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Abstract
Pathological brain detection has made notable stride in the past years, as a consequence many pathological brain detection
systems (PBDSs) have been proposed. But, the accuracy of these systems still needs significant improvement in order to
meet the necessity of real world diagnostic situations. In this paper, an efficient PBDS based on MR images is proposed that
markedly improves the recent results. The proposed system makes use of contrast limited adaptive histogram equalization
(CLAHE) to enhance the quality of the input MR images. Thereafter, two-dimensional PCA (2DPCA) strategy is employed
to extract the features and subsequently, a PCA+LDA approach is used to generate a compact and discriminative feature
set. Finally, a new learning algorithm called MDE-ELM is suggested that combines modified differential evolution (MDE)
and extreme learning machine (ELM) for segregation of MR images as pathological or healthy. The MDE is utilized to
optimize the input weights and hidden biases of single-hidden-layer feed-forward neural networks (SLFN), whereas an
analytical method is used for determining the output weights. The proposed algorithm performs optimization based on both
the root mean squared error (RMSE) and norm of the output weights of SLFNs. The suggested scheme is benchmarked on
three standard datasets and the results are compared against other competent schemes. The experimental outcomes show
that the proposed scheme offers superior results compared to its counterparts. Further, it has been noticed that the proposed
MDE-ELM classifier obtains better accuracy with compact network architecture than conventional algorithms.

Keywords Magnetic resonance imaging (MRI) · Two-dimensional PCA (2DPCA) · Extreme learning machine (ELM) ·
Pathological brain detection (PBD) · Modified differential evolution (MDE)

Introduction

Over the years due to brain diseases, the mortality rate incre-
ases vastly among individuals with different age groups
across the globe. Pathological brain detection (PBD) has
played significant role for early identification of various
diseases such as Alzheimer’s disease [36], mild cognitive
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impairment, autism spectrum disorder [6], multiple scle-
rosis [33], hearing loss [34], and microbleeding [43]. The
major objective of PBD is to assist radiologists to arrive
at correct and quick clinical decisions. In PBD, a non-
invasive imaging modality called magnetic resonance imag-
ing (MRI) is often used since it supplies better resolution
of brain tissues [32]. However, manual interpretation of MR
images is a costly, troublesome and time-consuming task [2,
13, 15]. Hence, current trend is to develop automated PBD
systems (PBDSs) with the help of image processing and
machine learning algorithms which can detect brain dis-
eases in less time. Further, it has been shown that PBDSs
are effective and have practical applications.

Many attempts have been made toward the development of
various PBDSs in the past decade [4]. However, the accuracy
of these systems still requires notable improvement in order
to meet the necessity of real world diagnostic situations.
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Hence, PBDS remains an open challenging issue in front of
researchers. The goal of this study is to improve the perfor-
mance of the system for pathological brain detection.

It has been observed that discrete wavelet transform
(DWT) is the most used feature extractor in PBDSs as it ana-
lyzes images at several scales and handles one-dimensional
(1D) singularities effectively. However, it has limited capa-
bility of representing two-dimensional 2D singularities
(edges of an image). That is, DWT is not able to capture
curve like features effectively from the images. Therefore,
to handle such issue, application of advanced transforms
are in great demand. Further, classifiers like support vec-
tor machine (SVM) and feed-forward neural network (FNN)
are often used in earlier PBDSs. To train FNN, traditional
gradient-based learning algorithms such as Levenberg-
Marquardt (LM) and back-propagation (BP) are used which
have many limitations such as trapping at local minima,
slower learning speed, and learning epochs. Furthermore,
traditional SVM classifier encounters higher computational
complexity and it performs poorly on large datasets.

To overcome the aforementioned problems, we propose
a novel PBDS in this paper. The main contributions of this
study are summarized as follows:

(a) Two dimensional PCA (2DPCA) is explored to extract
the features from MR images.

(b) To combat the issues of conventional learning algo-
rithms, a simple and effective learning technique known
as extreme learning machine (ELM) is employed.

(c) To further enhance the performance of standard ELM,
a new learning algorithm known as MDE-ELM based
on modified differential evolution (MDE) and ELM is
proposed.

(d) To test the effectiveness of the suggested scheme, exten-
sive experiments are conducted on three well-known
datasets. In this context, the suggested scheme is com-
pared against its counterparts with respect to classifi-
cation accuracy and number of features required.

The remaining part of the article is structured as follows.
Section “Related work” summarizes the related works.
Section “Datasets used” offers the description of the data-
sets used in this study. Section “Proposed work” discusses
the proposed methodology. In “Experimental results and
analysis”, the experimental details and comparisons are
presented. Finally, the concluding remarks are drawn in
“Conclusions and future work”.

Related work

A significant number of PBDSs have been proposed in
the past decade [4, 16]. Chaplot et al. [1] have suggested
to use 2D discrete wavelet transform (2D DWT) and

support vector machine (SVM) for feature extraction and
classification. El-Dahshan et al. [5] have employed 2D
DWT and two classifiers such as k-nearest neighbor (KNN)
and feed forward back-propagation artificial neural network
(FP-ANN). To reduce the feature dimensionality, they
have applied principal component analysis (PCA). The
authors in [32, 38, 40] have used scaled conjugate gradient
(SCG), particle swarm optimization (PSO), adaptive chaotic
PSO (ACPSO), and scaled chaotic artificial bee colony
(SCABC) to train the feed forward neural network (FNN)
classifier. Zhang et al. [39] have combined DWT, PCA and
kernel SVM (KSVM). In [2], a PBDS based on Ripplet
transform (RT), PCA and least squares SVM (LS-SVM) is
suggested. In [18], the authors harnessed wavelet entropy
(WE) to extract features and probabilistic neural network
(PNN) is used for classification. Later, in [4], the authors
have combined feedback pulse coupled neural network
(FPCNN), DWT, PCA and FNN to detect pathological
brain. Zhang et al. [41] have used weighted-type fractional
Fourier transform (WFRFT) and two individual classifiers
such as generalized eigenvalue proximal SVM (GEPSVM)
and twin SVM (TSVM). Later, Yang et al. [26] have
used wavelet energy values of as features. They have
applied biogeography-based optimization (BBO) to train
SVM classifier. Dong et al. [31] have utilized wavelet
packet Shannon entropy (WPSE) and wavelet packet
Tsallis entropy (WPTE) separately as features. In this,
GEPSVM is employed as classifier. Nayak et al. [13] have
utilized 2D DWT, probabilistic PCA (PPCA) and AdaBoost
with random forests (ADBRF) for identifying pathological
brains. In [30], the authors have offered a PBDS which
combines stationary wavelet transform (SWT), PCA, and
GEPSVM. In [12], a PCA+LDA technique is applied on the
2D DWT features. In [45], Naive Bayes classifier (NBC)
based PBDS is proposed which uses WE features. While,
in [29], wavelet energy and SVM is used. Sun et al. [37]
have utilized GEPSVM+RBF classifier on WE and Hu
moment invariants (HMI) features. Wang et al. [23] have
proposed a novel feature called fractional Fourier entropy
(FRFE) and performed Welch’s t-test (WTT) to select the
relevant features. Twin SVM (TSVM) classifier is employed
for classification. Later, in [35], a PBDS based on FRFE
features and multilayer perceptron (MLP) is proposed. They
have employed an adaptive real coded BBO (ARCBBO)
approach for training the MLP. In this case, the number
of hidden neurons of MLP is found using three separate
pruning methods, namely, Bayesian detection boundaries
(BDB), dynamic pruning (DP) and Kappa coefficient
(KC). Chen et al. [42] have utilized Minkowski-Bouligand
dimension (MBD) features and proposed an improved
PSO (IPSO) to train the single-hidden layer feedforward
neural network. Dash et al. [14] have intriduced a PBDS
harnessing fast discrete curvelet transform and LS-SVM.
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Later on, Wang et al. [22] have combined the variance and
entropy (VE) values of dual-tree complex wavelet transform
(DTCWT) and TSVM to detect pathological brain. Li et al.
[21] have employed wavelet packet Tsallis entropy (WPTE)
and FNN with real-coded biogeography-based optimization
(RCBBO) for pathological brain detection.

The literature study shows that most PBDSs used
different forms of wavelet like DWPT, SWT, DTCWT, etc.,
as feature extractor. Despite the merits of these approaches,
it has been observed that none of the approaches are
able to achieve perfect classification accuracy in all
cases. Therefore, application of proper feature extraction
algorithms needs to be explored. Further, classifiers like
SVM and FNN are frequently used in the existing PBDSs
in spite of many loopholes. Moreover, it has been found
that few PBDSs need a large number of features and
hence, there exists a scope to limit the feature requirement
without compromising the accuracy. It is noted that Yang
et al. [28] have proposed an efficient and novel image
feature extraction technique called two dimensional PCA
(2DPCA) which has gained tremendous attention from
researchers in last decade. 2DPCA was initially applied to
face recognition task and thereafter, it has been leveraged in
many applications.

In order to combat the above issues, we have proposed
an efficient PBDS to classify the MR image as healthy
or pathological. The proposed PBDS utilizes 2DPCA for
feature extraction. Subsequently, PCA+LDA approach is
employed in order to decide the most significant feature set.
Lastly, an improved learning algorithm called MDE-ELM
is proposed which offers several advantages such as local
minima avoidance, better generalization capability, faster
learning rate, and well-conditioned over other classifiers
like FNN, SVM, LS-SVM, ELM, etc.

Datasets used

The proposed PBDS has been evaluated on three benchmark
datasets, namely, DS-I, DS-II, and DS-III which carries 66,
160 and 255 brain MR images respectively. The datasets
accommodate T2-weighted brain MR images of size 256 ×
256 in axial view plane which were downloaded from
Medical School of Harvard University website [10]. Both
DS-I and DS-II hold samples of seven categories of diseases
such as sarcoma, glioma, meningioma, AD plus visual
agnosia (VA), Pick’s disease (PD), AD and Huntington’s
disease (HD) plus healthy brain samples. However, DS-III
includes four more diseases such as cerebral toxoplasmosis
(CTP), multiple sclerosis (MS), herpes encephalitis (HE),
and chronic subdural hematoma (CSH). The proposed work
deals with solving a binary class classification problem
(healthy or pathological), where the pathological class

contains images from all kinds of diseases. Samples of all
kinds of MR images are shown in Fig. 1.

Proposed work

The proposed system involves four stages such as contrast
limited adaptive histogram equalization (CLAHE) based
preprocessing, 2DPCA based feature extraction, PCA+LDA
based feature reduction, and MDE-ELM based classifica-
tion. The input of the system is an MR image and the output
is the class label (healthy or pathological). The overview
of the proposed PBDS is depicted in Fig. 2. A detail
description of each stage is presented below.

It is observed that most of the images in the datasets
considered in this study are of low-contrast. Therefore, for
contrast enhancement of the images, a standard technique
named CLAHE is employed. CLAHE initially evaluates a
histogram of gray values at a contextual region surrounded
by every pixel and thereafter, allocates a value to each pixel
intensity within the display range [17]. Additionally, it uses
a fixed value dubbed clip limit which helps in clipping
the histogram prior to the computation of cumulative
distribution function (CDF). However, CLAHE redistributes
those parts of the histogram equally among all histogram
bins that surpass the clip limit.

Two-dimensional PCA (2DPCA) has been shown to be
promising in the domain of feature extraction and feature
reduction over the last decade due to its salient proper-
ties like less memory storage and lower computational
overhead [25]. In addition, 2DPCA enjoys decorrelation
property and the feature vectors extracted from images are
uncorrelated. It was originally applied to face recognition
tasks and afterward, it has been successfully applied in sev-
eral applications. This motivates us to employ 2DPCA for
extracting features from brain MR images. Mathematically,
it is described as follows.

For a given P training MR images (Ij , j = 1, 2, . . . , P )

with size m × n, the image covariance matrix in 2DPCA
takes the form [28]

Cov = 1

P

P∑

j=1

(Ij − Ī )T (Ij − Ī ) (1)

Here, Cov denotes a non-negative definite matrix of size
n × n and Ī is the mean of all the training images.

Preprocessing using CLAHE

Feature extraction using 2DPCA
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Fig. 1 T2-weighted brain MR
samples [2]

Next, we evaluate the eigenvalues and eigenvectors of
matrix Cov. Then, α eigenvectors V1, V2, . . . , Vα (also
called projection vector of 2DPCA) corresponding to α

largest eigenvalues are selected as the transforming axes
and these vectors are used for feature extraction. 2DPCA
projects an image onto the transforming axes and serves the
resultant α projections (projected vectors) as features which
is stated as

Ri = IVi, i = 1, 2, . . . , α (2)

It is worth mentioning here that α value is selected using
a measure called normalized cumulative sum of variances
(NCSV). The NCSV value for ath eigenvector is calculated
as

NCSV (a) =

a∑
u=1

λ(u)

n∑
u=1

λ(u)

; 1 ≤ a ≤ n (3)

Fig. 2 Overview of the
proposed framework
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where, λ(u) represents the eigenvalue of the uth eigenvector
and n denotes the total number of the eigenvectors sorted
in descending order of eigenvalues. Here, we choose a
threshold value manually and the number of eigenvectors
(for instance α) for which the NCSV value surpasses the
threshold are selected. As mentioned earlier that these α

eigenvectors are retained for extraction of features from the
MR images.

For each input MR image, we apply 2DPCA and obtain
the features. The implementation procedure of feature
extraction is outlined in Algorithm 1.

It has been observed that the features extracted using
2DPCA are of high dimension and the high dimensional
feature vector prompts to high computational overhead and
high storage space. Hence, application of dimensionality
reduction techniques is of great importance. PCA has
been found to be effective in reducing feature dimension
which transforms high dimensional input data to a lower
dimensional space while keeping maximum variations of
the data. In contrast, linear discriminant analysis (LDA)
attempts to find a feature subspace that best discriminates
between the classes. But, conventional LDA performs
poorly while dealing with high dimensional and small
sample size problem as in this case the within-scatter matrix
(Sw) is always singular [27]. Further, to make sure that Sw

does not become singular, we need at least D + C (where
D=dimension of the feature vector and C=number of
classes) number of samples which in general is practically
not possible [11]. To address this issue, an approach called
PCA+LDA is harnessed in the proposed system, where

a D-dimensional data is first reduced using PCA to an
M-dimensional data and then to a L-dimensional data using
LDA, L << M < D. It may be noted that the optimal
number of features (L) required in our system is selected
using the NCSV measure. The overall steps involved in the
feature reduction stage is listed in Algorithm 2.

Extreme learningmachine (ELM)

Extreme learning machine (ELM) is the most simple and
efficient learning algorithm for training the single-hidden
layer feed-forward neural networks (SLFNs) which avoids
the limitations of gradient based learning schemes [8]. It
has achieved dramatic successes in solving problems like
multi-label classification problems and regression tasks. In
contrast to conventional learning schemes such as BP, SVM
and LS-SVM, ELM learns faster with better generalization
performance [7]. In ELM, the hidden node parameters (the
input weights and hidden biases) are randomly assigned,
while the output weights of SLFNs are mathematically
calculated by a simple inverse operation of the hidden layer
output matrix.

Given N distinct training samples (xj , tj ), where xj =[
xj1, xj2, . . . , xjL

]T ∈ RL and tj = [tj1, tj2, . . . , tjC]T ∈
RC , the hidden node number nh and an activation function
φ(.), the ELM algorithm can be expressed as follows.

1. Generate hidden node parameters randomly (wh
i , bi),

i = 1, 2, . . . , nh.
2. Compute the hidden layer output matrix H.
3. Compute the output weight matrix wo = H†T

Here, wh
i = [

wh
i1, w

h
i2, . . . , w

h
iL

]T
represents the weight

vector that links between ith hidden neuron and the input
neurons, wo

i = [
wo

i1, w
o
i2, . . . , w

o
iC

]T indicates the weight

Feature reduction using PCA+LDA

Classification based on MDE-ELM



19 Page 6 of 15 J Med Syst (2018) 42: 19

vector that connects the ith hidden neuron and the output
neurons, and bi is the bias of the ith hidden neuron. H†

indicates the Moore-Penrose (MP) generalized inverse of
matrix H. The size of H, wo and T are N × nh, nh × C and
N×C respectively. The smallest norm LS solution is unique
and has the minimum norm among all the LS solutions. As
the solution of ELM is obtained using an analytical method
without iteratively tuning parameters, it converges faster
than other traditional learning algorithms.

Modified DE algorithm

Differential evolution (DE) is a simple and effective popu-
lation based meta-heuristic approach for global searching of
optimization problems [3, 19]. The performance of DE is
strongly influenced by its mutation strategy, crossover oper-
ation and control parameters. As a consequence, a signif-
icant amount of works have been proposed to improve its
search performance and it has been reported that DE out-
performs GA and PSO on various benchmark functions [9].
However, the standard DE faces problems of premature
convergence at local optima and stagnation. Therefore, the
recent trend is to improve the search performance of DE by
means of novel strategies for mutation and parameter con-
trolling. In this study, a novel mutation and random scale
factor strategy is proposed to improve the performance of
DE and hence, it is referred as modified DE (MDE). The
stepwise description of the proposed MDE algorithm is
as follows.

DE Initialization Randomly initialize the L-dimensional
parameter vectors in a population of size Np as

{
Sj,I t |j = 1,

2, . . . , Np

}
with Sj,I t = [S1,j,I t , S2,j,I t , . . . , SL,j,I t ],

where I t denotes the generation number.

Mutation For each target vector Sj,I t , generate the mutant
vector using the proposed mutation strategy as

Vj,I t = Sj,I t +fs(Sbest,I t −Sj,I t )+fs(Sbest,I t −S
r
j

1 ,I t
) (4)

where, rj

1 is a random integer between 1 to Np and different
from index j . Sbest,I t denotes the best parameter vector
having best fitness at generation I t and fs is the scaling
factor which helps in scaling the difference vectors. In basic
DE, the difference vector is scaled by a constant fs . In the
proposed scheme, however, fs is set to change randomly
using the following equation

fs = 0.75 + [rand(.)/4] (5)

where rand(.) is a uniformly distributed random number
within the range [0, 1].

Crossover Form a trial vector Uj,I t = [U1,j,I t , U2,j,I t , . . . ,

UL,j,I t ] for the j th target vector Sj,I t using binomial
crossover as

Ud,j,I t =
{

Vd,j,I t if randb(d)<= Cr or d = drand

Sd,j,I t else , d =1, 2, . . . , L

(6)

where, randb(d) is the dth evaluation of a uniform
random number generator with outcome in [0, 1], drand ∈
[1, 2, . . . , L] is a randomly chosen index and Cr ∈ [0, 1] is
the crossover constant.

Selection Evaluate the fitness of the target and the trial
vector and check the following condition to find the solution
for next generation (i.e., I t = I t + 1)

Sj,I t+1 =
{

Uj,I t if f (Uj,I t ) <= f (Sj,I t )

Sj,I t if f (Uj,I t ) > f (Sj,I t )
(7)

Here, f (.) is the objective function which is to be
minimized. Repeat the above procedure until a termination
criterion gets satisfied.

Proposed evolutionary extreme learningmachine

Since ELM utilizes random input weights and hidden
biases, it leads to two critical issues [24, 46]: (i) high
requirement of hidden neurons for which ELM responds
slowly to unknown testing data and (ii) causing an ill-
conditioned hidden layer output matrix H in presence of
large hidden neurons which induces poor generalization
performance.1

To overcome such issues, few research efforts have been
reported in past years where population-based optimization
schemes such as genetic algorithms (GA) [20], differential
evolution (DE) [46] and PSO [24] are used to optimize the
hidden node parameters of ELM. However, in this study, a
new approach MDE-ELM by combining the modified DE
(MDE) algorithm with ELM is proposed to enhance the per-
formance of the proposed scheme compared to existing
schemes. In this, MDE is used to optimize the hidden node
parameters, whereas, MP generalized inverse is utilized to

1Note: Condition number is shown to be an effective qualitative
measure to find the conditioning of a matrix [44]. It may be noted that
an ill-conditioned system has large condition number, while a well-
conditioned system has small condition number. The 2-norm condition
number of the matrix H can be calculated as,

K2(H) =
√

λmax(HT H)

λmin(HT H)
(8)

where, λmax(HT H) and λmin(HT H) denotes the largest and smallest
eigenvalues of matrix HT H.
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analytically find the solution. It is worth mentioning here that
the MDE algorithm searches global optima by considering
both root-mean squared error (RMSE) and norm of the out-
put weights of SLFNs which ensures in improving the gen-
eralization performance and the conditioning of the SLFN.
The proposed MDE-ELM is stepwise listed as follows.

(a) Randomly initialize all the parameter vectors in the pop-
ulation between [-1,1] such that each vector comprises
a set of input weights and hidden biases as

Sj =
[
wh

11, w
h
12, . . . , w

h
1L, wh

21, w
h
22, . . . , w

h
2L, wh

nh1,

wh
nh2, . . . , w

h
nhL, b1, b2, . . . , bnh

]
(9)

(b) For each vector, evaluate the output weights and fitness.
Here, for fitness evaluation, we compute the RMSE over

the validation set rather than the whole training set to
overcome the overfitting issue. Hence, we can define
fitness as

f () =

√√√√√√

Nv∑
j=1

||
nh∑
i=1

wo
i φ(wh

i · xj + bi) − tj ||22
Nv

(10)

where, Nv indicates the number of validation samples.
(c) Find Sbest of all the solutions in the population and

generate the mutant vector Vj and trial vector Uj using
Eqs. 4 and 6 respectively.

(d) Update the vectors using the fitness value and the norm
of the output weights and generate new population as
follows:

Sj,I t+1 =
⎧
⎨

⎩

Uj,I t if f (Sj,I t ) − f (Uj,I t ) > εf (Sj,I t )

or (|f (Sj,I t ) − f (Uj,I t )| < εf (Sj,I t ) and ||wo
Uj

|| < ||wo
Sj

||)
Sj,I t otherwise

(11)

where, f (Sj,I t ) and f (Uj,I t ) denotes the fitness value
of the target vector j and its corresponding trial vector
at iteration I t respectively. wo

Sj
and wo

Uj
represents the

output weights of target vector j and its corresponding
trial vector, respectively. ε > 0 is a user-defined
tolerance rate.

(e) To bound the input weights and biases in the range of
[-1, 1], we use the following equation in the proposed
MDE-ELM.

Sd,j,I t+1=
{ −1 if Sd,j,I t+1 <−1

1 if Sd,j,I t+1 >1
, 1≤j ≤Np, 1≤d ≤L

(12)

(f) Repeat (c)–(e) until the point that the most extreme
number of iterations are finished and obtain the
optimal input weights and hidden biases.

The proposed scheme uses Eq. 11 to find the optimal
input weights and hidden biases and hence, it tends to
provide a lower value of norm of output weights of SLFNs.
On the other hand, the smaller norm of the output weights
leads to a smaller condition value of the output hidden
matrix. To sum up, the proposed MDE-ELM offers the
following advantages: (i) it improves the conditioning, (ii)
it produces better generalization performance with a much
more compact network. Compared to other gradient based
methods and classical ELM, MDE-ELM approach does not
need activation function to be differentiable.

Since the proposed PBDS includes techniques such as
2DPCA, PCA+LDA, and MDE-ELM, hereafter, in this

paper, the proposed scheme is referred to as 2DPCA +
PCA+LDA + MDE-ELM.

Experimental results and analysis

The parameters used and the statistical set up was kept
similar to other competent schemes to derive relative
comparisons.

In order to validate the proposed scheme 2DPCA + PCA+
LDA + MDE-ELM, simulation has been carried out on
three different datasets, namely, DS-I, DS-II, and DS-
III. For statistical analysis, cross-validation (CV) has been
employed which avoids over-fitting problems. In this work,
we have incorporated stratification into CV which splits the
folds in such a way that each fold will have a similar class
distribution. Figure 3 depicts the setting of a 5-fold CV
for a single run. In each trial, one fold is used for testing,
one for validation and the rests for training. The validation
set is used to find the parameters of the MDE-ELM i.e.,
it helps us to know when to stop training. The test set is
used to evaluate the performance in a run of five trials.
Here, for DS-I, we employ 6-fold stratified cross validation
(SCV) while for another two datasets, we select 5-fold SCV.
The statistical setting for all the three datasets is given in
Table 1. Here, the SCV procedure run for 10 times for three
datasets.

Statistical set up
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Fig. 3 Illustration of 5-fold
cross validation setting for a
single run

To decide whether the proposed scheme is effective or not,
four different measures such as sensitivity (Se), specificity
(Sp), precision (Pr ) and accuracy are computed. Se is the
fraction of pathological MR samples successfully predicted,
while Sp is the fraction of healthy MR samples successfully
predicted. However, accuracy (ACC) determines the fraction
of the correctly predicted samples (both pathological and
healthy) in the total number of testing samples. Moreover,
to compare proposed MDE-ELM scheme against other
schemes such as DE-ELM, PSO-ELM, basic ELM and
BPNN, two parameters such as condition number and norm
of output weights are used.

In the following, we discuss the results obtained at various
stages of the proposed scheme.

Preprocessing and feature extraction results

In preprocessing stage, CLAHE is utilized which relies on
the proper setting of its parameters. Here, the original MR
image is divided into 64 contextual regions. The number of
bins and the clip limit (β) are selected to be 256 and 0.01.
The representative enhanced images corresponding to four
original MR images are depicted in Fig. 4. From the figure,
it is seen that the affected lesions are clear in the enhanced
images than that of original images.

Next, 2DPCA algorithm is employed on the preprocessed
images for feature extraction. In 2DPCA, the features are
extracted using the projection vectors of the image scatter

matrix. If we use all the projection vectors for feature
extraction of an image, then the total number of features
will be too high. On the other hand, all projection vectors do
not contain important information. Hence, a simple strategy
based on NCSV measure is used in this study to select the
optimal number of projection vectors (i.e., α). To test this
strategy, we compute the NCSV values with varying number
of projection vectors for all the three datasets as shown in
Fig. 5. From the figure, it is seen that our algorithm needs
more than 26 projection vectors for all the three datasets
(in particular 23, 25 and 26 for DS-I, DS-II, and DS-III
respectively) with a threshold of 0.8. Hence, we fix the α

value as 26 in order to extract the salient features from
the brain MRI of three datasets. As a consequence, the
total number of features extracted from a single image is
computed to be 6656 (i.e., 26*256). Here, the threshold
value is determined experimentally.

As the dimension of feature vector obtained by 2DPCA
algorithm is much higher (i.e., 6656 features), we employ
PCA+LDA to reduce the dimensionality. The number of
significant features is obtained based on the NCSV values of
different features. It has been observed that PCA preserves
maximum information with more features compared to
PCA+LDA. In this case, the threshold value for NCSV is
set to 0.95. Moreover, the classification accuracy against the
number of features for both PCA and PCA+LDA on three
datasets is depicted in Fig. 6. From the figure, it is clear
that PCA based scheme achieves higher accuracy with 14
features on all the three datasets, while PCA+LDA based
scheme yields higher accuracy with only two features.

Table 1 Specification of three
benchmark datasets [2, 13, 35] Dataset k-fold SCV Total samples Training Validation Testing

H P H P H P H P

DS-I 6 18 48 12 32 3 8 3 8

DS-II 5 20 140 12 84 4 28 4 28

DS-III 5 35 220 21 132 7 44 7 44

Evaluation method

Experimental results

Feature reduction results
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Fig. 4 Preprocessing using
CLAHE. Row 1 lists the original
MR samples. Row 2 lists the
corresponding preprocessed
samples

The proposed system employs MDE-ELM for classification
of MR images as healthy or pathological. Here, the
performance of the proposed MDE-ELM is compared
against other learning algorithms such as DE-ELM, PSO-
ELM, ELM, and BPNN. The objective function is kept same
for all the algorithms i.e., sigmoidal function and the inputs
to the network are normalized into the range [-1,1]. It may
be noted that we set 20 and 30 as the population size and the
maximum number of iterations respectively for MDE-ELM,
DE-ELM, and PSO-ELM algorithm. The ε value in the

proposed MDE-ELM is tested between a range [0.01, 0.2]
at equally spaced intervals. However, it has been found that
the proposed scheme achieves highest performance with ε

value as 0.05. In case of PSO-ELM, the value of c1 and c2

are set as 2, while in DE-ELM, the crossover rate (Cr ) and
scaling factor (fs) are set as 0.7 and 0.8 respectively.

Tables 2, 3 and 4 show the results obtained by MDE-
ELM, DE-ELM, PSO-ELM, ELM and BPNN on three
benchmark datasets. From the tables, it is clear that MDE-
ELM outperforms others with less hidden neurons over all
the datasets. It can also be noticed that basic DE-ELM
earns perfect classification on DS-I and DS-II, however, it

Fig. 5 NCSV values with
respect to different number of
projection vectors for three
datasets
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Fig. 6 Classification accuracy with respect to number of features for three datasets

earns comparable accuracy over DS-III. Compared to other
algorithms, standard ELM demands more hidden neurons.

Table 2 Performance comparison of different algorithms on DS-I

Classifiers ACC (%) Hidden
neurons
(nh)

Norm Condition
number
(K2)

BPNN 99.85 4 – –

ELM 100.00 5 36.1176 5.1029e+03

PSO-ELM 100.00 3 25.5475 101.5889

DE-ELM 100.00 3 19.0114 72.9316

MDE-ELM 100.00 3 13.3845 50.9073

Proposed scheme is highlighted in bold

Further it is observed that the condition value of the
matrix H obtained by MDE-ELM, DE-ELM and PSO-ELM

Table 3 Performance comparison of different algorithms on DS-II

Classifiers ACC (%) Hidden
neurons
(nh)

Norm Condition
number
(K2)

BPNN 99.88 4 – –

ELM 100.00 5 63.9829 2.1353e+03

PSO-ELM 99.94 3 22.1282 83.1536

DE-ELM 100.00 3 14.1658 55.5117

MDE-ELM 100.00 3 10.2688 46.5197

Proposed scheme is highlighted in bold
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Table 4 Performance comparison of different algorithms on DS-III

Classifiers ACC (%) Hidden
neurons
(nh)

Norm Condition
number
(K2)

BPNN 99.37 4 - -

ELM 99.49 5 112.5837 6.9975e+03

PSO-ELM 99.61 3 37.7973 173.3338

DE-ELM 99.53 3 22.9009 107.4050

MDE-ELM 99.65 3 14.6638 77.0868

Proposed scheme is highlighted in bold

algorithm is much smaller compared to the conventional
ELM. Therefore, it is proved that the network trained by
all these algorithms are highly well-conditioned compared
to basic ELM. Further, their corresponding norm values are
much smaller than basic ELM and hence, these algorithms
tend to have better generalization performance compared
to traditional ELM. It can be seen that the smaller norm
value of wo leads to a smaller condition value of matrix
H. Compared with PSO-ELM and DE-ELM, the MDE-
ELM obtains smaller condition and norm values. Therefore,
it can be concluded that the proposed algorithm (MDE-
ELM) can have better generalization performance with a
compact network structure. It is worth mentioning here that
the results reported in the tables are the average values of 50

Fig. 7 Classification accuracy achieved by different classifiers for three datasets
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Table 5 Correctly classified
samples of the proposed
scheme on DS-III

Run F-1 F-2 F-3 F-4 F-5 Total ACC(%)

1 51 (51) 50 (51) 51 (51) 51 (51) 51 (51) 254 (255) 99.61

2 51 (51) 51 (51) 51 (51) 51 (51) 50 (51) 254 (255) 99.61

3 50 (51) 51 (51) 51 (51) 51 (51) 51 (51) 254 (255) 99.61

4 51 (51) 51 (51) 51 (51) 51 (51) 51 (51) 255 (255) 100.00

5 51 (51) 50 (51) 51 (51) 51 (51) 51 (51) 254 (255) 99.61

6 51 (51) 51 (51) 51 (51) 51 (51) 51 (51) 255 (255) 100.00

7 51 (51) 51 (51) 50 (51) 51 (51) 51 (51) 254 (255) 99.61

8 51 (51) 51 (51) 51 (51) 49 (51) 51 (51) 253 (255) 99.22

9 51 (51) 51 (51) 51 (51) 51 (51) 50 (51) 254 (255) 99.61

10 50 (51) 51 (51) 51 (51) 51 (51) 51 (51) 254 (255) 99.61

Total 2541 (2550) 99.65

x(y) indicating x brain images are correctly classified out of y brain images

trials and the parameters of all the schemes are determined
through experimental evaluation.

Moreover, to prove the efficacy of the suggested MDE-
ELM classifier, accuracy comparison is made against other
classifiers like BPNN, KNN, random forest (RF), and SVM
classifier on all the three datasets and the results are depicted
in Fig. 7. For DS-I, KNN, BPNN, SVM, RF, ELM and
DE-ELM yield an accuracy of 99.24%, 99.85%, 100.00%,
99.54%, 100.00% and 100.00% respectively; however, these
classifiers obtain an accuracy of 99.38%, 99.88%, 99.81%,
99.69%, 100.00% and 100.00% respectively on DS-II. The
accuracies yielded by KNN, BPNN, SVM, RF, ELM and
DE-ELM are 99.14% 99.37%, 99.49%, 99.33%, 99.49%,
and 99.53% respectively on DS-III. While MDE-ELM earns
ideal classification on DS-I and DS-II datasets and an
accuracy of 99.65% on DS-III dataset. This shows that
the proposed algorithm outperforms all other classifiers

in DS-III and able to provide ideal results in other two
datasets.

Table 5 indicates the number of correctly classified
MR images obtained by the proposed scheme (2DPCA+
PCA+LDA + MDE-ELM) over DS-III in each trial of a
10 × k-fold SCV. It is found that the proposed scheme
can successfully classify 2541 MR images out of 2550
samples (2200 pathological and 350 healthy MR images).
In particular, 2195 pathological samples are successfully
classified by our scheme and the rest five samples are
misclassified to healthy class. However, the proposed
system successfully predicts 347 healthy MR images and
rest three samples are misclassified to pathological class.
From these results, the sensitivity (Se), specificity (Sp) and
precision values (Pr) of the proposed scheme are computed
as 99.82%, 98.57% and 99.77%, respectively which are
shown in Table 6.

Table 6 Classification
performance (%) of the
proposed scheme based on
PCA and PCA+LDA over three
datasets

Dataset Scheme 2DPCA+PCA+MDE-ELM 2DPCA+PCA+LDA+MDE-ELM

No. of features 14 2

DS-I Se 100.00 100.00

Sp 100.00 100.00

Pr 100.00 100.00

ACC 100.00 100.00

DS-II Se 99.79 100.00

Sp 99.00 100.00

Pr 99.86 100.00

ACC 99.69 100.00

DS-III Se 99.64 99.82

Sp 98.86 98.57

Pr 99.73 99.77

ACC 99.53 99.65
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Table 7 Comparison against
other competent PBDSs on
three standard datasets

Existing PBDSs Feature size Run ACC (%)

DS-I DS-II DS-III

DWT + SVM + POLY [1] 4761 5 98.00 97.15 96.37

DWT + PCA + BPNN + SCG [32] 19 5 100.00 98.29 97.14

DWT + PCA + FNN + SCABC [40] 19 5 100.00 98.93 97.81

DWT + PCA + FNN + ACPSO [38] 19 5 100.00 98.75 97.38

DWT + PCA + KSVM [39] 19 5 100.00 99.38 98.82

WPSE + GEPSVM [31] 16 10 99.85 99.62 98.78

WPTE + GEPSVM [31] 16 10 100.00 100.00 99.33

WPTE + FNN + RCBBO [21] 16 10 100.00 100.00 99.49

WE + HMI + GEPSVM [37] 14 10 100.00 99.56 98.63

DWT + PCA + ADBRF [13] 13 10 100.00 99.18 98.35

FRFE + WTT + SVM [23] 12 10 100.00 99.69 98.98

DTCWT + VE + GEPSVM [22] 12 10 100.00 99.75 99.25

FRFE + WTT + DP-MLP + ARCBBO [35] 12 10 100.00 99.19 98.24

RT + PCA + LS-SVM [2] 9 5 100.00 100.00 99.39

DWT + PCA + k-NN [5] 7 5 98.00 97.54 96.79

FPCNN + DWT + PCA + FNN [4] 7 10 100.00 98.88 98.43

SWT + PCA + GEPSVM [30] 7 10 100.00 99.62 99.02

WE + NBC [45] 7 10 92.58 91.87 90.51

DWT + PCA + LDA + RF [12] 7 10 100.00 99.75 99.14

MBD + SLFN + IPSO [42] 5 10 100.00 98.19 98.08

2DPCA + PCA + MDE-ELM 14 10 100.00 99.69 99.53

2DPCA + PCA+LDA + MDE-ELM 2 10 100.00 100.00 99.65

(Proposed)

Proposed scheme is highlighted in bold

To test the effectiveness of PCA+LDA approach over
PCA, another experiment is done over three datasets. The
performances of both the schemes, namely, 2DPCA+ PCA
+ MDE-ELM and 2DPCA+ PCA+LDA + MDE-ELM are
listed in Table 6. It may be noticed that the proposed
2DPCA+ PCA+LDA + MDE-ELM scheme achieves better
sensitivity, precision and accuracy than 2DPCA+ PCA +
MDE-ELM over all the datasets with a relatively less
number of features. Moreover, 2DPCA + PCA+LDA MDE-
ELM obtains slightly less specificity than 2DPCA+ PCA +
MDE-ELM in DS-III. However, it is worth addressing here
that the CAD system with higher sensitivity values leads to
have better performance. Therefore, it can be concluded that
the proposed 2DPCA+ PCA+LDA + MDE-ELM scheme
holds greater potential in taking accurate clinical decisions.

To benchmark the performance of the suggested scheme in
context of the number of number of features required and

classification accuracy, extensive comparison with twenty
existing schemes has been done over three datasets and
is shown in Table 7. It is found that most of the earlier
PBDSs yield ideal classification on DS-I; however, three
PBDSs such as RT + PCA + LS-SVM [2], WPTE +
FNN + RCBBO [21] and WPTE + GEPSVM [31] offer
ideal classification on DS-II. Further, there is no PBDS
available which can yield perfect classification over DS-III.
However, our proposed PBDS obtains higher accuracy i.e.,
99.65% compared to other PBDSs with a minimum number
of features. Since MDE-ELM is used as classifier, the
proposed system earns better generalization performance
and responds faster to unknown testing data.

From the experiments, it has been observed that the
proposed system has been tested on three openly accessible
datasets accommodating images from patients during the
late and middle stages of diseases, but a larger dataset
with images from all stages of diseases can be validated
to achieve better generalization performance. The present
study deals with solving a two-class classification problem,
however solving a multi-class brain disease classification
problem is more challenging. Further, MDE demands more

Comparison to PCA based PBDS

Comparison to existing PBDSs
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parameter to tune, hence there exists a scope to investigate
on an optimization scheme which may need less number of
parameters.

Conclusions and future work

This paper proposed an improved pathological brain
detection system based on 2DPCA and an evolutionary
ELM. In the proposed PBDS, 2DPCA is used for feature
extraction followed by a PCA+LDA approach for feature
reduction. Thereafter, a novel learning algorithm called
MDE-ELM is introduced to perform classification of MRI
brain which offers several advantages over traditional
classifiers. The goal of using MDE in MDE-ELM is to
optimize the hidden node parameters of standard ELM.
The performance of the proposed scheme is evaluated on
three standard datasets and the experimental results confirm
that the effectiveness of the proposed scheme in improving
classification accuracy compared to the existing schemes.
Further, the number of features required is shown to be
much less than others.

The proposed MDE-ELM algorithm can be tested over
real regression and classification problems. Despite the
merits of the proposed PBDS, it has been observed that the
PBDS is benchmarked on three accessible datasets which
are smaller in size; hence, a larger dataset collected online
will further prove its effectiveness. Further, the images in
the chosen datasets are assembled from the last and the
middle stage of the diseases, images collected during all the
stages need to be validated. In future, it would be interesting
to hybridize ELM with other metaheuristic algorithms
like grey wolf optimizer (GWO), firefly algorithm (FA),
gravitational search algorithm (GSA) etc. In addition,
harnessing deep learning algorithms for analyzing 3D MR
images is another possible future work.
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