
image from human’s perspective. However, at present, many
researchers only use semantic similarity metric, ignoring the
visual similarity metric [13]. This leads to that, when they are
applied to image retrieval problems, images ranked at the top
of a retrieval list may not be visually similar to the query
image. Therefore, the conclusion will make doctors be less
likely to trust the system. As a result, the growing vast repos-
itories of clinical imaging data cannot be searched effectively
for similar images on the basis of descriptions of similarity
measurement. Our group has studied similarity metric of lung
nodules in Ref. [14]. This paper synthetically considers se-
mantic relevance and visual similarity, without discussing
the importance of each other. However, according to [13],
semantic relevance plays an important role, and visual simi-
larity is an important complement. Our study is consistent
with this idea. Semantic relevance is used for discarding the
semantic irrelevant lung nodule ROIs. And then visual simi-
larity is used to retrieve the similar nodule. Moreover, our
study takes into account multivariate texture features (local
binary pattern feature, Gabor feature, and Haralick feature),
but Ref. [14] does not.

The goal of our study is to develop a new two-step content-
based image retrieval (TSCBIR) scheme for computer- aided
diagnosis of lung nodules and to propose a new similarity
metric method to evaluate the similarity between the query
lung nodule and reference lung nodule dataset. First, a lung
nodule dataset was assembled from the LIDC-IDRI lung CT
database. Second, three groups of features were implemented
to represent a nodule ROI. Third, a two-step CBIR (TSCBIR)
approach was proposed to classify lung nodules. At last, AUC
value and classification accuracy were used as the perfor-
mance assessment index.

Materials
Lung nodule dataset

For developing and testing a new TSCBIR scheme in this
study, a lung nodule dataset was assembled from an existing
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completed reference database of LIDC-IDRI lung images on
CT scans [15]. The nodules which defined as any lesion were
“nodule >3 mm”. The red arrow in Fig. 1 points to the nodule
of the lung CT image.

The lung nodule dataset was assembled as follows:

1) Xml file processing. Based on the annotation of xml, the
slice with the largest nodule marked by more than three
thoracic radiologists was selected.

2) Outline drawing. For a nodule, each radiologist gives an
outline annotation. According to the nodular boundary
coordinate, the boundary on the CT slice was drawn.

3) Outline fusion. Three or four nodule boundaries were
fused to a reference ground truth based on the
Simultaneous Truth and Performance Level Estimation
(STAPLE) algorithm [16].

4) Nodule extracting. The nodule was extracted from the
lung CT on the basis of the reference ground truth bound-
ary. Figure 1 shows the workflow of lung nodule dataset
assembling.

The malignancy of a nodule can be divided into five rat-
ings, with 1 representing highly unlikely for cancer and 5
representing highly suspicious for cancer. For each nodule,
the average rating of four thoracic radiologists was computed.
In this study, if the rating > 3.5, we labeled this nodule as
malignant; if the rating < 2.5, we labeled this nodule as be-
nign. With the process described above, at last, 366 lung nod-
ule dataset was obtained, in which 191 radiologists identified
malignant nodules and 175 radiologists identified benign
nodules.

Xml file processing

""
O
e et

y

Outline drawing

Outline fusion

Nodule extracting

Fig. 1 The workflow of lung nodule dataset assembling
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Computational features

In this study, for each lung nodule ROI, three different types of
widely used 2D texture features were extracted: local binary
pattern (LBP) feature [17], Gabor feature [18], gray level co-
occurrence matrix (GLCM) feature (Haralick feature) [19].
The number of features for each feature group is summarized
in Table 1.

The first group of feature was LBP feature. It was first
proposed as a texture descriptor for images [20]. The LBP
calculated the relationships between the central pixel and each
neighbor pixel, and it returned binary code for each central
pixel. The LBP features were computed with the local binary
pattern feature histogram calculated from the coded image.

The second feature group was computed based on Gabor
filters. A Gabor filter was obtained by modulating a sinusoid
with a Gaussian functional and further being discretized over
orientation and frequency. We convolved the image with 12
Gabor filters: three frequencies (0.3, 0.4, and 0.5) and four
orientations (0°, 45°, 90°, and 135°). We then computed
means and standard deviations from the 12 response images,
and 24 Gabor features for each image were obtained.

The third group of feature was Haralick feature, which can
be calculated from the gray level co-occurrence matrix. A
relative displacements (d =1 pixel) and four different angles
(0=0°,45°90°, and 135°) were considered for computation-
al feature extraction. Thus, we calculated a set of four values
for each of the preceding 13 measures, except the maximal
correlation coefficient feature. For each image, the mean and
standard deviation of each of these 13 measures were comput-
ed, so 26 features were generated in this group.

Methods
Distance metric learning for similarity metrics

As mentioned above, the image similarity includes semantic
relevance and visual similarity. The semantic relevance de-
pends on the malignant or benign label of nodules, which
means that if two nodules are both malignant nodules, they
are similar on the semantic. Visual similarity is the feature
similarity, which means that the retrieved images should look
like the query image. Most distance metric learning algorithms
essentially preserve only the semantic similarity among data

Table 1 Number of
calculated features in
each feature group

Feature group Number of features

1 LBP 256
2 Gabor 24
3 Haralick 26
Total 306

points by learning a distance metric with the given pairwise
constraints. However, visual similarity is of equal importance.

Semantic relevance

Let dataset C= {x,xy, ..., x,} be a collection of image data
points, where 7 is the number of samples in the collection.
Each x;€ R™ is a data vector where m is the number of
features.

In this study, a Mahalanobis distance is learned to measure
the image semantic relevance. The Mahalanobis distance can
be computed by the formula as follows [14]:

du (xi,%7) = [[AT (xi=;) | (1)

Thus, a matrix A for computing the Mahalanobis distance is
required to learn. According to the pairwise constraints [21],
the dataset can be divided into two parts. The set of equiva-
lence constraints denoted by

S = {(xi,xj) |x,~ and x; belong to the same class}
and the set of inequivalence constraints denoted by
D= {(xi,xj) |x,» and x; belong to different class}

The data points connected by equivalence constraints
should be close in the new feature space, and the data points
connected by inequivalence constraints should be kept far
away in the new feature space. Therefore, the semantic simi-
larity metric is obtained by optimizing the formula as:

argmin (( Z) S(yi—yj)z_ﬂ > (yi_yj>2>

(x“x,)eD

(i) (vrmx)) T=6 %

= argminsr{ AT >
(x,‘x,)eD

(x,‘x,)eS

s}
(2)

Where 3 is the tradeoff parameter. y;=A"x; RF (k>m) is
the new feature representation from the x;, this formula means
that the feature representations of the data points in the same
class should be closer, and the data points in different class
should be far away.

Imposing A’A = I'to the Eq. (2), the transformation matrix A
can be obtained through eigendecomposition in Eq. (2). In this
case, the solution of A is constructed by the d eigenvectors
associated with the d smallest eigenvalues. Then the
Mahalanobis distance can be computed by the formula as
follows:

du (xi,%7) = [[AT (xi—;) | (3)

This Mahalanobis distance preserves the semantic
relevance.
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Visual similarity

The visual similarity is the feature similarity, which means that
the retrieved image must be similarity compared to the queried
image from human’s perspective. In this study, European dis-
tance is used to measure visual similarity. A smaller distance
means the higher degree of similarity.

Content-based retrieval scheme for lung nodules
classification

With the two distance metrics, a new CBIR scheme is ex-
plored to classify lung nodules. A two-step similarity metric
approach is applied to retrieve similar reference nodule ROIs.
In this approach, Mahalanobis distance is used to discard the
semantic irrelevant reference ROI in the first step and
European distance can more focus on the visual similarity in
the second step. Therefore, our scheme first retrieves for K
most similar ROIs by computing the Mahalanobis distance
between the queried ROI and each of the reference nodule
ROI in our dataset. The K most similar ROIs correspond to
the reference ROIs with smallest Mahalanobis distance to the
queried ROL. In the second step, the scheme weight each re-
trieved ROI based on its European distance to the queried
ROI. The weighting factor is calculated as:

LK, 4)

F(i) represents the features of ith reference ROIL. F(g) rep-
resents the features of the queried nodule.

Finally, the probability that the queried ROI is malignant is
computed. The formula is as follows (M is the number of
malignant nodules and B is the number of benign nodules):

M
2 W,

Sy=—"2' _  M+B=K. (5)

With this scheme, when giving a threshold of S, (such as
Sr=0.5),if S, is above Sz; we can figure this queried nodule is
malignant, otherwise, it is benign.

Experimental setup

To avoid the bias caused by unblalanced texture feature
values, all the extracted features are normalized with the mean
and the standard deviation computed from the 366 lung nod-
ule ROIs in the dataset.

For fair comparison of the algorithms, 200 randomly se-
lected lung nodules are chosen from the reference library to
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serve as the training dataset for the training experiment. The
remaining nodules are used as testing dataset.

The ability of the proposed scheme for classification be-
tween benign and malignant nodules is evaluated with AUC,
classification accuracy and p value from ¢ — fest.

ROC curve can be obtained by varying the threshold of the
probability for predicting malignancy. And AUC is used to
evaluate the classification performance. Classification accura-
cy is able to be calculated as:

number of correctly classified samples

Accuracy =
total number of classified samples

The correctly classified samples are according to the
threshold S7=0.5.

In the subsequential figures, each experiment is repeated 10
times with randomly selecting training images. Thus, the
AUC value and classification accuracy showed in the figures
are mean value over these 10 runs.
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o
&

1
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Fig. 3 The mean AUC with different K
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Results and discussion
Parameter configuration

There are several parameters of our proposed scheme needed
to be set beforehand for experiments. We investigated the
sensitivity of § in Eq. (2) for the TSCBIR scheme with the
combined features. We varied (3 with [10_8, 10°°,107% 1072,
10°, 102, 104, 10°, 108]. The mean AUC of our dataset are
shown in Fig. 2. It can be seen that TSCBIR scheme prefers a
large value of 8. This experiment demonstrates that the per-
formance of TSCBIR scheme will be very stable when this
parameter value greater than or equal to 1.

We then investigated the effect of parameter K in Eq. (4) for
TSCBIR scheme in image classifying. The number of re-
trieved reference ROIs (K) is set within the range [5, 10, 15,
20]. Figure 3 reports the mean AUC with different K.
According to the figure, the performance curve in Fig. 3 has
small fluctuations. When K =10, the mean AUC value
reaches the maximum.

We evaluated the performance of the proposed scheme at
different dimensions for the transformation matrix A. Figure 4
shows the mean AUC with different feature dimensions.
When dimension varies in a wide range, the curve has a
slight—variability. This indicates that the classification perfor-
mance is not sensitive to feature dimension.

Table 2 Results of classification for the different kinds of texture
features

Feature name AUC Accuracy
Haralick 0.975+0.011 0.925+0.016
Gabor 0.947 £0.009 0.874+0.024
LBP 0.953+0.016 0.843+0.022
Combined features 0.984 +0.007 0.910+0.023

Table 3 An unpaired t-test p value of AUC between different feature
groups at the 5% significance level

Haralick  Gabor LBP Combined features
Haralick N/A 1.16e-05 0.0733 0.0467
Gabor 1.16e-05 N/A 0.0637 1.19E-08
LBP 0.0733  0.0637 N/A 0.0033
Combined features 0.0467 1.19E-08 0.0033 N/A

Feature analysis and classification

The texture feature analysis plays a very important role in
computer-aided classification. In section 2.2, three types of
texture features have been obtained. The classification perfor-
mance of TSCBIR scheme is analyzed with different types of
features (Haralick features, Gabor features, LBP features and
the combined features). Table 2 shows the AUC value and
accuracy comparison of differentiating lung nodules using
different feature groups. The combined features have the larg-
est AUC value, followed by Haralick, LBP, Gabor features.
However, the accuracy of the combined features is worse than
the accuracy of Haralick at S7=0.5. Table 3 displays statisti-
cally significant difference between different feature groups at
the 5% significance level about the AUC value. An unpaired t-
test is used to compute the p value. The data analysis illus-
trates that the classification performance between the com-
bined features and Haralick, Gabor, LBP features has a statis-
tically significant difference. However, the classification per-
formance between the LBP features and Haralick, Gabor fea-
tures had no statistically significant difference (p=0.0733 and
0.0637, respectively).

Classification performance

To illustrate and verify the feasible of our scheme on lung
nodule diagnosis comprehensively, the performance of
TSCBIR scheme was compared with the existing classifiers
reported for classification of benign and malignant tumor le-
sions: (i) support vector machine (SVM) [5], which was used
to differentiate malignant nodules and non-nodules; (ii) ex-
treme learning machine (ELM) [22], which was applied to
classify breast masses; (iii) orthogonal projection learning

Table 4 Comparison of the classification performance

Algorithms AUC Accuracy

SVM 0.958+0.011 0.878 £0.032
ELM 0.967 +0.006 0.904+0.016
Semantic 0.970+0.009 0.898 +0.032
KDPDMorth 0.973+0.012 0.925+0.015
TSCBIR 0.984+0.007 0.910+0.023
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Table5 Anunpaired t-test p value of AUC between TSCBIR and other
comparative algorithms at the 5% significance level

Semantic SVM ELM KDPDMorth
TSCBIR 0.0044 0.00031 0.048 0.0079

for KDPDM (KDPDMorth) [14], which was used to classifi-
cation of benign and malignant nodules. Semantic similarity
metric alone was also included as a comparative reference
(denoted as “Semantic”), the probability of a queried ROI is
malignant was computed as the ratio between the number of
the malignant nodules and the number of the retrieved nod-
ules. Specially, the nodules were represented by the combined
features.

Before the classification experiments were carried out,
some parameters needed to be optimized which would further
improve the classification performance. The number of hidden
nodes of ELM cannot be infinite in real implementation. We
tested the number within the range [200,400,600,800 1000].
When the number was set as 1000, the training and testing
performances of ELM kept almost fixed. Fivefold cross vali-
dation (5-CV) was used to optimize the SVM parameters. We
extracted 365 nodular samples for the experiments. The data
were divided into five groups on average. The classifiers were
trained with 4 folds and tested with the remaining fold, so
looped five times. The best value of penalty parameter c =4
and kernel function parameter g =0.03125 would be used in
the following experiments. The experimental results are listed
in Tables 4 and 5.

From Table 4, it can be observed that the proposed scheme
TSCBIR is effective on the assembled lung nodule dataset.
More importantly, TSCBIR outperforms the classical classi-
fiers (e.g., SVM and ELM). Moreover, the comparison of
KDPDMorth and TSCBIR illustrates that semantic relevance

ROC curve of (AUC = 0.98603 )
1 T T T T
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(IN=R A
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n2r 1
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0 0.1 nz 03 04 05 06 07 08 08 1

False Positive Rate

Fig. 5 The ROC curve from the leave-one-nodule-out validation method
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Table 6 Confusion

matrix of lung nodule Ground truth Prediction
classification
Benign Malignant
Benign 0.983 0.017
Malignant 0.141 0.859

plays an important role, and visual similarity is an important
complement.

Table 5 shows statistically significant difference between
our scheme and existing classifiers at the 5% significance
level. An unpaired t-test is used to compute the p value. The
data analysis illustrates that the classification performance be-
tween TSCBIR and Semantic, SVM, ELM, KDPDMorth has
a statistically significant difference.

Overall performance

We evaluated the total performance of TSCBIR scheme using
a leave-one-nodule-out method with a classification threshold
of S7=0.5. The leave-one-nodule-out validation method se-
lected one nodule as the queried nodule and the remaining 365
nodules in the dataset were used as reference nodules. This
process was repeated 366 times so that each nodule was used
as the queried nodule once in the whole process. The results
are showed in Fig. 5. The AUC value is 0.986 and the classi-
fication accuracy is 0.918. Table 6 shows the confusion matrix
of lung nodule classification. Both of the classes obtained
higher than 80% classification rates. 14.1% of malignant nod-
ules were misclassified as benign nodules while few benign
nodules were misclassified as the malignant class. Table 7
displays the recall, precision and F-score of lung nodules clas-
sification. Overall, the results show relatively good classifica-
tion performance.

Conclusions

We have developed a two-step CBIR approach for classifica-
tion of lung nodules, and showed it to be capable of yiclding
excellent retrieval results. The assembled dataset is based on
the LIDC-IDRI CT images. With the lung nodule dataset, we
can retrieve the nodule malignancy, query the nodule charac-
teristics noted by the radiologists based on the retrieval results,
such as calcification, sphericity, internal structure.

Table 7 Recall,

precision and F-score of Benign Malignant

lung nodule

classification Recall 0.983 0.859
Precision 0.864 0.982
F-score 0.920 0916
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In this study, three groups of features are implemented to
represent a nodule ROI. Experiment results have demonstrat-
ed that the combined features have a better description of the
lung nodule for classification. The Mahalanobis distance
which preserving the semantic relevance and European dis-
tance which describing visual similarity are first proposed to
assess the malignancy of lung nodules using content-based
image retrieval. The experiment results also demonstrate that
our proposed scheme had a better classification performance
than the state-of-the-art classifiers.
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