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Abstract One of the major issues in time-critical medical
applications using wireless technology is the size of the pay-
load packet, which is generally designed to be very small
to improve the transmission process. Using small packets
to transmit continuous ECG data is still costly. Thus, data
compression is commonly used to reduce the huge amount
of ECG data transmitted through telecardiology devices. In
this paper, a new ECG compression scheme is introduced to
ensure that the compressed ECG segments fit into the avail-
able limited payload packets, while maintaining a fixed CR
to preserve the diagnostic information. The scheme auto-
matically divides the ECG block into segments, while main-
taining other compression parameters fixed. This scheme
adopts discrete wavelet transform (DWT) method to decom-
pose the ECG data, bit-field preserving (BFP) method to
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preserve the quality of the DWT coefficients, and a modi-
fied running-length encoding (RLE) scheme to encode the
coefficients. The proposed dynamic compression scheme
showed promising results with a percentage packet reduc-
tion (PR) of about 85.39% at low percentage root-mean
square difference (PRD) values, less than 1%. ECG records
from MIT-BIH Arrhythmia Database were used to test the
proposed method. The simulation results showed promising
performance that satisfies the needs of portable telecardiol-
ogy systems, like the limited payload size and low power
consumption.

Keywords ECG · Compression · Discrete wavelet
transform · Running length encoding · Payload packets

Introduction

Transmission of biomedical signals through wireless body
area sensor (WBAN) technology promises to offer efficient
real-time health monitoring services and automated diag-
nostic procedures. The collected biomedical signals over
a long period of time require a large amount of storage
capabilities. Thus, compression is introduced to reduce the
storage space and transmission cost. At the same time, the
critical diagnostic information and signal quality need to
be preserved while compression. The Electrocardiogram
(ECG) signal is a commonly monitored biomedical signal
that assesses the heart condition. From the ECG signal,
cardiologists can detect arrhythmias that may reveal the
existence of some cardiac diseases. Since cardiologists need
huge amount of ECG data for diagnosis, this ECG data have
to be compressed while storage [1].

In case of remote monitoring through wireless transmis-
sion using portable devices, compression is necessary to
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reduce the payload packets, transmission rate and power
consumed by the RF antenna [2, 3]. Some of the current
hardware and software technologies used for WBAN nodes
might introduce some limitations in the implementation of
complex compression algorithms, which contain multipli-
cation and complex math functions like logarithm (log)
and square-root (sqrt). Therefore, the algorithm should be
designed with low complexity to reduce the computational
power since the sensors are powered by low-power batteries.

Discrete Wavelet Transform (DWT) method is widely
employed for biomedical signal analysis due its powerful
capabilities in analyzing signals in both time and fre-
quency domains [4–10]. The DWT decomposes the original
signal into subband coefficients that represent the mea-
sure of similarity in frequency content between the signal
and the chosen wavelet function [11]. Decomposing the
ECG signals into subband coefficients allows high sep-
aration between the noise and the dominant ECG mor-
phology like the QRS waveform. In addition, in sub-
bands the ECG’s iso-electric pauses and redundant data
are clearly visible. Thus, their statistical redundancy can
be highly encoded without losing significant diagnostic
information. The compression procedure is conducted on
these subband coefficients using different coding tech-
niques such as: the set partitioning in hierarchical tree
(SPIHT) coding [6, 12], vector quantization (VQ) [13],
construction of the classified signature and envelope vec-
tor sets (CSEVS) [14] and energy package efficiency
(EPE) [15]. These DWT-based compression techniques
achieved high compression performance compared to other
methods that code the redundancy of the original time signal.

The main challenges associated with real-time ECG
compression methods are: the quality of the reconstructed
signal, the compression ratio (CR), the execution time and
computational power. The CR is an important factor to
transmit the data as fast as possible [16]. Some of the
encoding methods can be complex to implement on FPGA’s
or basic microcontrollers since they require high compu-
tational costs and power. Thus, Chan et al. proposed a
simple and forward encoding scheme to compress the DWT
coefficients using bit-field preserving (BFP) and running
length encoding (RLE) algorithms [7], and it was tested and
validated on an FPGA system [17]. The DWT-BFP-RLE
method is simple to implement since it allows forward data
processing compared to other methods that require sorting
and heavy computations.

For critical-time medical applications, the payload pack-
ets of the telecardiology systems are typically designed with
small sizes of 40 to 60 bytes to increase the delivery rate
[18]. In practice, to fit the ECG segment into a payload
packet, it is compressed at the expense of losing some diag-
nostic information. In fact, the error and CR are in trade-off
relationship i.e., increasing the CR results in higher error.

Thus, the designer of the WBAN system must account for
the duration (or number of samples) taken during transmis-
sion, because huge number of ECG samples requires higher
CR to fit into the maximum payload available. In some work
in literature [4, 19, 20], the error is controlled by a closed
loop to ensure that the reconstructed signal can be used for
clinical evaluation. The closed loop involves manipulation
of some compression parameters to attain the payload con-
strain. Generally, these methods simply attain the size of the
compressed segment by varying the compression parame-
ters (which compromise on the quality of the reconstructed
signal) to push it into the maximum payload available.

By reviewing literature, effective solutions were not
found yet for the issue of controlling the size of compressed
ECG data while retaining the clinical quality. Thus, we
were motivated to design a new ECG compression scheme,
based on DWT-BFP-RLE compression algorithm [7], which
ensures that the compressed segments fit into the available
payload packet while maintaining the CR to preserve the
diagnostic information. By considering the size of the pay-
load packet this method overcomes the limitations of the
other methods. The proposed method automatically divides
the ECG block of size Ns into segments while fixing the
other compression parameters. For validation, ECG records
from MIT-BIH Arrhythmia Database are used.

This paper is organized as follows: first, “Methods”
describes the discrete wavelet transform based compres-
sion method, and “Proposed dynamic compression scheme”
introduces the proposed dynamic compression scheme for
filling the payload packets. “Evaluation scheme” describes
the performance matrices and datasets used to validate the
method and then “Experimental results and discussion”
presents the results and discusses the outcomes. Finally,
“Conclusions” draws the conclusions and discusses the
future work.

Methods

Discrete wavelet transform

Wavelet transform (WT) is a signal processing tool that rep-
resents the signal in both time and frequency domains. WT
provides a good localization resolution and is suitable for
the analysis of non-stationary signals like ECGs [21]. The
discrete wavelet transform (DWT) is a special form of the
continuous wavelet transform (CWT) which uses discrete
wavelet functions [22].

The CWT is the correlation between a wavelet function
ψa,b(t) and a time domain signal f(t) given by:

CWT (a, b) =
∫ ∞

−∞
f (t)ψ∗

a,b(t)dt (1)
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where a is the scaling coefficient and b is the translation
coefficient, and both are real continuous numbers with a >

0 and b ≥ 0. The wavelet function is defined as:

ψa,b(t) = 1√
a
ψ

(
t − b

a

)
(2)

The DWT removes the redundancy of CWT by discretizing
the wavelet coefficients as

a = am
0 , b = nb0a

m
0 (3)

where a0 > 1, b0 > 0, (m, n) ∈ Z, where n represents
the discrete time index. Usually, a0 is set to 2 and b0 to
1, to have a dyadic grid function which produces dyadic
(hyperbolic) grids instead of linear grids [11]. Dyadic grids
are the simplest and most efficient way of discretization.
Consequently, Eq. 2 can be written as

ψm,n(t) = a
−m/2
0 ψ(a−m

0 t −nb0) = 2−m/2ψ(2−mt −n) (4)

This DWT equation can be implemented efficiently using
Mallat implementation algorithm [22], which is based on
orthogonal and biorthogonal filter banks. It decomposes
the signal into subbands using two types of finite impulse
response (FIR) filter arrangements; high-pass filters with
coefficients h(n) and low-pass filters with coefficients g(n).
The high-pass filter produces the wavelet detail coefficients
dn and the low-pass filter produces the wavelet approxima-
tion coefficients an, where n = 1, 2, ..J , and J is the highest
decomposition level as shown in Fig. 1.

Using the low-pass filter, the approximation coefficient
a1 can be further decomposed into two subbands in the next
decomposition level and so on up to dJ and aJ [23]. A
down-sampling operation by a factor of 2 (↓ 2) is applied
after each filter.

The subband coefficients resulted from the filter bank
structure are further encoded. The lower subband coef-
ficients of the ECG signal contain most of the energy
spectrum, hence more bits have to be preserved in these

subbands. On the other hand, since the higher subband
coefficients have more noise-like signals which are not
important, less bits are preserved and encoded. As a result,
this encoding technique can achieve high compression per-
formance. The original signal can be reconstructed from the
encoded subband coefficients using reconstruction filters,
which are mirrors of the decomposition filters. This type of
filters is called quadrature mirror filters (QMF) [24–26]. In
this work, the commonly used filter banks for ECG analysis
such as Daubechies (Db) [27], Biorthogonal (bior), Coiflet
(coif), Symmlet (sym), Morlet (morl) are used.

Compression based on DWT and thresholding

ECG decomposition using wavelet filter banks

Decomposition levels 4 to 6 are commonly used in DWT-
based ECG compression methods since most of the ECG
energy is confined to these bands [8]. Figure 2 shows a
decomposed ECG signal using J = 5. It is clear that the
first three subbands (d1, d2 and d3) contain noise and high-
frequency ECG morphologies, like QRS complex peaks.
The two remaining subbands contain low-frequency ECG
components such as P, T and U waveforms. Thus, using
wavelet functions that have similar morphology to the QRS
complex, such as Daubechies (Db) wavelet, minute details
of ECG signals can be preserved while only keeping a
small number of coefficients, leading to an efficient coding
[28, 29]. Generally, the compression performance is highly
dependent on the morphology of the mother wavelet and the
ECG information of interest.

In this work, the mean of the approximation coefficient
a4 is subtracted before threshodling and encoding, and then
it is added later on at the reconstruction stage. This step is
similar to removing the mean of the original signal before
decomposition, but it is much faster in case of using FPGAs
or microcontrollers due to the less number of samples in a4

compared to the original signal.
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Fig. 1 Discrete wavelet decomposition and reconstruction using filter banks



166 Page 4 of 17 J Med Syst (2017) 41: 166

Fig. 2 Subband coefficients of
the decomposed signal before
and after thresholding. The red
dashed lines represent the
threshold λsb values
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Thresholding and bit-preserving

After decomposing the signal into subband coefficients
using DWT, the signal part which has low power will
produce very low coefficient values. These insignificant
coefficients can be set to zeros without losing significant
information [30]. A threshold value (λ) is calculated to
define the level of the insignificant coefficients. This thresh-
old is obtained either globally for all of the subbands or
locally for each subband. The local, or adaptive, threshold
showed better results compared to the global threshold [31].

One of the commonly used adaptive thresholds is pro-
vided in Eq. 5, which is proposed by [32].

λn = σ
√

2Ndn × log(Ndn) (5)

where, σ is the standard deviation of the signal’s noise
and Ndn is the number of samples in the nth subband (dn).
However, this standard deviation computation method is

generally used for offline methods since it requires post-
processing of the whole signal [33]. Thus, it is not adapted
for real-time algorithms.

In [7], Chan et al. proposed a new thresholding tech-
nique based on the bit-field preserving scheme. This scheme
depends on the number of bits of interest (BOI) in the sig-
nificant coefficients. BOI can be any stream of bits of length
ISb between bit 0 to M-1. Preserving few bits from the
coefficients will introduce a truncation error while decom-
pression/reconstruction at the expense of increasing the CR.
Thus, the bit-field preserving (BFP) scheme is used to
reduce the truncation error by preserving most of the bits.
BFP involves adding a rounding coefficient Cround to each
subband coefficient. In this work, thresholding and BFP are
performed as follows:

i. Find the bit-depth value of each subband (BSb), which
is the most signicant bit of the maximum coefficient
in the subband, BSb = MSB(|max(dn)|).
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ii. Select the desired preserved bit-length (ISb) for each
subband coefficient.

iii. Calculate the rounding coefficient as Cround =
2BSb−ISb .

iv. Apply a round-off mechanism by adding Cround to
each coefficient in the subband.

v. Calculate the new bit-depth (Bn). If the new Bn is
greater than current BSb, the BSb is updated as Bn.

vi. Calculate the new subbands encoding thresholds as
λSb = 2Bn−ISb+1.

vi. Apply the encoding thresholds λSb to each subband
coefficient by setting the insignificant coefficients, less
than the absolute value of threshold, to zeros (Fig. 2).

viii. For each significant coefficient, greater than λSb,
extract the BOI, BOI length and Bn.

More detailed description of the BFP technique and the
round-off mechanism is found in [7, 17]. In this work, the
BFP technique accounts for the sign of the coefficients as
follows

d̂j (n) =
{

dj (n) + sign(dj (n))Cround if dj (n) �= 0
dj (n) if dj (n) = 0

(6)

The compression performance is controlled by the preserved-
lengths ISb, where Sb stands for the subband coefficients
d1, d2,.., dJ and aJ . As shown from Fig. 3a, BOI are the bits
from BSb + 1 to BSb − ISb + 1 and ISb is the length of these
bits. In this works, each BOI is stored into one byte and the
same for BOI range. Thus, ISb is no more than 7 bits (i.e.
bits 0 to 6 hold the extracted bits and bit 7 for the sign bit).
The negative coefficient is treated as the positive coefficient
by taking the absolute value, but the sign bit will be set to 1.

Encoding and data mapping

The encoding step is conducted in three steps. First, for each
significant coefficient, greater or equal to λSb, a one (1) is
sent to the significant map (SM) and the BOI including the
sign bit at the (BSb + 1)th are sent to the BOI packet. On
the other hand, for each insignicant coefficient a zero (0) is
sent to the SM but no BOI are extracted. Thus, the generated
SM packet will hold 1’s and 0’s that indicate the order of
significant and insignificant bytes in each subband, respec-
tively. Second, each 8 bits from the SM are bundled as one
byte. Thus, each subband with N samples will have N/8
SM packets.

To illustrate the thresholding, BFP and SM bits genera-
tion step, Fig. 4 shows an example of these steps on one
of the decomposed ECG subbands. The Cround is calcu-
lated from the maximum absolute coefficient to conduct
the BFP step and then λSb is calculated after the round-
off procedure. The reconstructed subband shows the amount
of change in each coefficient and the restored significant
coefficients. In addition, Fig. 4 shows the SM values corre-
sponding to each coefficient along with the final SM byte
representation. Since SM is holding a lot of redundant 0’s,
it can be further compressed using running-length encoding
(RLE) scheme and this is the third step in the encoding pro-
cess. RLE replaces the consecutive zero bytes with only two
bytes; a byte with a zero value and a byte representing the
number of consecutive zeros, i.e. SM bytes= [1 0 0 0 0 0 7 0
0 3 0 0 0 2 0], can be encoded as SMe= [1 0 5 7 0 2 3 0 3 2
0 1]. Usually, the last two subbands (aJ and dJ ) have fewer
samples and less consecutive zeros, and thus RLE method
is not applied to their SM bytes.

…
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Fig. 3 a Bits of interest (BOI) and preserved subband length ISb extracted from an ECG sample. b The packet format of the final compressed
segment
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Fig. 4 Example of bit-field
preserving (BFP) and significant
map (SM) generation. The SM
was encoded from 16 bytes to 8
bytes using running-length
encoding (RLE) method. The
red dashed lines represent Cround
and λSb
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Packetization

Before transmission, the encoded and extracted data have to
be packetized in a clear format which allows fast reconstruc-
tion at the receiver side. The final packetized compressed
segment is illustrated Fig. 3b. The final compressed packet
holds the headers, BOI, SM and the mean of aJ . Table 1
shows the sizes of the packets in the compressed segment
which holds the following information in sequence:

i. The Number of Samples (Ns): Indicates the total num-
ber of ECG samples taken for compression. To point
out for 32, 64, 128, 256, 512 and 1024 ECG samples,
the Ns value is set to 0, 1, 2, 3, 4, or 5, respectively.

ii. The Range of BOI (BOI Range): indicates the range
of ISb of the subband. The 4 MSB holds the low bit

Table 1 The sequence of packets in the compressed segment and their
corresponding sizes in bytes

# Packet Size in bytes

1 The Number of Samples (Ns) 1

2 The Range of BOI (BOI Range) 1

3 The Number of BOI (BOI Size) 2

4 Bits-of-Interests (BOI) Size of BOI

5 The size of SMe or SM (SMe/SM Size) 1

6 Significant Map Stream in Bytes (SMe/SM) Size of SMe/SM

7 The Mean of aJ (Mean) 2

Note that only the packets of d1 are shown, from 2-6, and they have to
be repeated for d2 to aJ

range (BSb +1) and the 4 LSB holds the high bit range
(BSb − ISb + 1).

iii. The Number of BOI (BOI Size): indicates the number
BOI of the significant coefficients in bytes.

iv. Bits-of-Interests (BOI): holds the BOI of the subband.
v. The size of SMe or SM (SMe/SM Size): the number

of bytes that holds the significant map or the encoded
significant map.

vi. Significant Map Stream in Bytes (SMe/SM): holds the
SM and SMe bytes of the subband.

vii. The Mean of aJ (Mean): the subtracted mean of the
approximation subband aJ .

We assume that the packets arrive in sequence at the receiver
side and ready for decompression and decoding. The pack-
ets’ error detection task is conducted by the communication
link, which adds the cyclic redundancy check (CRC) proto-
col to the packets before transmission [34]. To decompress
the packets, only the type of the wavelet filter and level
of decomposition have to be provided, while the other
information are retrieved from the compressed packets.

Wavelet selection to avoid signal distortion

The present study addresses the issue of the limited pay-
load size in the telecardiology systems and how to overcome
this issue by dividing the ECG data into smaller segments.
Hence, the selected wavelet function has to count for the
case of small segments. The length of the wavelet filter (L)
has to be no more than twice the length of the data segment
(Ns). Otherwise, the signal will be distorted at the edges [35,
36]. In the case of the decomposed subbands, it is enough
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to check the length of the last decomposed subband, NdJ
or

NaJ
. This criterion can be simply expressed as

{
if L > 2NdJ

, NdJ
subband signal will be distorted

if L ≤ 2NdJ
, NdJ

subband signal will be preserved

}

where, NdJ
is equal to Ns/2J and it corresponds to the

length of the last decomposed subband coefficient using J

decomposition levels.
For example, if the data length is Ns = 64 and the

decomposition level J = 4. Then, the signal will be decom-
posed into 5 subband coefficients C = [d1, d2, d3, d4, a4] of
lengths Ndn = [32, 16, 8, 4, 4]. Since Nd4 is equal to 4, then
the selected wavelet filter has to be of length L ≤ 2×4 = 8.
Db4 with L = 8 is suitable in this case but daubechies with
higher order will cause distortion to the signal, although
increasing the order of the FIR filter increases the efficiency
of the filtering scheme.

We partially solve the issue of distortion by initializing
the length of the subband coefficient as Ndj

+ L but mainly
we try not to use the wavelet filters with L > 2NdJ

.

Proposed dynamic compression scheme

In this study, the DWT-BFP-RLE compression algorithm
described in “Compression based on DWT and threshold-
ing” has been adopted and modified for the portable mobile
telecardiology systems. Since, the new scheme tackles the
case of the limited payload size, it is endowed with auto-
matic mechanism that controls the size of the compressed
segments. The modified scheme is called “DWT Dynamic
Compression Scheme”. It dynamically checks whether the
size of the compressed segment fits into the available pay-
load before transmission. The main objective of this scheme
is to maintain the compression level instead of increasing
it and losing the diagnostic information. Figure 5 shows
the general structure of the proposed dynamic compression
scheme. The scheme is summarized in the following steps:

Step 1. Store Ns = 2n ECG samples into a buffer
block. Compress the samples using DWT-BFP-
RLE compression algorithm and packetize them as
described in “Packetization”.

Step 2. Check the size of the compressed segment. If the
size of the compressed segment is less than or
equal to the maximum allowable number of bytes
(M), transmit the segment. Note that in case the
compressed segment is < M , zeros are padded to
the segment to fill the payload.

Step 3. Otherwise, if the compressed segment > M ,
divide the uncompressed ECG samples stored in
the buffer into two new segments each with size
N2 = Ns/2.

Step 4. Check the size of the new segments N2 before
compression; if the size of samples (2 ×N2 Bytes)
is less than M bytes, packetize and send them
without compression by adding one header which
is Ns = 0. The zero value indicates that the
data was not compressed and it does not require
decompression at the receiver side.

Step 5. Otherwise, apply the compression algorithm onto
each segment separately, but in the correct
sequence, where the first half of the data is to be
compressed and transmitted first.

Step 6. Go back to step 2 and repeat the process onto
the new divided segments until all of the data are
transmitted.

The total number of generated compressed packets depends
on the ISb values and the selected wavelet. Using these two
parameters we try to compromise between the compression
performance and the total number of packets generated.

According to wavelet selection criteria in “Wavelet
selection to avoid signal distortion”, this scheme is modi-
fied to check the competence of the wavelet with the desired
decomposition level J and the size of the ECG block Ns .

Evaluation scheme

Dataset

To validate the proposed scheme, ECG records from MIT-
BIH Arrhythmia Database (MITDB) are used [37]. This
database contains 48 half an hour two-channel ambula-
tory ECG recordings, obtained from 47 subjects studied by
the BIH Arrhythmia Laboratory. The records are digitally
sampled at 360 Hz using 11-bit resolution over a ±5mV

range, which means that the bit-length is IECG= 11. To
prepare the ECG signal for compression, the data of range
±5mV was mapped to its raw ADC format of -1024 to 1023
to imitate the format of the packets in the real hardware
implementation (microcontrollers or FPGAs).

Performance metrices

To test the performance of the proposed compression algo-
rithm, three standard measures are adopted; the compression
ratio, the error or distortion amount between the original and
the reconstructed signal, and the quality of the algorithm.
The compression ratio (CR) is defined as the ratio between
the number of bits representing the original signal and the
number of bits of the compressed packet. CR is calculated
as follows:

CR = Ns × IECG

8 × NComp

(7)
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Fig. 5 Dynamic Compression
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where Ns is the block size or the number of ECG sam-
ples taken for compression and IECG is the number of bits
in each ECG sample and it is equal to 11. NComp repre-
sents the number of bytes in the compressed segment and
they are multiplied by 8 to get the total number of bits in
them.

The percentage root-mean square difference (PRD) is the
most commonly used error measure in literature [1]. PRD
represents the distortion amount between the original ECG

signal xorg and the reconstructed/decompressed signal xrec

and it is defined by:

PRD(%) =
√√√√

∑Ns

i=1

(
xorg[i] − xrec[i]

)2

∑Ns

i=1

(
xorg[i]

)2
× 100% (8)

where Ns denotes the block size. The mean of xorg and
xrec is removed since it can mask the real performance of
the algorithm [38]. To show the correlation between the
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compression performance and the amount of distortion, a
quality score (QS) measure was introduced by [39]. Practi-
cally, QS is the ratio between CR and PRD as given by Eq. 9
and it represents the quality of the method.

QS = CR

PRD
(9)

The higher the quality score, the better is the compression
performance.

In order to evaluate the dynamic compression scheme,
we introduced a new measure, called the packet reduction
(PR) determined by Eq. 10, which measures the percent-
age amount of reduction in the number of generated packets
while compression.

PR(%) = NRaw − NCompression

NRaw

× 100% (10)

where, NRaw is the number of raw transmitted packets in
case of no compression and NCompression is the number of
compressed packets generated by the dynamic compression
scheme for the same number of the raw samples. Since each
sample has a resolution of 11-bits, which requires 2 bytes to
hold it, then NRaw = 2 × Ns .

Experimental results and discussion

Before running the proposed dynamic compression scheme,
the modified DWT-BFP-RLE compression algorithm is val-
idated using four different decomposition levels (J = 3
to 6) and five different commonly used mother wavelet
functions (Db4, Db5, sym4, sym6 and bior4.4). Then, the
compression parameters are selected to validate the dynamic
compression scheme. The preserved lengths ISb are selected
to be short for the higher subbands to reduce the noise level
and to pick up the important coefficients only. While for the
lower subbands ISb lengths are set to be large up to 6 for aJ

to preserve the bits of the important coefficients as much as
possible. Thus, Id1 , Id2 , Id3 , ...IdJ

and IaJ
are set to: [1, 2, 3,

6], [1, 2, 3, 4, 6], [1, 2, 3, 4, 5, 6] and [1, 2, 3, 4, 5, 5, 6] for
the decomposition levels of 3, 4, 5 and 6, respectively.

Before conducting the compression algorithm, the whole
records of MITDB are divided into blocks of size 1024. This
means that the size of the final subband coefficient Nd6 =
16 samples. According to “Wavelet selection to avoid signal
distortion”, the wavelet filters Db5, sym6 and bior4.4 with
L = 10, 12 and 10, will distort the signal. To avoid this
distortion, we have studied their behavior until J = 5.

To obtain the average compression results, the com-
pression algorithm is performed on the sub-blocks first.
Second, the average performance matrices (CR and PRD)
of each record are obtained as the blocks averages. Finally,
The total average of the database is calculated from the
records’ averages. Figure 6a illustrates the average CRs cor-
responding to different wavelets and J values. It is clear
that sym4 and bior4.4 wavelets give the highest CR results
followed by sym6 and Db4, while Db5 shows the lowest
CR. Sym4 and bior4.4’s CRs range between 6.86:1 and
8.81:1. In general, the highest CRs are achieved by the
5th decomposition level (J = 5). The trend of the CR
curves indicates that between J = 4 to 6, the values are
close to each other, while for J = 3 the CR values are
low because only two subbands are encoded which are d1

and d2.
From Fig. 6b it is quite clear that the PRD error increases

steadily with the decomposition level. This means that the
more subbands are encoded, the more detail coefficients are
discarded in the higher levels. Bior4.4 achieved the lowest
PRD values of 1.14%, 1.25% and 1.29% at J = 3-5. In
general, the wavelets maintained close PRD values at each
decomposition level.

To select the best wavelet and decomposition level, the
QS measure is obtained as illustrated in Fig. 7. Based on
the QS results, bior4.4 shows the highest QS values and the
peak values are 7.60 and 7.59 at J = 4 and 5, respectively.
It is also noted that sym4 gives very close QS perfor-
mance to bior4.4 and the peak values are 7.54 and 7.49 at
J = 4 and 5 as well. Therefore, we decided to adopt both
bior4.4 and sym4 wavelets with J = 4 to study our pro-
posed dynamic compression scheme described in “Proposed
dynamic compression scheme”.

Fig. 6 The average
compression performance on
MIT-BIH Arrhythmia database:
(a) CR and (b) PRD
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Fig. 7 The average QS on MIT-BIH Arrhythmia database

Different preserved lengths were also studied in this work
and it was concluded that increasing the length of the pre-
served lengths increases the quality of the reconstructed
signal but decreases the CR. On the other hand, setting
short preserved lengths increases the CR but decreases
the quality of the signal. The effect of changing the pre-
served lengths on the first 1024 samples of the compressed
signal is shown in Fig. 8, where the signal is mostly pre-
served in the first and second case with smoothed low-level
noise. In the third case, the signal lost some details and
some peaks were attenuated due to the very low preserved
lengths.

Comparison to other methods

Previous works in literature took the first 10 minutes of
the MITDB record 117 for evaluation [6]. Here we adopted
the same record and the block size was set to Ns= 1024.
A comparison between the proposed method and other
developed methods is given in Table 2. The comparison
results show that modified DWT-BFP-RLE scheme outper-
forms the other developed methods by achieving small PRD
errors with relatively the same CRs. The QS results validate
the good compression performance and low reconstruction
error compared to the other methods.

Performance of dynamic compression scheme

To validate the dynamic compression scheme, it is assumed
that the maximum available payload size (M) is 70 bytes,
which imitates the experimental setup proposed in refer-
ence [42]. Thus, according to Eq. 7, the CR should not be
less than 1.26:1, 2.51:1, 5.03:1, 10.06:1 and 20.11:1 for Ns

= 64, 128, 256, 512 and 1024, respectively. Moreover, our
main objective is to compromise between the compression
performance and the number of generated compressed pack-
ets NCompression. Practically, we are looking for the proper
wavelet function, ISb combination and ECG block length
Ns which are going to produce the highest QS values with
less number of compressed segments NCompression.

According to the literature and our experimental studies,
different values of Ns result in different values of QS and
NCompression using the same ISb as shown in Fig. 9. This

Fig. 8 Original and
reconstructed signal of MITDB
record 117 using different ISb

with J= 4 and bior4.4 wavelet
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Table 2 Comparison results of
the MITDB record 117 using
Ns=1024 and 10 minutes
duration (J = 4)

Method Wavelet Preserved Lengths CR PRD (%) QS

SPIHT [6] – – 8.00:1 1.18 6.78

WPT Coding [40] – – 8.00:1 2.60 3.08

DSWT [4] – – 8.00:1 3.90 2.05

Proposed bior4.4 ISb = [1, 1, 4, 6, 6] 8.04:1 0.55 14.63

Proposed bior4.4 ISb = [1, 2, 4, 5, 6] 8.18:1 0.58 14.08

Proposed sym4 ISb = [1, 1, 4, 6, 6] 8.27:1 0.57 14.58

Proposed sym4 ISb = [1, 2, 3, 5, 6] 8.85:1 0.69 12.78

LPC [41] – – 9.40:1 3.20 2.93

Proposed sym4 ISb = [1, 1, 3, 5, 6] 9.41:1 0.71 13.35

Proposed sym4 ISb = [1, 2, 2, 4, 6] 9.47:1 0.94 10.08

LPC [41] – – 11.61:1 5.30 2.19

Proposed bior4.4 ISb = [1, 1, 1, 2, 4] 11.72:1 1.88 6.23

Proposed bior4.4 ISb = [1, 1, 2, 2, 3] 12.62:1 2.31 5.47

Proposed sym4 ISb = [1, 1, 2, 2, 4] 11.67:1 1.79 6.54

Proposed sym4 ISb = [1, 1, 1, 2, 4] 12.21:1 1.91 6.41
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Fig. 9 The (a) quality score and (b) number of compressed packets NCompression generated with different packet lengths Ns at five different
preserved lengths ISb. The wavelet used is bior4.4

Table 3 The average performance of the dynamic compression scheme

Bior4.4 Sym4

ISb CR PRD (%) QS NCompression PR (%) CR PRD (%) QS NCompression PR (%)

1, 2, 4, 5, 6 4.88 0.45 11.65 528 82.88 4.89 0.53 10.25 524 83.02

2, 3, 3, 4, 6 4.36 0.53 8.65 617 80.00 4.19 0.50 9.04 625 79.74

2, 3, 3, 5, 6 4.10 0.51 8.52 643 79.16 3.96 0.45 9.38 656 78.74

3, 3, 3, 5, 6 3.42 0.64 5.57 785 74.56 3.30 0.44 7.99 801 74.04

2, 4, 4, 5, 6 2.70 0.65 4.79 891 71.14 2.90 0.35 8.72 909 70.54
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Fig. 10 Performance of
dynamic compression scheme
on QS at different preserved
lengths ISb
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implies that the optimal Ns value can not be selected based
on the values of QS and NCompression. Accordingly, the size
of Ns is selected based on the desired CR. In this study we
assumed that the CR should be with an average value of
5.00:1 and thus Ns= 256 samples (CR = (Ns × 11)/(8 ×
70) = 5 −→ Ns = 254.5 ≈ 256). Using J= 4, the bior4.4
filter might introduce some distortion in segments with sizes

less than 256. Thus, sym4 is preferred in this case but the
results of bior4.4 will be presented to give a clear view about
their effect.

Using MITDB, 8 ECG signals, records 100, 102, 104,
109, 111, 117, 119 and 207, were selected for performance
evaluation. To mimic the operation of real-time monitoring
in telecardiology systems, it is assumed that continuous 5

Fig. 11 Performance of
dynamic compression scheme
on (a) CR and (b) PRD at
different preserved lengths ISb
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Fig. 12 Performance of
dynamic compression scheme
on (a) NCompression and (b) PR
at different preserved lengths ISb
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Fig. 13 Dynamic compression
results using ISb= [2, 3, 3, 5, 6].
From top to bottom, the original
MIT-BIH record 117, the
reconstructed signal using
bior4.4 and using sym4
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Fig. 14 Dynamic compression
results using ISb= [3, 3, 3, 5, 6].
From top to bottom, the original
MIT-BIH record 117, the
reconstructed signal using
bior4.4 and using sym4

minutes of ECG signal is transmitted and this signal has to
be divided, compressed and packetized before transmission.
The number of packets required to send 5 minutes of raw
ECG data (un-compressed) using a payload of of size 70
bytes is NRaw ≈ 3,086 packets (5 minutes × 60 seconds ×
360 Hz × 2 Bytes / 70 Bytes), since each ECG sample is
represented by 2 bytes.

The dynamic compression scheme, described in “Pro-
posed dynamic compression scheme”, was applied on the
ECG records using both sym4 and bior4.4 mother wavelets

with J = 4 levels and using six different ISb combinations:
[1, 2, 4, 5, 6], [2, 3, 3, 4, 6], [2, 3, 3, 5, 6], [3, 3, 3, 5, 6],
[2, 4, 4, 5, 6] and [3, 4, 4, 5, 6]. Table 3 shows the average
evaluation results of the 8 ECG records. From the results we
can conclude that NCompression is inversely related to CR.
Thus, sym4 with lower preserved lengths at ISb= [1, 2, 4, 5,
6] achieves the highest CR value of 4.89:1 and the lowest
NCompression value of 524 packets, while it achieves 4.88:1
CR and 528 NCompression for bior4.4. In addition, since PR
is a function of NCompression, it is highest for the lowest

Fig. 15 Dynamic compression
results using ISb= [2, 3, 3, 5, 6].
From top to bottom, the original
MIT-BIH record 100, the
reconstructed signal using
bior4.4 and using sym4
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Fig. 16 Dynamic compression
results using ISb= [2, 4, 4, 5, 6].
From top to bottom, the original
MIT-BIH record 100, the
reconstructed signal using
bior4.4 and using sym4

NCompression. Figures 10, 11, and 12 show the evaluation
results of each ECG record.

From Fig. 10, it is clear that QS at ISb= [1, 2, 4, 5, 6]
gives better quality score compared to the other ISb com-
binations, especially for bior4.4. However, sym4 achieves
better overall QS performance. At ISb= [2, 3, 3, 5, 6], sym4
achieves high QS compared to ISb= [2, 3, 3, 4, 6] and [3, 3,
3, 5, 6]. For low ISb combination, CR go up to 6.00:1 for
both sym4 and bior4.4 as shown in Fig. 11a. From Fig. 11b,
sym4 shows lower PRD results compared to bior4.4 and it
has a linear decreasing trend as ISb values increases. The

maximum PRD is less than 1.00% and it reaches a minimum
value of 0.28%.

From Fig. 12a, we can see that NCompression is inversely
related to CR for all of the ECG records studied. PR in
Fig. 12b ranges from 85.39% to 59.85% at 5.91:1 and 2.16:1
CR, respectively. These PR values are sufficient enough
to reduce the power consumed in the real hardware sys-
tems. Also, the dynamic compression scheme generated
less number of packets ranging between 461 and 1239
packets compared to the raw data which require 3,086 pack-
ets. This reduction boosts the battery’s life of the portable

Fig. 17 Dynamic compression
results using ISb= [2, 4, 4, 5, 6].
From top to bottom, the original
MIT-BIH record 207, the
reconstructed signal using
bior4.4 and using sym4
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telecardiology devices by reducing the power consumed
using transmission. However, the user of the scheme have
to seek a good trade-off between the number of compressed
packets and the compression performance.

To reveal the visual quality of the dynamic compres-
sion scheme, the original ECG signal and the reconstructed
signal using different ISb combination obtained with sym4
and bior4.4 for MITDB records 100, 117 and 207 are
shown in Figs. 13, 14, 15, 16 and 17. Figure 13 demon-
strates the results of the first 1,536 samples (4.26 seconds)
of MITDB record 117 using ISb= [2, 3, 3, 5, 6]. The
lines in the plots indicates how the signal was divided
into packets, where it is clear that the scheme gener-
ated 9 and 8 compressed packets using bior4.4 and sym4,
respectively. In fact, we need 44 packets each with 70
bytes payload to transmit raw 1,536 samples, which means
that we reduced the amount of packets by 20.45% and
18.18%, and the PR achieved 79.45% and 81.81% using
bior4.4 and sym4, respectively. Furthermore, the average
and standard deviation of CR and the total PRD (at the right
side of the plots) show that sym4 gives better compression
performance.

The results of using different ISb combination on the
same ECG record is shown in Fig. 14. ISb= [3, 3, 3, 5, 6]
resulted in NCompression= 7 packets for both bior4.4 and
sym4. Although bior4.4 produces higher average CR than
sym4, sym4 produces lower PRD value. The same proce-
dure is conducted on MITDB record 100 and the results are
clear in Figs. 15 and 16, but some of the generated packets
are distorted at the edges in case of bior4.4 wavelet, while
sym4 maintained the quality of the signal. This distortion is
also clear in Fig. 17 on MITDB record 207 using ISb= [2, 4,
4, 5, 6].

The introduced distortion in the reconstructed packets,
indicated by the red dashed circles, is because of the small
size of the ECG segment, N = 64, compared to the size
of the wavelet filter, which is L = 10 for bior4.4. In fact,
the ISb combination selected in Figs. 16 and 17 generated
a lot of packets, up to 18 NCompression, with few num-
ber of samples and from it the distortion was generated.
The distortion can lead to losing some diagnostic infor-
mation and introducing extra artifacts. Therefore, from the
demonstration results it is recommended to adopt wavelet
filters with suitable lengths when implementing the pro-
posed DWT dynamic compression scheme to preserve the
diagnostic information.

Conclusions

In this work, we introduced a novel ECG compression
scheme that considers the limited size of the payload packets
in low power portable telecardiology systems. The scheme

controls the length of the compressed block dynamically
while maintaining the CR and the diagnostic information. It
is based on the DWT method, which decomposes the signal
into subband coefficients, RLE scheme to encode the data
and BFP method to preserve the coefficients before encod-
ing. For efficient transmission, a packetization scheme for
the compressed data was designed to minimize the headers
and increase the space for compressed data.

The proposed scheme achieved expectation by its ability
of controlling the size of the compressed packets dynam-
ically, by checking if the compressed packet is exceeding
the maximum available payload. The scheme automatically
divides the ECG block of samples into smaller segments
while preserving the CR instead of increasing it, where
increasing it might increase the residual error in the recon-
structed signal. Experimental results obtained from using
the MIT-BIH Arrhythmia Database showed that the effi-
ciency of the system can be highly increased by reducing
the number of packets generated. In addition, the obtained
results showed the superiority of the proposed scheme by
achieving a packet reduction up to 85.39% at PRD values
less than 1%. Moreover, it was shown that the length of
the wavelet filter is crucial in case of compressing small
segments to avoid distortion in the reconstructed signal.
Nevertheless, further improvement can be done on this
method to achieve higher CR and QS. Our future direction
is to implement the method on ultra-low power hardware
since the initial indication shows promising results.
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