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Abstract Prediction of major adverse kidney events in criti-
cally ill patients may help target therapy, allow risk adjust-
ment, and facilitate the conduct of clinical trials. In a cohort
comprised of all critically ill adults admitted to five intensive
care units at a single tertiary care center over one year, we
developed a logistic regression model for the outcome of
Major Adverse Kidney Events within 30 days (MAKE30),
the composite of persistent renal dysfunction, new renal re-
placement therapy (RRT), and in-hospital mortality. Proposed
risk factors for the MAKE30 outcome were selected a priori
and included age, race, gender, University Health System
Consortium (UHC) expected mortality, baseline creatinine,
volume of isotonic crystalloid fluid received in the prior
24 h, admission service, intensive care unit (ICU), source of
admission, mechanical ventilation or receipt of vasopressors
within 24 h of ICU admission, renal replacement therapy prior

to ICU admission, acute kidney injury, chronic kidney disease
as defined by baseline creatinine value, and renal failure as
defined by the Elixhauser index. Among 10,983 patients in
the study population, 1489 patients (13.6%) met theMAKE30
endpoint. The strongest independent predictors of MAKE30
were UHC expected mortality (OR 2.32 [95%CI 2.06–2.61])
and presence of acute kidney injury at ICU admission (OR
4.98 [95%CI 4.12–6.03]). The model had strong predictive
properties including excellent discrimination with a
bootstrap-corrected area-under-the-curve (AUC) of 0.903,
and high precision of calibration with a mean absolute error
prediction of 1.7%. The MAKE30 composite outcome can be
reliably predicted from factors present within 24 h of ICU
admission using data derived from the electronic health
record.
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Introduction

Acute kidney injury (AKI) occurs in more than 30% of ICU
admissions [1, 2], and increases the risk of persistent renal
dysfunction and need for long-term renal replacement therapy
(RRT) after discharge [3, 4]. Despite the well-recognized need
to prevent AKI, the disease itself has been variably defined by
the Risk Injury, Failure, Loss of kidney function, Endstage
disease (RIFLE) criteria [5], Acute Kidney Injury Network
(AKIN) criteria [6], and Kidney Disease: Improving Global
Outcomes (KDIGO) criteria [7]. Variability in outcome defi-
nitions have made endpoint selection for clinical trials chal-
lenging. A recent shift toward targeting patient-centered renal
outcomes in clinical research has led to the development and
use of the Major Adverse Kidney Events within 30 days
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(MAKE30) endpoint [8]. Analogous to Bmajor adverse cardi-
ac events^ [9], MAKE30 is a composite endpoint of mortality
from any cause, need for renal replacement therapy, and per-
sistent renal dysfunction [8, 10].

Accurately predicting renal outcomes may facilitate both
patient care and study of interventions. Recognition of pa-
tients at high risk for renal outcomes early in a hospitalization
could allow providers to avoid risk factors (e.g., nephrotoxic
drugs [11] and radiocontrast dye [12]). Additionally, identify-
ing patients at risk for an outcome may be a useful tool to
enrich clinical trial enrollment with high-risk patients to re-
duce sample size [8, 13] or assess for heterogeneity of treat-
ment effect [14].

We sought to develop a predictive model using variables
present at ICU admission and available in the electronic health
record to accurately predict the clinical outcome MAKE30.

Methods

Patients

This retrospective cohort study was approved by the
Vanderbilt Human Research Protection Program with waiver
of informed consent (IRB #1413349). The cohort consisted of
all adults ≥18 years admitted to the medical, cardiovascular,
neurological, trauma, or surgical intensive care units at
Vanderbilt University Medical Center between January 1,
2014 and December 31, 2014. Patients discharged from the
hospital and subsequently readmitted to an eligible ICU dur-
ing the study period were included as a separate admission;
ICU readmissions without an intervening discharge from the
hospital were excluded.

Endpoints

The primary outcome was Major Adverse Kidney Events to
30 days (MAKE30), defined as in-hospital mortality, new
RRT, or persistent renal dysfunction [8, 15]. In-hospital mor-
tality was defined as death from any cause prior to hospital
discharge, censored at 30 days. New renal replacement thera-
py was defined as receipt of RRT at any point between ICU
admission and hospital discharge, censored at 30 days.
Persistent renal dysfunction was defined as a creatinine at
discharge or day 30 ≥ 200% of the baseline serum creatinine
value. Patients who had received RRT prior to ICU admission
could meet the MAKE30 endpoint via mortality but not the
RRT or creatinine criteria. Identifying the MAKE30 outcome
from EHR data has been previously validated at the study
institution with a kappa of 0.95 compared with manual chart
review [15].

Data collection and definitions

All data were electronically abstracted from the Vanderbilt
enterprise data warehouse (EDW), which contains data
exported daily from the electronic health record paired with
billing ICD-9 and ICD-10 codes, patient registration system
data, and laboratory clinical information system data. As the
goal of the model was prediction of renal outcomes of critical
illness, we limited the potential variables to include only those
present at or before ICU admission (or within 24 h of admis-
sion in the case of receipt of vasopressors or mechanical ven-
tilation). Demographic variables including age, gender, race,
and body mass index (BMI) were obtained from the admitting
system data. The Vizient University Health System
Consortium (UHC) provides an estimated mortality for inpa-
tient encounters derived from simple demographics and prin-
ciple diagnosis based on the Medicare Severity-Diagnosis
Related Groupings (www.vizientinc.com). These mortality
estimates were extracted from our EDW. ICD-9 and ICD-10
codes, restricted to those signifying comorbidities present on
admission, were used to generate the Elixhauser comorbidity
index [16, 17].

In addition to the Elixhauser comorbidities, one of which is
renal failure, we separately defined baseline creatinine, chron-
ic kidney disease, and acute kidney injury as previously de-
scribed [18]. Baseline serum creatinine was defined hierarchi-
cally as (1) the lowest value measured between 12months and
24 h prior to hospital admission whenever available, (2) the
lowest value between 24 h prior to hospital admission and the
time of ICU admission when no pre-hospital value was pres-
ent, and (3) an estimation from a previously described formula
[19] [creatinine = 0.74–0.2 (if female) + 0.08 (if African
American) + 0.003 × age (in years)] when nomeasured values
were available. Acute kidney injury stage II or higher was
defined by the Kidney Disease Improving Global Outcomes
(KDIGO) creatinine criteria [7] as a serum creatinine at least
200% of the baseline value OR (a) greater than 4.0 mg/dL and
(b) increased at least 0.3 mg/dL from the baseline value.
Chronic kidney disease stage III or greater was defined as a
glomerular filtration rate less than 60 ml/min per 1.73 m2

using the Chronic Kidney Disease Epidemiology (CKD-
EPI) Collaboration eq. [20] and the patient’s baseline creati-
nine value.

Receipt of RRTwas determined electronically as previous-
ly reported [15] by Current Procedural Terminology and
International Classification of Disease codes (Appendix A).
When present prior to the ICU admission, the code flagged the
patient as previous RRT receipt and made them eligible for the
mortality endpoint only. When the code occurred between
ICU admission and hospital discharge (censored at 30 days),
and the patient was not known to have previously received
RRT, this constituted meeting the new RRT component of the
MAKE30 endpoint.
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Statistical analyses

We fit a logistic model to predict MAKE30 using a set of risk
factors selected a priori. Risk factors included age, UHC

expected mortality, baseline creatinine, quantity of isotonic crys-
talloid fluid received in the prior 24 h, race, gender, admission
service, ICU, source of admission, non-invasive or invasive me-
chanical ventilation within 24 h of ICU admission, receipt of

Table 1 Baseline characteristics
Complete Cases (N = 10,983)

Age (years) 58 [44;68]

BMI 27 [23;32] N = 9945

UHC Expected Mortality 1.03% [0.33%;4.87%]

Baseline Creatinine 0.88 [0.74;1.08]

Source of Baseline Creatinine

Prior encounter 52% (5736)

During encounter prior to ICU admission 37% (4009)

Calculated 11% (1238)

Fluid Receipt 24 h prior to ICU admission (Liters) 0 [0;1.8]

White 82% (9027)

Male 59% (6476)

Admitting Service

Trauma 22.3% (2452)

Pulmonary 16% (1761)

Cardiology 10% (1100)

Cardiovascular Surgery 11.3% (1245)

Neurosurgery 8.4% (928)

Neurology 6.2% (681)

Internal Medicine 13.1% (1443)

General Surgery 6% (658)

Surgical Subspecialty 5.8% (640)

Obstetrics 0.7% (75)

Unit

Medical ICU 26% (2892)

Cardiovascular ICU 21% (2258)

Neurological ICU 16% (1766)

Trauma ICU 23% (2532)

Surgical ICU 14% (1535)

Source of Admission

Emergency Department 46.9% (5153)

Operating Room 23.9% (2622)

Transfer from another Hospital 13.6% (1490)

Hospital Ward 9.1% (999)

Other 6.5% (719)

Mechanical Ventilation within 24 h of ICU admission 28% (3118)

Vasopressor receipt within 24 h of ICU admission 22% (2464)

Renal Replacement Therapy prior to ICU admission 3.7% (404)

Acute Kidney Injury, Stage II or greater by KDIGO, at ICU admission 10% (1144)

Chronic Kidney Disease 19% (2084)

Elixhauser Renal Failurea 15% (1625)

Data are presented as median [25th percentile; 75th percentile] or percentage (number). Full Elixhauser comor-
bidity index in supplemental Appendix B

ICU intensive care unit, KDIGO Kidney Disease: Improving Global Outcomes
a Elixhauser Renal Failure from reference 17
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vasopressors within 24 h of ICU admission, RRT prior to ICU,
AKI at ICU admission, CKD as defined by baseline creatinine
value, and renal failure as defined by Elixhauser index. We
allowed age, UHC expected mortality, and baseline creatinine

to have a nonlinear relationship with the outcome using restricted
cubic spines with 3 knots. Complete case analysis was per-
formed. The model was calibrated by internal bootstrap with
300 repetitions. A post hoc model was developed excluding
those factors which are not available in real time (UHC expected
mortality and Elixhauser index renal failure) as a sensitivity mea-
sure. All statistics were done with R version 3.3.0 (Foundation
for Statistical Computing, Vienna, Austria).

Results

The full cohort consisted of 11,572 patients, of which 524 and
70 were excluded for missing UHC mortality data and source
of admission, respectively. The analysis cohort consisted of
10,983 patients. Median age was 58 years. Fifty-nine percent
were male, and 82% were white. A total of 46.9% were admit-
ted to the ICU from the emergency department, 23.9% from
the operating room, 13.6% from another hospital, and 9.1%
from the hospital ward. Twenty-eight percent of patients were
mechanically ventilated, and 22% were receiving vasopressor
medications. AKI was present on ICU admission for 10% of
patients, and 19% had CKD. Additionally, 3.7% had received
RRT prior to ICU admission. Baseline serum creatinine was
available from more than 24 h prior to hospital admission in
52% of patients, 24 h before hospitalization to time of ICU
admission in 37%, and calculated for 11%. Additional demo-
graphic information is summarized in Table 1 and Appendix B.

The MAKE30 endpoint was met by 1489 patients (13.6%):
967 for in-hospital mortality, 296 for new RRT, and 662 for
persistent renal dysfunction, with some qualifying bymore than
one criterion (Appendix C). The logistic model had a bootstrap-
corrected area-under-the-curve (AUC) of 0.903 (Fig. 1). After
bootstrap calibration, mean absolute error was 0.017, meaning
the average difference between predicted probability and actual
probability of MAKE30 across the range of probabilities was
1.7%, indicating high precision. The calibration curve is
depicted in Fig. 2. The odds ratio (OR) for risk factors in the
model are summarized in Table 2 and plotted in Appendix D.
For the full equation of the model, see Appendix E.

The most predictive variables in the model, as assessed by
chi-squaredminus degrees of freedom,wereUHCexpectedmor-
tality, AKI at baseline, RRT prior to ICU admission, and
Elixhauser renal failure. Presence of AKI at baseline increased
the odds of MAKE30 by 4.98 (95% CI 4.12 to 6.03), and
Elixhauser-defined renal failure increased the odds by 3.22
(95% CI 2.64 to 3.94). RRT prior to ICU admission was signif-
icantly predictive of not experiencing MAKE30, with an OR of
0.07 (95% CI 0.05 to 0.1). Baseline creatinine was also indepen-
dently predictive, with higher baselines predicting fewer out-
comes, OR of 75th:25th percentile of 0.68 (95% CI 0.6 to 0.76).

The post hoc model excluding factors not available for real
time prediction (UHC expected mortality and Elixhauser-

Fig. 2 Bootstrap-Validated Calibration Curve of MAKE30 Prediction
Model. Bootstrap overfitting-corrected calibration curve estimate for the
MAKE30 logistic model

Fig. 1 Receiver-Operator Curve of the MAKE30 Prediction Model.
After bootstrap correction for overfitting, AUC was 0.903
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defined renal failure) retained significant discrimination, with
an AUC of 0.832.

Discussion

Our study demonstrated that a logistic regression model using
data present at ICU admission has good predictive capacity for
the MAKE30 outcome. Our model showed very strong

discrimination between patients who will and will not experi-
ence MAKE30, with bootstrap-corrected AUC of 0.903.
Moreover, the validation curve demonstrates strong precision
with bootstrap-corrected mean absolute difference in predict-
ed versus actual probably difference of 1.7%. The findings
have important implications for targeted prevention of AKI
in the ICU, risk adjustment, and clinical trial conduct.

The risk factors found to be most strongly predictive of
the MAKE30 outcome in our model are largely intuitive.

Table 2 Summary of
multivariable model for
MAKE30

Odds Ratio (95%
CI)

Chi-
Square

Degrees of
Freedom

P-
value

Age (years) (68.43:43.55) 1.16 (1.04, 1.31) 8.57 2 0.014

UHC Expected Mortality (0.05:0) 2.32 (2.06, 2.61) 921.22 2 <0.001

Baseline Creatinine (1.08:0.74) 0.68 (0.6, 0.76) 82.12 2 <0.001

Fluid Receipt 24 h prior to ICU admission
(Liters) (1.8:0)

1.03 (0.9, 1.17) 0.13 1 0.706

Race (Other:White) 1.07 (0.9, 1.29) 0.61 1 0.433

Gender (Female:Male) 0.84 (0.72, 0.98) 4.95 1 0.026

Admitting Service 25.13 9 0.003

Pulmonary:Trauma 1.07 (0.63, 1.82)

Cardiology:Trauma 1.18 (0.65, 2.14)

Cardiovascular Surgery:Trauma 0.89 (0.48, 1.65)

Neurosurgery:Trauma 0.45 (0.21, 0.99)

Neurology:Trauma 0.79 (0.39, 1.62)

Internal Medicine:Trauma 1.35 (0.82, 2.2)

General Surgery:Trauma 1.76 (1.06, 2.93)

Surgical Subspecialty:Trauma 1.24 (0.7, 2.22)

Obstetrics:Trauma 1.4 (0.53, 3.72)

Unit 7.05 4 0.133

Cardiovascular ICU:Medical ICU 0.86 (0.58, 1.29)

Neurological ICU:Medical ICU 1.35 (0.8, 2.29)

Trauma ICU:Medical ICU 1.06 (0.64, 1.77)

Surgical ICU:Medical ICU 0.73 (0.52, 1.02)

Source of Admission 104.24 4 <0.001

Operating Room:Emergency Department 0.73 (0.55, 0.98)

Transfer from another Hospital:Emergency
Department

1.47 (1.19, 1.82)

Hospital Ward:Emergency Department 2.69 (2.11, 3.42)

Other:Emergency Department 1.06 (0.74, 1.51)

Mechanical Ventilation within 24 h of ICU
admission

1.59 (1.34, 1.89) 27.69 1 <0.001

Vasopressors within 24 h of ICU admission 1.46 (1.23, 1.74) 18.83 1 <0.001

Renal Replacement Therapy prior to ICU
admission

0.07 (0.05, 0.1) 171.84 1 <0.001

Acute Kidney Injury at ICU admission 4.98 (4.12, 6.03) 273.02 1 <0.001

Chronic Kidney Disease 1.2 (0.95, 1.51) 2.3 1 0.13

Elixhauser Renal Failurea 3.22 (2.64, 3.94) 130.37 1 <0.001

Odds ratio comparisons for continuous variables are presented as (75th percentile : 25th percentile). Full
Elixhauser comorbidity index, odds ratio plot, and full model equation are in Appendices B, D, and E,
respectively

UHC University Health System Consortium, ICU intensive care unit
a Elixhauser Renal Failure from reference 17
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UHC predicted mortality is a well-validated predictor of
mortality among inpatients, and since one component of
the MAKE30 outcome is in-hospital mortality, it is logical
that UHC predicted mortality performs well at identifying
patients likely to experience the MAKE30 endpoint.
Similarly, those patients with AKI or renal dysfunction at
ICU admission have been shown in prior studies to have
increased risk for progression to RRT [21, 22], another com-
ponent of the MAKE30 outcome. CKD defined by baseline
creatinine was not independently predictive of MAKE30 in
our study, but the presence of the Elixhauser renal failure
variable and other covariates may have reduced CKD’s in-
dependent impact in the model. Because patients who were
receiving RRT prior to ICU admission were ineligible for the
new RRT or persistent renal dysfunction components of the
MAKE30 composite outcome and could only qualify by
experiencing in-hospital mortality, RRT prior to ICU admis-
sion was associated with decreased odds of the overall
MAKE30 outcome. Similar to the findings of two recent
investigations, race was not independently predictive [21,
23] for adverse kidney events in our model. Female sex
demonstrated a lower odds ratio for MAKE30 in our model
(OR 0.84), consistent with older studies [24, 25], though
some recent studies did not report gender to be independent-
ly predictive of acute kidney injury [21, 23].

Our investigation is strengthened by the large sample size,
exceeding 10,000 patients, which increases the reliability of
the model predictions and improves their stability across pop-
ulations.Moreover, we selected factors to include in the model
a priori. Stepwise or machine-learning methods can increase
the apparent model performance characteristics, but may lead
to unstable models that are less likely to validate on new data
sets [26]. To confirm the stability of our model, we performed
bootstrap validations which demonstrated very robust dis-
crimination (AUC of .903) and precision (mean absolute error
1.7%).

Our model also has limitations. By including all the vari-
ables that were chosen a priori, there are some parameters in
the model that have limited added benefit (isotonic fluids ad-
ministered in the preceding 24 h, race, and CKD). While a
simplified model could be developed with their elimination,
we retain them here recognizing that the full a priori defined
model is more likely to validate to a new population. Despite
development in a large cohort, all patients are from a single
institution. Wider use would require external validation. The
model adheres to the statistical principle of only including data
in the prediction that are present at admission; however, be-
cause the model incorporates data that are derived from billing
codes, the model is only able to calculate a risk prediction
post-hocwhen the billing codes are incorporated into the data.
The pre-specified model, as derived, cannot be available for
clinical use, but the predictions remain useful to risk-adjust
admissions for quality metrics or clinical trials analysis. The

post-hoc model excluding variables not available in real time,
however, retained significant discriminative capacity, suggest-
ing a reduced model without UHC expected mortality and
Elixhauser renal failure could be employed for clinical
prediction.

Conclusion

The composite MAKE30 outcome can be reliably predicted
with good discrimination and precision by data present at the
time of ICU admission. The derived model will be useful to
evaluate the effect of interventions on the MAKE30 outcome.

Funding Biostatistical support was provided by the Vanderbilt Institute
for Clinical and Translational Research (UL1 TR000445 from NCATS/
NIH). M.W.S. was supported by a National Heart, Lung, and Blood
Institute (NHLBI) T32 award (HL087738 09) and K12 award
(K12HL133117). The funding institutions had no role in (1) conception,
design, or conduct of the study, (2) collection, management, analysis,
interpretation, or presentation of the data, or (3) preparation, review, or
approval of the manuscript.

Compliance with ethical standards

Conflicts of Interest The authors declare no potential conflicts of
interest.

References

1. Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw,
S.M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C.M., Chawla,
L.S., Davison, D.L., Feldkamp, T., Forni, L.G., Gong, M.N.,
Gunnerson, K.J., Haase, M., Hackett, J., Honore, P.M., Hoste,
E.A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J.L.,
Laskowitz, D.T., Lissauer, M.E., Marx, G., McCullough, P.A.,
Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N.I., Shaw,
A.D., Shi, J., Sprague, A.M., Vincent, J.-L., Vinsonneau, C.,
Wagner, L., Walker, M.G., Wilkerson, R.G., Zacharowski, K., and
Kellum, J.A., Discovery and validation of cell cycle arrest bio-
markers in human acute kidney injury. Crit. Care. 17:R25, 2013.
https://doi.org/10.1186/cc12503.

2. Bellomo, R., Kellum, J.A., and Ronco, C., Acute kidney injury.
Lancet. 380:756–766, 2012. https://doi.org/10.1016/S0140-
6736(11)61454-2.

3. Uchino, S., Kellum, J.A., Bellomo, R., Doig, G.S., Morimatsu, H.,
Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney,
N., Tolwani, A., Ronco, C., and for the Beginning and Ending
Supportive Therapy for the Kidney (BEST Kidney) Investigators,
Acute Renal Failure in Critically Ill Patients: A Multinational,
Multicenter Study. JAMA. 294:813–818, 2005. https://doi.org/10.
1001/jama.294.7.813.

4. Cole, L., Bellomo, R., Silvester, W., Reeves, J.H., and for the
Victorian Severe Acute Renal Failure Study Group, A
Prospective, Multicenter Study of the Epidemiology, Management,
and Outcome of Severe Acute Renal Failure in a BClosed^ ICU
System. Am. J. Respir. Crit. Care Med. 162:191–196, 2000. https://
doi.org/10.1164/ajrccm.162.1.9907016.

156 Page 6 of 7 J Med Syst (2017) 41: 156

https://doi.org/10.1186/cc12503
https://doi.org/10.1016/S0140-6736(11)61454-2
https://doi.org/10.1016/S0140-6736(11)61454-2
https://doi.org/10.1001/jama.294.7.813
https://doi.org/10.1001/jama.294.7.813
https://doi.org/10.1164/ajrccm.162.1.9907016
https://doi.org/10.1164/ajrccm.162.1.9907016


5. Bellomo, R., Ronco, C., Kellum, J.A., Mehta, R.L., and Palevsky,
P., Acute renal failure – definition, outcome measures, animal
models, fluid therapy and information technology needs: the
Second International Consensus Conference of the Acute Dialysis
Quality Initiative (ADQI) Group. Crit. Care. 8:R204, 2004. https://
doi.org/10.1186/cc2872.

6. Mehta, R.L., Kellum, J.A., Shah, S.V., Molitoris, B.A., Ronco, C.,
Warnock, D.G., and Levin, A., Acute Kidney Injury Network: re-
port of an initiative to improve outcomes in acute kidney injury.
Crit. Care. 11:R31, 2007. https://doi.org/10.1186/cc5713.

7. Kidney Disease: Improving Global Outcomes (KDIGO) Acute
Kidney Injury Work Group, KDIGO clinical practice guideline
for acute kidney injury. Kidney Int. Suppl 2:1–138, 2012. https://
doi.org/10.1038/kisup.2012.1.

8. Palevsky, P.M., Molitoris, B.A., Okusa, M.D., Levin, A., Waikar,
S.S., Wald, R., Chertow, G.M., Murray, P.T., Parikh, C.R., Shaw,
A.D., Go, A.S., Faubel, S.G., Kellum, J.A., Chinchilli, V.M., Liu,
K.D., Cheung, A.K., Weisbord, S.D., Chawla, L.S., Kaufman, J.S.,
Devarajan, P., Toto, R.M., Hsu, C., Greene, T., Mehta, R.L., Stokes,
J.B., Thompson, A.M., Thompson, B.T., Westenfelder, C.S.,
Tumlin, J.A., Warnock, D.G., Shah, S.V., Xie, Y., Duggan, E.G.,
Kimmel, P.L., and Star, R.A., Design of Clinical Trials in Acute
Kidney Injury: Report from an NIDDK Workshop on Trial
Methodology. Clin. J. Am. Soc. Nephrol. 7:844–850, 2012.
https://doi.org/10.2215/CJN.12791211.

9. Stone, G.W., Maehara, A., Lansky, A.J., de Bruyne, B., Cristea, E.,
Mintz, G.S., Mehran, R., McPherson, J., Farhat, N., Marso, S.P.,
Parise, H., Templin, B., White, R., Zhang, Z., and Serruys, P.W., A
Prospective Natural-History Study of Coronary Atherosclerosis.
N. Engl. J. Med. 364:226–235, 2011. https://doi.org/10.1056/
NEJMoa1002358.

10. Shaw A (2011) Models of preventable disease: contrast-induced
nephropathy and cardiac surgery-associated acute kidney injury.
In: Controv. Acute Kidney Inj. Karger Publishers, pp 156–162

11. Bentley, M.L., Corwin, H.L., and Dasta, J., Drug-induced acute
kidney injury in the critically ill adult: Recognition and prevention
strategies. Crit. Care Med. 38:S169–S174, 2010. https://doi.org/10.
1097/CCM.0b013e3181de0c60.

12. Aspelin, P., Aubry, P., Fransson, S.-G., Strasser, R., Willenbrock,
R., and Berg, K.J., Nephrotoxic Effects in High-Risk Patients
Undergoing Angiography. N. Engl. J. Med. 348:491–499, 2003.
https://doi.org/10.1056/NEJMoa021833.

13. Goligher, E.C., Amato, M.B.P., and Slutsky, A.S., Applying
Precision Medicine to Trial Design Using Physiology:
Extracorporeal CO2 Removal for ARDS. Am. J. Respir. Crit.
Care Med., 2017. https://doi.org/10.1164/rccm.201701-0248CP.

14. Iwashyna, T.J., Burke, J.F., Sussman, J.B., Prescott, H.C.,
Hayward, R.A., and Angus, D.C., Implications of Heterogeneity
of Treatment Effect for Reporting and Analysis of Randomized
Trials in Critical Care. Am. J. Respir. Crit. Care Med. 192:1045–
1051, 2015. https://doi.org/10.1164/rccm.201411-2125CP.

15. Semler, M.W., Rice, T.W., Shaw, A.D., Siew, E.D., Self, W.H.,
Kumar, A.B., Byrne, D.W., Ehrenfeld, J.M., and Wanderer, J.P.,
Identification of Major Adverse Kidney Events Within the
Electronic Health Record. J. Med. Syst., 2016. https://doi.org/10.
1007/s10916-016-0528-z.

16. Elixhauser, A., Steiner, C., Harris, D.R., and Coffey, R.M.,
Comorbidity Measures for Use with Administrative Data. Med.
Care. 36:8–27, 1998.

17. Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B.,
Luthi, J., Saunders, L.D., Beck, C.A., Feasby, T.E., and Ghali,
W.A., Coding Algorithms for Defining Comorbidities in Icd-9-cm
and Icd-10 Administrative Data. Med. Care. 43:1130–1139, 2005.
https://doi.org/10.1097/01.mlr.0000182534.19832.83.

18. Semler, M.W., Wanderer, J.P., Ehrenfeld, J.M., Stollings, J.L., Self,
W.H., Siew, E.D., Wang, L., Byrne, D.W., Shaw, A.D., Bernard,
G.R., Rice, T.W., Bernard, G.R., Semler, M.W., Noto, M.J., Rice,
T.W., Byrne, D.W., Domenico, H.J., Wang, L., Wanderer, J.P.,
Ehrenfeld, J.M., Shaw, A.D., Hernandez, A., Kumar, A.B., Self,
W.H., Siew, E.D., Dunlap, D.F., Stollings, J.L., Sullivan, M.,
Knostman, M., Mulherin, D.P., Hargrove, F.R., Janz, D.R., and
Strawbridge, S., Balanced Crystalloids versus Saline in the
Intensive Care Unit. The SALT Randomized Trial. Am. J. Respir.
Crit. Care Med. 195:1362–1372, 2017. https://doi.org/10.1164/
rccm.201607-1345OC.

19. Závada, J., Hoste, E., Cartin-Ceba, R., Calzavacca, P., Gajic, O.,
Clermont, G., Bellomo, R., and Kellum, J.A., A comparison of
three methods to estimate baseline creatinine for RIFLE classifica-
tion. Nephrol. Dial. Transplant. 25:3911–3918, 2010. https://doi.
org/10.1093/ndt/gfp766.

20. Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y.L., Castro,
A.F., Feldman, H.I., Kusek, J.W., Eggers, P., Van Lente, F.,
Greene, T., Coresh, J., and for the CKD-EPI (Chronic Kidney
Disease Epidemiology Collaboration), A New Equation to
Estimate Glomerular Filtration Rate. Ann. Intern. Med. 150:604,
2009. https://doi.org/10.7326/0003-4819-150-9-200905050-
00006.

21. Malhotra, R., Kashani, K.B., Macedo, E., Kim, J., Bouchard, J.,
Wynn, S., Li, G., Ohno-Machado, L., and Mehta, R., A risk predic-
tion score for acute kidney injury in the intensive care unit.Nephrol.
Dial. Transplant. 32:814–822, 2017. https://doi.org/10.1093/ndt/
gfx026.

22. Ishani, A., Xue, J.L., Himmelfarb, J., Eggers, P.W., Kimmel, P.L.,
Molitoris, B.A., and Collins, A.J., Acute Kidney Injury Increases
Risk of ESRD among Elderly. J. Am. Soc. Nephrol. 20:223–228,
2009. https://doi.org/10.1681/ASN.2007080837.

23. Hoste, E.A.J., Bagshaw, S.M., Bellomo, R., Cely, C.M., Colman,
R., Cruz, D.N., Edipidis, K., Forni, L.G., Gomersall, C.D., Govil,
D., Honoré, P.M., Joannes-Boyau, O., Joannidis,M., Korhonen, A.-
M., Lavrentieva, A., Mehta, R.L., Palevsky, P., Roessler, E., Ronco,
C., Uchino, S., Vazquez, J.A., Andrade, E.V., Webb, S., and
Kellum, J.A., Epidemiology of acute kidney injury in critically ill
patients: the multinational AKI-EPI study. Intensive Care Med. 41:
1411–1423, 2015. https://doi.org/10.1007/s00134-015-3934-7.

24. Xue, J.L., Daniels, F., Star, R.A., Kimmel, P.L., Eggers, P.W.,
Molitoris, B.A., Himmelfarb, J., and Collins, A.J., Incidence and
Mortality of Acute Renal Failure inMedicare Beneficiaries, 1992 to
2001. J. Am. Soc. Nephrol. 17:1135–1142, 2006. https://doi.org/10.
1681/ASN.2005060668.

25. Liaño, F., Pascual, J., and The Madrid Acute Renal Failure Study
Group, Epidemiology of acute renal failure: A prospective, multi-
center, community-based study. Kidney Int. 50:811–818, 1996.
https://doi.org/10.1038/ki.1996.380.

26. Harrell, F.E., Regression modeling strategies: with applications to
linear models, logistic regression, and survival analysis, Second
edn. Springer, New York, 2015.

J Med Syst (2017) 41: 156 Page 7 of 7 156

https://doi.org/10.1186/cc2872
https://doi.org/10.1186/cc2872
https://doi.org/10.1186/cc5713
https://doi.org/10.1038/kisup.2012.1
https://doi.org/10.1038/kisup.2012.1
https://doi.org/10.2215/CJN.12791211
https://doi.org/10.1056/NEJMoa1002358
https://doi.org/10.1056/NEJMoa1002358
https://doi.org/10.1097/CCM.0b013e3181de0c60
https://doi.org/10.1097/CCM.0b013e3181de0c60
https://doi.org/10.1056/NEJMoa021833
https://doi.org/10.1164/rccm.201701-0248CP
https://doi.org/10.1164/rccm.201411-2125CP
https://doi.org/10.1007/s10916-016-0528-z
https://doi.org/10.1007/s10916-016-0528-z
https://doi.org/10.1097/01.mlr.0000182534.19832.83
https://doi.org/10.1164/rccm.201607-1345OC
https://doi.org/10.1164/rccm.201607-1345OC
https://doi.org/10.1093/ndt/gfp766
https://doi.org/10.1093/ndt/gfp766
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.1093/ndt/gfx026
https://doi.org/10.1093/ndt/gfx026
https://doi.org/10.1681/ASN.2007080837
https://doi.org/10.1007/s00134-015-3934-7
https://doi.org/10.1681/ASN.2005060668
https://doi.org/10.1681/ASN.2005060668
https://doi.org/10.1038/ki.1996.380

	Predicting Major Adverse Kidney Events among Critically Ill Adults Using the Electronic Health Record
	Abstract
	Introduction
	Methods
	Patients
	Endpoints
	Data collection and definitions
	Statistical analyses

	Results
	Discussion
	Conclusion
	References


