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Abstract Fatty Liver Disease (FLD) is caused by the
deposition of fat in liver cells and leads to deadly dis-
eases such as liver cancer. Several FLD detection and
characterization systems using machine learning (ML)
based on Support Vector Machines (SVM) have been
applied. These ML systems utilize large number of ul-
trasonic grayscale features, pooling strategy for selecting
the best features and several combinations of training/
testing. As result, they are computationally intensive,
slow and do not guarantee high performance due to
mismatch between grayscale features and classifier type.
This study proposes a reliable and fast Extreme
Learning Machine (ELM)-based tissue characterization
system (a class of Symtosis) for risk stratification of
ultrasound liver images. ELM is used to train single
layer feed forward neural network (SLFFNN). The

input-to-hidden layer weights are randomly generated
reducing computational cost. The only weights to be
trained are hidden-to-output layer which is done in a
single pass (without any iteration) making ELM faster
than conventional ML methods. Adapting four types of
K-fold cross-validation (K = 2, 3, 5 and 10) protocols
on three kinds of data sizes: S0-original, S4-four splits,
S8-sixty four splits (a total of 12 cases) and 46 types of
grayscale features, we stratify the FLD US images using
ELM and benchmark against SVM. Using the US liver
database of 63 patients (27 normal/36 abnormal), our
results demonstrate superior performance of ELM com-
pared to SVM, for all cross-validation protocols (K2,
K3, K5 and K10) and all types of US data sets (S0,
S4, and S8) in terms of sensitivity, specificity, accuracy
and area under the curve (AUC). Using the K10 cross-
validation protocol on S8 data set, ELM showed an
accuracy of 96.75% compared to 89.01% for SVM,
and correspondingly, the AUC: 0.97 and 0.91, respec-
tively. Further experiments also showed the mean reli-
ability of 99% for ELM classifier, along with the mean
speed improvement of 40% using ELM against SVM.
We validated the symtosis system using two class bio-
metric facial public data demonstrating an accuracy of
100%.
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Introduction

Over the last two decades, liver-related mortality has
ranked among the top 12 causes of death and has been
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repeatedly listed as the fourth leading cause of death
among adults aged 45–54 [1]. The presence of an ex-
cess amount of fat in liver cells leads to Fatty Liver
Diseases (FLD). The process of deposition of fat in
the liver cells is called steatosis and this can be caused
by metabolic syndrome, consumption of alcohol, obesity
due to insulin resistance, and a variety of other factors.
[1, 2]. FLD is further categorized into two types: alco-
holic and non-alcoholic. The majority of the population
of western nations suffering from FLD is afflicted by
non-alcoholic FLD (NAFLD) [3]. FLD may lead to se-
rious diseases like inflammation (steatohepatitis), cirrho-
sis and liver cancer. This disease is curable in the early
stages and early detection of FLD has shown great suc-
cess in patient to live long lifespan. Also, the cost of
FLD detection is less compared to treatment of ad-
vanced liver diseases. Currently, liver biopsy is the gold
standard for the detection of FLD. The biopsy technique
is uncomfortable, suffers from sampling error, and is
invasive [4]. Various non-invasive imaging techniques
such as Compute Tomography (CT) and Magnetic
Resonance Imaging (MRI) are available for FLD detec-
tion. CT suffers from the challenge of radiation risks
[5], while MRI can only detect very small amount of
fat [6]. The MRI technique works well while detecting
fatty infiltration [1, 7]. An alternative to these modali-
ties is Ultrasound (US) images, which are commonly
adapted for FLD imaging [8]. The application of ma-
chine learning (ML) for US liver images shows sensi-
tivity and specificity above 80% [9]. Therefore, US has
become one of the most popular scanning techniques for
FLD detection [10].

Two sets of methods have been proposed in literature
for characterization of liver disease: (a) based on ML
and (b) based on signal processing. Under the class of
Symtosis for FLD detection, Suri and his team designed
tissue characterization system [11] utilizing features like:
Discrete wavelet Transform (DWT) [12], High order
spectra (HOS) [13] and texture features [14], which
were computed using US liver images which were then
fed to Decision Tree (DT)-based classifier leading to an
accuracy of 93.3%. Under the same class, Acharya et al.
in 2014, proposed a Fuzzy Classifier for detection of
Hashimoto Thyroiditis from thyroid images [15–17]
using wavelet transform [18]. The system achieved an
accuracy of 84.6%. In 2014, Subramanya et al. [19]
achieved accuracy of 84.9% on US liver images using
SVM classifier. Using signal processing approach, Ma
et al. in 2015, developed kurtosis-based [20] scanning
method for detection and grading of FLD in US liver
images, demonstrating an accuracy of 81.2%. In 2016,
Suri and his team (Saba et al. [21]) used Back
Propagation Neural Network (BPNN) consisting of 10

hidden layers, and used 128 features extracted from
US liver images using six different types of feature
extraction algorithms. BPNN showed an accuracy of
97.6%.

Support Vector Machine (SVM) [22] is a widely used
ML technique for supervised learning. SVMs apply two
main techniques for stratification. First, it applies kernel
methods to transform the problem from original input
space to a high dimensional one, called the feature
space, where linear separation of training samples be-
longing to different classes is possible. Second, it tries
to find the best separating hyper-plane between the two
classes. These ML systems utilize large number of ul-
trasonic grayscale features, pooling strategy for selecting
the best features and several combinations of training
and testing. As a result, they are computationally inten-
sive, slow and do not guarantee high performance due
to mismatch between grayscale features and classifier
type. Keeping the computational speed and performance
with respect to data size in mind, we present here
Extreme Learning Machine (ELM) [23, 24] paradigm.
The ELM trains a single layer feed forward neural net-
work (SLFFNN) where the input-to-hidden layer
weights are randomly initialized. The ELM only trains
the hidden-to-output layer weights using the least square
loss model that employs a closed form solution given
by the Moore–Penrose pseudo-inverse [25]. In a least
square sense, the error is minimized and likely to prove
more accurate or at least comparable to iterative neural
network models [21]. Further, ELM allows only a single
stop shop for training weights and therefore, we believe
that ELM is likely to be faster technique compared to
SVM, and will reach minimum least square error in a
single pass irrespective of the training data size. Since
ELM is single layered neural network architecture un-
like other neural network architectures [21], this requires
low resource management and likely to show better per-
formance. We thus hypothesize that ELM will be a bet-
ter system for FLD risk stratification compared to con-
ventional ML systems.

We provide a comprehensive analysis of the two
methodologies in this paper using US liver dataset. We
developed a computer aided system under the class of
Symtosis for detection and stratification FLD-affected
(diseased) and FLD-unaffected (controls or normal’s)
liver images as shown in Fig. 1. The input US images
are processed and partitioned before feeding them into
the tissue characterization module. Four type of cross-
validations (K = 2, 3, 5 and 10) are performed on the
dataset before feeding. Since our data is limited, we
additionally sub-sample the original images (S0) into
four parts (S4) and sixty four parts (S8). Then, the tis-
sue characterization module outputs a predicted risk
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based on ground truth (considered as biopsy reports)
and cross-validation type. Finally, the predicted risk is
evaluated against the ground truth that gives us the per-
formance parameters. The Fig. 1 gives us an overall
vision of the entire system. The system derives 46 fea-
tures using Gabor, Gray-Level Co-occurrence Matrix
(GLCM) and Gray Level Run Length matrix (GRLM).
Since our scope of this paper is to purely understand
and harness ELM and further to benchmark against
SVM and back propagation neural network (BPNN),
we thus have limited ourselves to handling only limited fea-
ture extraction without feature selection paradigms. Using
K10 protocol on three kinds of data sets (S0, S4, S8), the
system yields an accuracy of 92.4%, 94.8% and 96.7%, re-
spectively, while the SVM-based system yields an accuracies
as: 86%, 87.9%, and 89%, respectively. It is also observed that
the accuracy values increase with an increase in K (cross-
validation folds) and sub-sampling. We demonstrate a 40%
improvement in ELM speed when compared against SVM.
We further compared our architecture against BPNN [21],
which is also designed using NN-based systems, showing
comparable accuracy with efficient architecture and speed.
The ELM-based tissue characterization system is also validat-
ed using biometric facial dataset where it achieves an accuracy
of 100% across all cross-validation protocols showing greater
degree of generalization compared to contemporary ML algo-
rithms such as SVM.

In the following section 2, we discuss data demographics
and US image acquisition protocol. Section 3 presents dif-
ferent feature extraction algorithms and establishes the math-
ematical foundation of the ELM paradigm. Experimental
protocol is presented in section 4 and the results are present-
ed in section 5. Benchmarking against conventional SVM-
based classification is presented in section 6 while the dis-
cussion is presented in section 7. Conclusions are presented
in section 8.

Data demographics, collection and preparation

demographics, ethics approval and gold standard Sixty-
three patients (36 abnormal and 27 normal) were collected
after IRB approval by Instituto Superior Tecnico (IST),
University of Lisbon, Portugal and written informed
consent provided by all the patients. The images were
retrospectively analyzed. The patient with normal body
mass index was selected. The normal/abnormal US
scanned images are as shown in Fig. 2. The gold stan-
dard or ground truth label for each patient (normal or
abnormal) was determined by taking a liver biopsy and
analyzing it in the tissue pathological laboratory [11].

Liver ultrasound scanning, data collection and prepara-
tion The US scanning and analysis were done on the patients
with the help of medical experts. A Philips CX 50USmachine
was used for capturing US scanned images. The US
scanner had frequency from 1 to 5 MHz and 160 pie-
zoelectric elements of curved shape. The captured im-
ages were gray scale images with 1024 × 1024 pixels.
Each gray scale image was stored as 8 bits/pixel reso-
lution. The manufactures were provided a default com-
puter interface for obtaining input. We used this inter-
face for obtaining patient’s image data. We checked the
setting and collaboration of US machine before
obtaining input images. The standardization was done
as per Qayyum et al. [26] approach. i.e., 20 patients
with normal liver and normal body mass index (18.5–
24.9) were called and US scanning was performed. The
result of the image was then examined. Based on the
results, standardization was done. US machine with im-
age depth of 15 cm and frequency 3.5 MHz was used.
The image had two focal zones with 7.5 cm in the
central. The dynamic range for this experiment was set
at 70 dB but the gain was changed based on the patient

Ultra Sound Liver Images

Data Preparation

S0, S4 and S8

Tissue Characterization

Predicted Risk

Performance

Performance Parameters

Partitioning

Ground Truth Cross Validation

Ground Truth
Reliability/

Stability

ELM Classifier SVM Classifier

(a) (b)

Fig. 1 Overall Symtosis system
using ELM-based risk assessment
system
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biotype. For all the examination of scanned images
Time Gain Compensation (TGC) was fixed at the cen-
tral point to remove this variable parameter. The fixed
central position assists standardization of the protocol.
Different transducer angles and orientations were used
based on patient biotype to get the liver anatomical
landmarks. Patients were kept in supine, comfortable
position during scanning for avoiding major patient mo-
tion. The liver has a small left lobe (in the epigastric
a r e a ) a n d a l a r g e r i g h t l o b e ( i n t h e r i g h t
hypochondrium) [27]. The effect of FLD disease can
be viewed in both parts of the liver. Since right liver
is the major liver part, we used scanned image of the
right lobe liver. A region of interest (ROI) of 128 × 128
pixels along the medial axis was extracted from each
image.

Sub-sampling of us data sets (S4 and S8) Since the learning
strategies of ELM-based Symtosis require faster generaliza-
tion if the training samples be increased. We therefore sub-
sample the original DICOM images using spatial transforma-
tion into two sets of data sets: S4 and S8. Examples of S4 and
S8 images are as shown in Figs. 3 and 4.

Methodology

The working of classifiers in the Symtosis system
shown in Fig. 1 has been discussed here. The main
challenge in application of SVM is computational cost
involved with finding support vectors in the training
dataset. The application of kernel functions to find lin-
ear solution for non-linearly separable data in high di-
mensional space adds to the mathematical stress [28].
ELM solves the problem of classification in single iter-
ation, i.e., removing the idea of an iterative approach.
The internal architecture ELM-based tissue classification
in Symtosis system that allows training of the SLFFNN
in a single pass is shown in Fig. 5. It is seen that ELM
combines generalized matrix inverse of an activation
function (sometimes called as pseudo inverse matrix ac-
tivation function matrix-shown in Appendix A) with the
known targets to find the optimized hidden-to-output
weights in a single iteration and thereby reducing com-
putational cost of the system. Note that, the activation
function consists of the combination of input features
and randomized input-to-hidden layer weights. We per-
form feature extraction on US liver images and propose
an ELM-based CADx system for the detection and risk

N
o
r
m
a
l

A
b
n
o
r
m
a
l

Fig. 3 S4 datasets: Top two
rows: Normal liver images;
Bottom two rows: Abnormal
liver images
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Fig. 2 Top row: Normal liver
images; Bottom row: Abnormal
liver images
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stratification for FLD diseases [23, 24, 29]. We use
three texture feature extraction algorithms namely
Gabor, GLCM and GRLM features [30–34]. The
Gabor feature extraction is based on the scale and di-
rection of the pixel distribution in image using Gabor
filters. GLCM extracts statistical second order features
and finally, GRLM matrix calculates the neighboring
pixel of a reference pixel and texture feature are then
computed (Appendix C). The details of ELM architec-
ture and mathematical foundation are discussed in sub-
section 3.1, while subsection 3.2 presents the tissue
characterization algorithm. The details of feature extrac-
tion algorithms are given in subsection 3.3.

Three layered ELM architecture for training weights

Extreme learning machine (ELM) is a SLFFNN which can be
trained in a single pass, making it faster compared to contem-
porary ML algorithms. There are three layers of neurons (or
nodes) in SLFFNN, where weights between input and the
hidden nodes are randomly initiated and then fixed without
any iteration (so called input-to-hidden weights). The only
weights that are to be learned are the weights between the
hidden layer and the output layer. Since ELM learns the
weights in single pass, it tends to reach a global optimum

immediately. The architecture for ELM is shown in Fig. 5. It
is a three layered architecture. The first layer accepts the input
and forwards it to the hidden layer. The outputs from hidden
layer are forwarded to the output layer.

Let the number of training input images be represented by
vector Ptrg and testing images be represented as Ptst. The label
vectors corresponding to training images and testing images
be represented as Ltrg and Ltst. Let the weight vector be W
from input-to-hidden layer. Let Q be the output of application
of activation function to the input data. Let δ be the hidden-to-
output layer vector of training weights. Then, the least square

solution is given by Q δ ̂ −Ltrg ¼ min
δ

Qδ−Ltrg; where δ
̂ is the

least squares solution of the Qδ = Ltrg. For a larger training
dataset the smallest norm least squares solution of the linear

system is given by: δ ̂ ¼ Q†Ltrg; where ,Q† is the Moore–
Penrose [35] generalized inverse of matrix Q. The complete
set of mathematical symbols and their meaning are given in
Table 9. The mathematical derivation of ELM is given in
detail in Appendix A.

Tissue characterization and risk stratification using ELM
and SVM frameworks

The system for tissue characterization and risk stratifi-
cation is based on the conventional ML system design,
where, the input data is split into training and testing
data sets for cross-validation protocol design. This can
be seen in Fig. 6. This consists of two components:
training-phase and testing-phase correspondingly shown
as the left and right half of the Fig. 6. The training-
phase generates the training weights or coefficients,
while the testing-phase predicts the label class. The
testing-phase is primarily the mirror image of training-
phase, except that the training-phase uses ground truth
labels along with grayscale features computed from
training US liver images to generate the training
weights (or training coefficients). The testing-phase then
predicts the label class on the test images which is
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Fig. 4 S8 datasets: Top two rows: Normal liver images; Bottom two rows: Abnormal liver images
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computed by transformation of testing features using the
training weights. Note that both systems (ELM and
SVM) adapt the same feature computation protocol.
The ELM-based tissue characterization system uses
SLFFNN that is comprised of three sets of neurons
connected by lines carrying weights. The weights be-
tween input and the hidden neurons (input-to-hidden
weights) are randomly initiated while the weights that
are to be learned are the weights between the hidden
layer and the output (hidden-to-output) layer. The num-
ber of input neurons equals the number of features ex-
tracted from an image. Empirically, the number of hid-
den layer neurons is taken as two hundred. All input
neurons are connected to the hidden neurons.

The most common types of activation functions used in
ELM are: sigmoid, sine hard limit, triangular basis function
and radial basis function. The activation function used adapted
in our experiment is sigmoid function. The number of output
neurons set is based on the type of classification problem.
Each of the hidden neurons is connected to the output layer
neuron. Using the notations (as explained in the Appendix A),
the least square solution can be converted into the algorithmic
steps as presented in the pseudo code block shown below.
Note that, if SVM (as explained in Appendix B) is adapted
in Fig. 6, then, the maximummargin hyper-plane between two

classes is found out from the computed support vectors ob-
tained from the SVM during training-phase.

Feature extraction

The idea behind the feature extraction to compute a
limited number of features to understand the power of
ELM while benchmarking against SVM. Here, we dis-
cuss the feature extraction algorithms applied in our
experiment i.e., Gabor, GLCM, GRLM. The choice of
these features are based on the directions and scales
combined with texture repeatability [36].

Gabor-based directional features

Gabor filter is edge detection filter and is the combina-
tion of Gaussian and complex-plane wave. Through this
combination, it tries to diminish the uncertainty in both
spatial and frequency domains. Application of dilations
and rotations of this function produce alike Gabor fil-
ters. It helps in the alignment and scale-tunable edge
and line detection. It helps in expanding an image and
become contained in spatial frequency depiction. Gabor
transform has an impulse response that can be repre-
sented by a sinusoidal wave (a plane wave for distinct

Ultrasound Liver Images

K-Partitioning of Data

Training US Data Testing US Data

Feature ExtractionFeature Extraction

Offline Features Online Features

Offline  Classifier

Trained Weights

Online
Classifier

Normal/Diseased

K=2, 3, 5,10

Training-Phase Testing-Phase

ELM

SVM
ELM

SVM

Gabor Transform
GLCM
GRLM

Gabor Transform
GLCM
GRLM

Fig. 6 Tissue characterization
and risk prediction system in
ELM and SVM frameworks
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frequency and aligned 2-D Gabor). The function is giv-
en as:

f p; qð Þ ¼ exp −
1

2

p
σp

� �2

þ q
σq

� �2
" #( )

exp j2π Upþ Vqð Þ½ �

ð1Þ
where, (p, q) represents the spatial-domain rectilinear co-
ordinates, (U, V) are points that are the specific 2-D
frequency of the complex sinusoid and (σp, σq) depict
the spatial extent and bandwidth of f. The Fig. 7 shows
the Gabor filters used for feature extraction. A scale of
2 and 10 orientations were selected to define 20 Gabor
features.

Gray level co-occurrence matrix

Gray Level Co-occurrence Matrix (GLCM) is a widely
known methodology for texture extraction [37–41].
GLCM shows the spatial relationship of neighboring

pixels. It calculates the occurrence of a pixel with a
specific gray level or intensity compared to its neigh-
bors in a number of directions. Features are calculated
based on the statistical distribution of pixel intensities.
GLCM based feature extraction uses second order sta-
tistics. The texture feature obtained in Co-occurrence
matrix never directly uses for analysis. Gray level co-
occurrence matrix calculates the probability of two pixel
with gray level i, j which located in inter distance d
direction, θ. The probability is represented by p(i, j |
d, θ). The spatial relationship is represented in terms of
angle θ and distance d. From the calculated probability
we calculate features. A brief description of GLCM is
given in Appendix C.1.

Gray level run length matrix

Gray Level Run Length Matrix (GRLM) is based on a
set of collinear pixels that have the same gray level
called Run Length Matrix (RLM). The main function

(a) Accuracy vs. Data size for K2 protocol (b) Accuracy vs. Data size for K3 protocol

(c) Accuracy vs. Data size for K5 protocol (d) Accuracy vs. Data size for K10 protocol

Fig. 8 Accuracy analysis for (a) K2, (b) K3, (c) K5 and (d) K10 cross-validations for different data sizes
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(a) ROC for K2 protocol (b) ROC for K3 protocol

(c) ROC for K5 protocol (d) ROC for K10 protocol

(a) ROC for K2 protocol (b) ROC for K3 protocol

(c) ROC for K5 protocol (d) ROC for K10 protocol

a

b

Fig. 9 a. ROC curves for (a) K2, (b) K3, (c) K5 and (d) K10 cross-validations using S0 dataset. b. ROC curves for (a) K2, (b) K3, (c) K5 and (d) K10
cross-validations using S4 dataset. c. ROC curves for (a) K2, (b) K3, (c) K5 and (d) K10 cross-validations using S8 dataset
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of GRLM is to extract texture features and images of
grey intensity pixels in a specific orientation from
which the reference pixels are computed. The number
of neighboring pixels with the same grey intensity in a
particular direction is called run length represented as
S(i, j | d, θ), which is the number of j neighboring
pixels with the intensity i, in the direction θ. GRLM
is further discussed in Appendix C.2. Description for
all symbols are given in Appendix D.

Experimental protocol

We carry out cross-validation experimental protocol to
analyze the strength of generalization for each method-
ology. The subsection 4.1 discusses the effect of four
cross-validation protocols on stratification accuracy
using all three kinds of data sets. In the subsection
4.2, we study the effect of percentage of data size on
sub-sampling data on the system’s accuracy using vari-
ous cross-validation protocols. Since ELM is a single
pass algorithm, we inspect the time required by ELM
and SVM in this experiment. Subsection 4.3 presents

the comparative time analysis for ELM and SVM
algorithms.

Experiment 1: Effect of training data size on accuracy
using four CV protocols

The objective of this experiment is to understand the
effect of training data size on the performance of risk
stratification. The cross-validation protocol allows us to
change the number of patients in the training data sets.
We adapted four kinds of cross-validation protocols: K2,
K3, K5 and K10 labeled as: 2 fold, 3 fold, 5 fold and
10 fold, respectively. Each fold is a part of the data set.
In K2 cross-validation, the dataset is equally partitioned
into two, where one part is used for training and the
other part is used for testing. This process is the same
for K3, K5, and K10, with data in KN being divided
into N parts where N-1 parts are used for training and
the remaining one part is used for testing. Each of the
cross-validated datasets is the input into the classifier
(ELM or SVM) for training and testing. The protocols
are repeated twenty times randomly and average accu-
racy, sensitivity, specificity and time are recorded.

(a) ROC for K2 protocol (b) ROC for K3 protocol

(c) ROC for K5 protocol (d) ROC for K10 protocol

c

Fig. 9 (continued)
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Experiment 2: Effect of training set size using
sub-sampling strategy

It is important to understand the effect of the training
data size on the ELM architecture. Since no iterations
are involved unlike conventional NN or BPNN, the size
of the training data can play a larger role in the com-
puting the performance of the ELM system. We there-
fore sub-sampled the original databases (S0) into two
kinds of sub-samplings called as: S4 and S8 datasets.
In S4, images in S0 dataset were divided into 4 equal
parts with each image representing one-fourth dimension
of original image. The S4 dataset consists of 252 im-
ages. The S8 was obtained from S4 data set. This
means 16 parts for each of the S4 data sets. Thus, S8
was: ×16 parts of 252, which is (252 × 16) 4032. So,
S 0 = 6 3 , S 4 = 6 3 × 4 = 2 5 2 ;
S8 = 252 × 16 = 63x4x16 = 4032. The images are
shown in Figs. 3 and 4. It is therefore required to run
all CV protocols (i.e., K2, K3, K5 and K10 cross-vali-
dations) for all three kinds of data sets: S0, S4 and S8.

Experiment 3: Time comparison between ELM & SVM

Since Extreme Learning Machine comes from the ability to
learn extremely fast, it is necessary to compute the time com-
plexity of the ELM system for both training-phase and testing-
phases. Thus, it requires computing the times for all CV pro-
tocols (i.e., K2, K3, K5 and K10 cross-validations) and for all
three kinds of data sets (i.e, S0, S4 and S8), thus, leading to 12
time comparisons.

Results

This section provides the results of the three experiments car-
ried out on the US liver dataset in ELM framework. Sub sec-
tion 5.1 shows the effect of training data size using four CV
Protocols. The results on the effect of training set size using
sub-sampling strategy are shown in sub section 5.2. The
timing analysis results are presented in sub section 5.3.

Experiment 1: Effect of training data size on accuracy
using four CV protocols

If ηsys is the system accuracy, k represents the cross-
v a l i d a t i o n m e t h o d i . e . , K 2 , K 3 , K 5 a n d
K10, t represents index of trial numbers, T represents
total number of trials, i represents index of data size,
NL represents total size of the liver dataset, then the
average accuracy for each cross-validation protocol, k,
of the system can be mathematically expressed as:

ηsys kð Þ ¼ ∑T
t¼1∑

NL
i¼1η k; i; tð Þ

T � NL
ð2Þ

A total of T = 20 trials are conducted. The average
accuracy, sensitivity, specificity and timing for all pro-
tocols are as shown in Table 1. Note that same formula
is applicable for SVM-based and ELM-based Symtosis
systems. It is clearly seen that, ELM outperforms SVM
for all cross-validations. ELM gives 92.4% accuracy
with K10 cross-validation compared to SVM that gives
only 86.42%. The average specificity and sensitivity is
higher for ELM when compared with SVM. Results for
S4 and S8 datasets are given in Table 10 and Table 11
in Appendix E.

Experiment 2: Effect of percentage of training data size
during CV protocols

To know the effect of the training data size on the ELM archi-
tecture, we perform the experiment with varying data sizes.
We performed this experiment on S0, S4 and S8 datasets. As
the size of training dataset increases, the accuracy also in-
creased. The S4 outperforms S0, while S8 outperforms S4
and S0 for all training dataset sizes. The accuracy obtained
for SVM and ELM with different dataset sizes for each
cross-validation is shown separately in Fig. 8.

Experiment 3: Time comparison between ELM & SVM

ELM is a fast learning neural network. The ELM gives
better performance in terms of training and testing time.
The time comparison between ELM and SVM classifier

Table 1 Comparison between
ELM-based and SVM-based
learning methods for S0 dataset

CV* Accuracy (%) Sensitivity (%) Specificity (%) AUC

Classifier ELM SVM ELM SVM ELM SVM ELM SVM

K2 81.70 76.14 85.10 84.90 78.52 74.52 0.82 0.76

K3 82.70 75.40 85.70 76.80 84.66 75.40 0.81 0.74

K5 89.00 83.50 87.16 80.16 87.42 85.40 0.89 0.83

K10 92.40 86.42 91.30 88.20 92.10 86.30 0.92 0.86

*CV: Cross-validation protocol
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for S0 is given in Table 2, S4 in Table 3, and S8 in
Table 4. The training time is less for K2 and more for
K10, but for testing it is reversed. It happens because
the data size in case of training increases from K2 to
K10 and for testing it decreases from K2 to K10. The
SVM has greater training and testing time for all types
of cross-validations in all three datasets. The ELM ar-
chitecture uses 2.1 milliseconds (ms) for testing and
9.3 ms in training for K10 cross-validation for S0. The
testing time is almost negligible. The average speed-up
improvement of ELM over SVM is 31% for S0. The
testing time for S4 is 3.0 ms and training time is
10.3 ms for K10 cross-validation with ELM. The max-
imum testing time is for K2 which is 4.6 ms for ELM
classifier. The time increased from S0 to S4 for ELM
and SVM, but is still negligible. For SVM training time
is 16.0 ms in K10 cross-validation. The speed-up
achieved for ELM over SVM is approximate 47% for
S4. When we consider S8 dataset SVM needs maximum
19.5 ms for training whereas ELM needs only 15.3 ms
for training. The increase in performance speed for
ELM over SVM for S8 is 41%. Overall, the average
speed-up of ELM over SVM is approximately 40%.

We further validated our ELM and SVM classification
using 2-class biometric facial data (Appendix F).

Performance valuation

The performance of the ELM system is computed by plotting
the ROC and AUC’s for all sets of CV protocols. We further
record the performance attributes such as: accuracy, sensitiv-
ity, specificity and is presented in subsection 6.1. The reliabil-
ity and stability analysis is evaluated in subsection 6.2.

ROC curves

The performance of the ELM was computed using the ROC
curves using all three kinds of datasets: S0, S4 and S8. For
each data set, we adapted four kinds of cross-validation pro-
tocols: K2, K3, K5 and K10. Thus we demonstrate 12 ROC
curves spanned in 3 figures: Fig. 9 (A), (B), and (C), respec-
tively. Note that in each combination of K and S, we compute
ROC curves using the two sets of machine learning systems:
ELM and SVM. They are represented by alphabets (a), (b), (c)
and (d) in each of the three set of figures. The AUC for S0, S4
and S8 data set is shown in Table 1, Table 10 and Table 11. For
each data set (S0, S4 and S8), K10 does the best off all the four
cross-validation protocols and ELM shows superior perfor-
mance when compared against SVM (0.97 vs. 0.91).

Table 2 Time comparison between ELM and SVM for S0

Training & Testing Time CV* ELM SVM Speed-up*** (%)

Average
Training
Time
(ms**)

K2 2.1 7.2 70.8

K3 4.3 7.9 45.6

K5 7.4 9.6 22.9

K10 9.3 13.3 30.1

Average
Testing
Time
(ms**)

K2 2.7 3.6 25.0

K3 2.3 3.1 25.8

K5 2.2 2.9 24.1

K10 2.1 2.2 4.5

*CV: Cross-validation protocol, **ms: milliseconds, ***Speed-

up=jTimeSVM−TimeELM j
TimeSVM

� 100

Table 3 Time comparison between ELM and SVM for S4

Training & Testing Time CV* ELM SVM Speed-up*** (%)

Average
Training
Time
(ms**)

K2 7.1 14.5 51.0

K3 8.0 14.8 46.0

K5 9.7 15.1 35.8

K10 10.3 16.0 35.6

Average
Testing
Time
(ms**)

K2 4.6 8.4 45.2

K3 4.1 8.0 48.8

K5 3.6 7.5 52.00

K10 3.0 7.1 57.8

*CV: Cross-validation protocol, **ms: milliseconds, ***Speed-

up=jTimeSVM−TimeELM j
TimeSVM

� 100

Table 4 Time comparison between ELM and SVM for S8

Training & Testing Time CV* ELM SVM Speed-up*** (%)

Average
Training
Time
(ms**)

K2 8.7 17.5 50.3

K3 10.1 17.9 43.6

K5 13.2 18.1 27.1

K10 15.3 19.5 21.5

Average
Testing
Time
(ms**)

K2 5.3 9.8 45.9

K3 5.0 9.3 46.2

K5 4.8 8.6 44.2

K10 4.1 7.8 47.4

*CV: Cross-validation protocol, **ms: milliseconds, ***Speed-

up=jTimeSVM−TimeELM j
TimeSVM

� 100

Table 5 Reliability Index of ELM for varying data sizes for differentK-
fold cross-validations

Data size (Images) Normal/Abnormal Reliability Index (%)

K2 K3 K5 K10

63 27/36 99.7 98.9 100.0 99.9

252 108/144 99.6 98.9 99.4 99.8

4032 1728/2304 99.8 99.9 100.0 99.9
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Reliability and stability analysis

In this subsection, reliability and stability analysis of
ELM is done. This assessment is crucial because it
gives an indication how the system performs under re-
peated conditions and also different conditions. This af-
firms the results produced are consistent and repeatable.
The reliability index has been derived by observing the
deviation of the classification accuracy with respect to
its mean as the data size increases [33]. The reliability
index ζNL

%ð Þ is formulated as:

ζNL
%ð Þ ¼ 1−

μNL

σNL

� �
� 100 ð3Þ

Where, μNL
is the mean accuracy and σNL represents

the standard deviation of all accuracies for NL US liver
images.

The stability assessment analyses how the system
changes across repeated conditions. We do this by using
a similar approach to dynamics of the control theory [34].
Firstly, a threshold stability criterion of 5% variation is
defined. When a system varies more than 5%, it is said
that the system is not stable. Next we calculate the stan-
dard deviation (SD) for each computation of different data
sizes. If the SD is less than 5% we can declare that the
system is stable. The reliability indices for all four K-fold
protocols in Table 5 are above 0.95 indicating a strong
reliability of the ELM classification system. We further
validated our ELM and SVM classification using 2-class
biometric facial data (Appendix F).

Discussion

This study proposed a reliable and fast Extreme
Learning Machine (ELM)-based tissue characterization
system (a class of Symtosis system) for stratification
of FLD disease in US liver images. ELM was used to
train SLFFNN. The input-to-hidden layer weights were
randomly generated reducing computational cost. The
only weights to be trained were hidden-to-output layer
which was done in a single pass (without any iteration)
making ELM faster compared to SVM model. ELM-
based characterization system was benchmarked against
previously developed SVM-based system. Note that
same set of feature were applied to ELM and SVM
systems. The common three sets of grayscale features
were: GRLM, GLCM and Gabor. The main spirit of
the study was to compare ELM vs. SVM. Since ELM
is a NN-based system, we compared ELM against
BPNN. It was demonstrated that by reducing the

number of features to one-third and also reducing the
number of hidden layers by one-third (as demonstrated
by BPNN [21]), the ELM still yielded comparable ac-
curacy and the speed several times faster. While Suri’s
group [21, 40] have developed features maximizing
close to 1000 features combined with feature selection
methods such as PCA, FDA embedded with classifiers
such as Bayesian, SVM, K-mean, etc., we have con-
fined this study only to benchmark the ELM against
SVM-based paradigm for tissue liver classification. We
performed the scientific validation using biometric facial
datasets shown in the Appendix F.

Benchmarking

There is not much literature covering CADx-based sys-
tem for liver diagnosis and risk stratification. Suri and
his team performed classification of US liver dataset
[11] using Decision tree (DT) and detection of
Hashimoto Thyroiditis using Fuzzy classifiers [25]
(shown in Table 6). Three sets of features were comput-
ed which was then applied to the DT-based classifier.
This constituted Higher Order Spectra (HOS), Texture
and Discrete Wavelet Transform (DWT) with the as-
sumption that the pixels are distributed non-linear in
nature. Texture captured the various granular structures
in the US liver images, which was ideal. Feature reduc-
tion was performed followed by DT-based classification
yielding an accuracy of 93.3%. Douali et al. [42] used
Case Based Fuzzy Cognitive Map (CBFCM) in the year
2013, for classification of FLD and achieved an accura-
cy of 91.9% for 162 patients. In the year 2014,
Vanderbeck et al. [43] achieved an accuracy of 89.3%
using SVM on 47 patients using 582 features. In the
year 2014, Acharya et al. [29] proposed a Fuzzy
Classifier (FC) for detection of Hashimoto Thyroiditis
from US thyroid images. The features were extracted
using wavelet transform. A total of 526 US images
were used and the system achieved an accuracy of
84.6%. In 2014, Subramanya et al. [19] used 53 US
liver images which were distributed among four differ-
ent classes consisting of: 12 normal, 14 mild, 14 mod-
erate and 13 severe. Six types of features were comput-
ed such as: First Order Statics (FOS), Gradient-based
(Gr), Mutual Information-based (MI), GRLM, GLCM
and Laws Texture. SVM was applied to achieve an av-
erage accuracy of 84.9%. Very recently, Suri and his
team [21] achieved an accuracy of 97.6% using BPNN
on US liver images. A short comparison of BPNN and
ELM is discussed in the next subsection. More recently,
Liu et al. [44] used a combination of liver capsule de-
tection technique and trained Convolution Neural
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Network [45] model for feature extraction, and used
SVM as classifier to achieve accuracy of 89.2%.

Our study used ELM for the classification process on
three kinds of data sets: S0, S4, S8 data sets demon-
strating the accuracies of: 92.4%, 94.8% and 96.7%,
respectively. The K10 cross-validation outperforms other
three cross-validations. It is observed from Table 1 that
ELM accuracy is higher than SVM for all cross-
validation protocols i.e., K2, K3, K5 and K1 (81.70,
82.70, 89.00 and 92.40 against 76.14, 75.40, 83.50,
86.42, percentage respectively). It is also observed from
Tables 2, 3 and 4 that average speed-up of ELM over
SVM is approximately 40% asserting the hypothesis that
ELM is faster than SVM. The stability analysis from
Table 5 shows that ELM is highly reliable and stable
system. It is further noted, that ELM accuracy increases
as the data size increases.

FC: Fuzzy Classifier; HOS: High Order Spectra;
DWT: Wavelet Packet Decomposition; FOS: First
Order Statistics; Gr: Gradient based features; MI:
Moment invariant; Laws: Laws texture features; BG:
Bas ic geomet r ic , CBFCM: Case Based Fuzzy
Cognitive Map

A short comparison on ELM Vs. BPNN

Since ELM and BPNN are both NN-based strategies,
we therefore ensured that we compared them very close-
ly. BPNN adapted by Suri produced an accuracy of
97.6% while ELM gave the best accuracy of 96.7%.
From these observations (also shown in Table 6), it
can be argued that BPNN achieved better accuracy com-
pared to ELM, so BPNN would be a better classifier.
However, the merits of ELM far outweigh BPNN. ELM
is a single layer feed forward neural network, thus net-
work complexity is much lower compared to BPNN,

since BPNN can have multiple number of hidden layers
and neurons (up to 10 layers in [21]). Second, BPNN
convergence is far slower compared to ELM, because
each weight in BPNN architecture is updated iteratively,
and such iterations can be a larger number (say 1000),
which can take more time unlike one iteration in ELM,
thereby increasing computational complexity of the sys-
tem. On the contrary, ELM achieves a comparable ac-
curacy in a single pass, due to its simple matrix multi-
plications and single hidden layer. Moreover, ELM
achieves accuracy difference less than 1 % (0.9%) with
only 46 ordinary features, unlike BPNN, which takes
three times more number of features (128). Overall,
these merits rationalize the selection of ELM compared
to BPNN and SVM which are categorized as conven-
tional ML techniques.

A special note on ELM Vs. SVM

The SVM training is in two stages. i.e., in stage one,
the input data is mapped to a higher dimensional feature
space through a nonlinear feature mapping function or
kernel functions and in the stage two, the optimization
method is used to find maximum separating margin of
two different classes in this feature space while mini-
mizing the training errors. The optimization problem is
quadratic and convex, and so it can be solved
efficiently.

The ELM trains a SLFFNN in two main stages: (1)
feature mapping and (2) linear parameters solving. In
the first stage, the hidden layer weights are randomly
initialized to map the input data into a feature space by
some non-linear mapping functions i.e., sigmoid. In the
second stage of ELM learning, the weights in hidden-to-
output layer, denoted by δ are solved by minimizing the
approximation error in the squared error sense. The

Table 6 Benchmark table

SN Authors Data Type Classifier Type Types of Features No. of Features Data Size Accuracy (%)

1 Acharya et al. [11] Liver Decision Tree HOS, Texture & DWT - 100 93.3

2 Douali et al. [42] Liver *CBFCM - - 162 91.9

3 Vanderbeck et al. [43] Liver SVM GLCM, N-jet, Nuclei Density,
Morphological, Texture

582 47 89.3

2 Acharya et al. [29] Thyroid FC Wavelet Transform 40 526 84.6

3 Subramanya et al. [19] Liver SVM FOS, Gr, MI, GRLM, GLCM, Laws 636 53 84.9

4 Saba et al. [21] Liver BPNN BG, Fourier, DCT, Harlick, Gupta, Gabor 128 62 97.6

6 Liu et al. [44] Liver SVM CNN-based features 500 91 89.2

7a Proposed work ELM - 46 63 92.4

7b Proposed work - 46 252 94.8

7c Proposed work - 46 4032 96.7
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ELM is basically a SLFFNN whose weights and biases
in the first layer are randomly initialized and kept con-
stant. The weights and optionally biases of the second
layer are selected by minimizing the squared loss of
predicted errors by using Moore–Penrose pseudo-
inverse [25, 34]. The weights of hidden-to-output neu-
rons are learned in a single step. The ELM requires a
time proportional to the number of hidden neurons for
datasets smaller than the size of hidden neurons [26].

However, ELM is different from SVM, as the input-to-
hidden layer weights do need not be tuned. ELM provides a
universal solution for regression, binary and multi-class clas-
sification where the least square solution is dependent only on
input data and number of training samples [46]. The ELM
computational complexity is much simpler than SVM since
training of ELM only involves finding hidden-to-output layer
weights which is obtained in single pass by multiplying of
Moore-Penrose inverse of activation function output and the
target. Therefore, computational complexity of the ELM is
dependent on the number of hidden nodes for smaller dataset
and requires a time proportional to the number of hid-
den neurons, which is much larger than the size of
small datasets and whose evaluations require a single
feed-forward pass. The SVM computational complexity
increases with non-linearly separable data as it has to be
solved in high-dimensional space using kernel functions.
Also, the kernel functions of SVM vary from
application-to-application while ELM provides a more
generalized solution to the classification problem. It be-
comes more complex in SVM with an increase in size
of training dataset since it involves finding support vec-
tors from the entire training dataset involving huge
number mathematical computations. Although, ELM
and SVM employ the same cost function, the optimiza-
tion constraint in case of ELM is milder compared to
SVM, wherein, in the former case it employs the least
square model for optimization while the latter uses
highest separating margin approach. The ELM is faster
compared to other classifiers because the input-hidden
weights are constant; the model learns only the
hidden-output weights, which is equivalent to learning
a linear model [46, 47]. It was verified from experi-
ments that ELM with random hidden nodes can run
even up to ten times faster compared to SVM. From
this assessment, it is correctly concluded and justified
that ELM gives faster accuracy results compared to
SVM.

The ELM employs constrained least square model for
error minimization. It applies gradient descent derivative
of error with respect to δ, in a single pass over the
whole feature space [48–50], allowing smallest possible
training error. In SVM, the application of all features
allows presence of noisy data which does not allow it

to converge it to a single optimized separating hyper-
plane. Therefore, it is necessary for SVM to identify
feature types and employ feature selection algorithms
to remove noisy features for achieving higher accuracy.
So thus can say with confidence that accuracy of ELM
is better than SVM in absence of feature selection
algorithms.

Strengths, weaknesses and future work

It is clearly seen that ELM is faster and more accurate
compared to SVM, however, there is a need for testing
ELM for Big Data applications [51] to know its actual
strength. We also need to test ELM on abdomen [52]
and other bio-inspired imaging applications [53]. Also a
comparison is needed to be made with contemporary
Deep Learning [54] techniques. The experimental scope
of work is limited to basic feature extraction algorithms
only. In future, we intent to propose for application of
better feature selection algorithms leveraging on princi-
ple component analysis or discriminate analysis or mu-
tual information-based. This ensures that other feature
extraction methods can be adapted along with feature
selection methods, however this study is focused on
benchmarking of SVM against ELM for liver tissue
characterization, keeping the paradigms in comparison
framework. To improve classifier performance, it is pro-
posed that larger training dataset be provided for effi-
cient classification. The high classification accuracy of
basic ELM model in this study entails us to study other
versions of ELM for stratification of US liver images in
future.

Conclusions

The study presented a superior strategy for FDL strati-
fication using Extreme Learning Machine (ELM) and
benchmarked against SVM. The ELM was based on
single layer feed forward neural network where input-
to-hidden layer weights are randomly generated reduc-
ing computational cost and hidden-to-output weights
were only trained. Due to simpler architecture and sin-
gle pass, ELM was faster compared to SVM. Further,
since the least square’s paradigm was adapted, hence
more accurate with lesser number of features. The
Symtosis system adapted four types of K-fold cross-
validation (K = 2, 3, 5 and 10) protocols on three kinds
of data sizes: S0-original, S4-four splits, S8-sixty four
splits (a total of 12 cases) using 46 types of grayscale
features derived using Gabor, GLCM and GRLM fea-
ture sets. Using the K10 cross-validation protocol on S8
data set, ELM showed an accuracy of 96.75%
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compared to 89.01% for SVM, and correspondingly, the
AUC: 0.97 and 0.91, respectively. Further experiments
also showed the mean reliability of 99% for ELM clas-
sifier, along with the mean speed improvement of 40%
using ELM against SVM. We validated the symtosis
system using two class biometric facial public data
demonstrating an accuracy of 100%.
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Appendix A: ELM mathematical framework
and solution

Let there be H hidden layer neurons and N output neu-
rons. Let each training sample of P images be denoted
as (aj, lj), where each input image denoted as aj = [aj1,
aj2,…, ajm]

T ∈ Rm and each output label is denoted as lj-
= [l

j1
, lj2,…, ljN]

T ∈ RN. The output vector is denoted as
L = [l1, l2,…, lj,…lP]

T. Further, the P images and their
ground truth labels are divided into two parts for train-

ing and testing which can be represented by Ptrg ¼
atrgj ; ltrgj

� �
for training and Ptst ¼ atstk ; ltstk

� �
. Similarly,

output vector L is also divided into two sets Ltrg and
Ltst. Each input layer neuron is connected to all hidden
layer neurons. Let each hidden layer weight be denoted
as a vector wi = [w1i, w2i,…, wmi ]

T. Each of the con-
nections or weights from hidden-to-output layer are de-
noted as δi = [δi1, δi2,…, δiN]

T connecting ith hidden
node to the output nodes. A standard SLFFNN can be
modeled as given by:

∑H
i¼1δi gi atrgj

� �
¼ ∑H

i¼1δi g wia
trg
j þ bi

� �
¼ ltrgj for j ¼ 1; 2;…;#Ptrg

�

ð4Þ
where, g is the activation function and b is the bias.
This equation is written in more compact form which
is given by:

Qδ ¼ Ltrg ð5Þ

where,

Q w1;…;wH ; b1;…; bH ; a
trg
1 ;…; atrgP

� �

¼

g w1:a
trg
1 þ b1

� �
… g wi:a

trg
1 þ bi

� �
… g wH :a

trg
1 þ bH

� �
⋮

g w1:a
trg
j þ b1

� �
⋮

…

⋮
g wi:a

trg
j þ bi

� �
⋮

…

⋮
g wH :a

trg
j þ bH

� �
⋮

g w1:a
trg
P þ b1

� �
… g wi:a

trg
P þ bi

� �
… g wH :a

trg
P þ bH

� �

2
666664

3
777775
#Ptrg�H

δ ¼

δT1
⋮
δTi
⋮
δTH

2
66664

3
77775
H�N

and Ltrg ¼

ltrg1
⋮
ltrgj
⋮

ltrg#Ptrg

2
66664

3
77775
#Ptrg�N

:The cost function of ELM is given as :

E ¼ ∑P
j¼1 ∑H

i¼1δi g wia
trg
j þ bi

� �
−ltrgj

� �2
ð6Þ

The objective is to find the minimum δ which min-
imizes the cost function E. By using Eq. 5, the Eq. 6
can also be written as:

‖Qδ̂−Ltrg‖ ¼ min
δ

Qδ−Ltrg‖ ð7Þ

where δ ̂ is the least squares solution of the Qδ = Ltrg. If
the number of hidden nodes is equal to the number of
training samples (#Ptrg = H), the matrix Q is square
and invertible. Therefore, with random weights wi and
bias bi the training samples can be approximated with
zero error. However, in maximum cases, number of
training samples is larger than number of hidden nodes.
So, the smallest norm least squares solution of the lin-
ear system is given by:

δ̂ ¼ Q†Ltrg ð8Þ

Where, Q† is the Moore–Penrose [35] generalized inverse
of matrix Q. Thus the smallest training error can be reached
by:

‖Qδ̂−Ltrg‖ ¼ ‖QQ†Ltrg−Ltrg‖ ¼ min
δ

‖Qδ−Ltrg‖ ð9Þ

The trained hidden-to-output layer weights are then used in
Testing-phase as shown in Fig. 5, to test the performance of
the Symtosis model using test dataset Ptst.

Appendix B: Support vector machine

Support Vector Machine (SVM) is a kernel based clas-
sification technique based on the maximum margin clas-
sifier. It transforms the original input data to high-
dimensional feature space and tries to find the hyper-
plane which maximizes the distance between data points

J Med Syst (2017) 41: 152 Page 15 of 20 152



of distinct classes. We consider a binary classification
task with the training dataset designated as {(ai, Li), i =
1, 2,…, l} where aiє Rq is the input data for ith training
sample and Liє [−1, +1] are the equivalent target values,
l designates total number of samples and q is the input
space dimension. The SVM model can be represented in
feature space by following equation:

where, ℵ(x) represents kernel function, b represents bias and
is a weight vector which is normal to the hyper-plane. The

decision rule is mathematically represented in the Eq. (11):

The non-linear kernel function finds the maximum margin
hyper-plane, between the classes in a feature space. To
find optimal hyper-plane, the Eq. (12) is minimized subject to
Eqs. (10) and (11).

where, ϑ represents the trade-off between error and mar-
gin and ξ is a slack variable. By using Lagrangian mul-
tipliers (α) in dual form, the Eq. (12) can be trans-
formed into following optimization problem:

maximize ∑
l

i¼1
αi−

1

2
∑
l

i¼1
∑
l

j¼1
αiα jLiL jK f ai; a j

� �
ð13Þ

subject to ∑
l

i¼1
αiLi ¼ 0; αi≥0∀i ð14Þ

where; K f ai; a j
� � ¼ ℵ aið ÞT :ℵ aj

� � ð15Þ

The final decision function is given by following equation:

L xð Þ ¼ ∑
l

i¼1
αiLiK f a; aið Þ þ γ ð16Þ

The parameters ωand γ define the separating hyper-
plane. The most general kernel functions are:

Linear Kernel : K f a; a
0

� �
¼ a:a

0 ð17Þ

Polynomial Kernel : K f a; a
0

� �
¼ a:a

0 þ 1
� �deg ð18Þ

Where, deg. is the degree of kernel in Eq. 18 and (.) denotes
the dot product.

Appendix C: Feature extraction

Haralick texture (GLCM)

GLCM calculates the following features shown Table 7 from
the co-occurrence matrix calculated from the image.

(10)

(11)

(12)

Table 7 Features from gray level co-occurrence matrix

SN Features Description

1 Contrast

∑
N−1

n¼0
n2 ∑

N

i¼0
∑
N

j¼0
C i; jð Þ

2 Autocorrelation

∑
N−1

i¼0
∑
N−1

j¼0
ijð ÞC i; jð Þ

3 Maximum probability

∑
N−1

i¼0
∑
N−1

j¼0
max C i; jð Þð Þ

4 Dissimilarity
∑N−1

i¼0 ∑
N−1
j¼0 ji− jj C i; jð Þð Þ

5 Homogeneity

∑
N−1

i¼0
∑
N−1

j¼0
1=ð1 þ i− jð Þ 2Þ C i; jð Þð Þ

6 Entropy

∑
N−1

i¼0
∑
N−1

j¼0
C i; jð ÞlogC i; jð Þ

7 Energy
∑N−1

i¼0 ∑
N−1
j¼0C i; jð Þ2

8 Correlation
∑N−1

i¼0 ∑
N−1
j¼0 i; jð ÞC i; jð Þ− μxμy = σx

σy
9 Cluster shade

∑N−1
i¼0 ∑

N−1
j¼0 ð iþ jð Þ − μxμyÞ3 C i; jð Þ

10 Variance
∑N−1

i¼0 ∑
N−1
j¼0 ði− μÞ2log C i; jð Þð Þ

11 Sum average

∑
2N

i¼2
iCxþy ið Þ

12 Sum entropy -∑2N
i¼2iCxþy ið Þ logCx + y(i)

13 Sum variance

∑
2N

i¼2
i−I sent2Cxþy ið Þ

14 Difference variance

∑
2N

i¼2
i−I savg2Cx−y ið Þ

15 Difference entropy
−∑N−1

i¼2 iCx−y ið Þ logCx − y(i)
16 Information correlation

measure 1 HXY−HXY1 =maxðHx −HyÞ

17 Information correlation
measure 2

1 − (e−2HXY2 −HXY)1/2

18 Sum Of Squares Variance

∑
m

x¼1
∑
n

y¼1
f x; yð Þ2

19 Inverse Difference

∑
N−1

i¼0
∑
N−1

j¼0
1=ð1þ ji − jj C i; jð Þð Þ
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Run length texture

GRLM feature extraction algorithm calculate features from
the run length matrix as shown in Table 8.

Appendix D: Symbols table

Appendix E: Results of ELM/SVM classifier for S4
and S8 dataset

Table 8 Features from gray level run length matrix

SN Features Description

1 Short Run Emphasis
(SRE) ∑Na

x¼1∑
Na
y¼1

P x;yð Þ
y2 = ∑Na

x¼1∑
Nb
x¼1P i; jð Þ

2 Long Run Emphasis
(LRE) ∑Na

x¼1∑
Nb
x¼1 j

2P x; yð Þ = ∑Na
x¼1∑

Nb
x¼1P x; yð Þ

3 Gray level non
uniformity ∑Na

x¼1 ∑Nb
x¼1P x; yð Þ2

� �
= ∑Na

x¼1∑
Nb
y¼1P

x; yð Þ
4 Run length

Non-uniformity
(RLNU)

∑Na
x¼1 ∑Nb

x¼1P x; yð Þ2
� �

= ∑Na
x¼1∑

Nb
x¼1P x; yð Þ

5 Run Percentage (RP)
∑Na

x¼1∑
Nb
x¼1

P x;yð Þ
Q

6 Low Gray-level Run
Emphasis (LGRE) ∑Na

x¼1∑
Nb
y¼1

P x;yð Þ
x2 = ∑Na

x¼1∑
Nb
x¼1P x; yð Þ

7 High Gray-level Run
Emphasis (HGRE) ∑Na

x¼1∑
Nb
x¼1x

2Q x; yð Þ = ∑Na
x¼1∑

Nb
x¼1Q x; yð Þ

Table 9 Symbols and their description

Symbol Description of symbol

P US liver dataset
Ptrg Training US liver images
Ptst Test US liver images
aj jth input image with m features;

aj = [aj1, aj2,…, ajm]
T ∈ Rm

m Total number of features/number of
input neurons

L Output label/class/target vector
Ltrg Output training vector
Ltst Output test vector

ltrgj
Label of input training image j

ltstj
Label of input test image j

N Total number of output neurons
H Total number of hidden layer neurons
w Input-to-hidden weight
w1i Input neuron 1-to-ith hidden neuron weight
[w1i,w2i,…,wmi ]

T Weight vector
δ Vector of Hidden-to-output weights

corresponding to US liver images.
[δi1, δi2,…, δiN]

T ith hidden-to-output weight vector
gi(aj) Activation function for jth image for the

ith hidden node
Q Hidden layer output matrix
E Error matrix

δ̂
Optimal Solution

Table 9 (continued)

Symbol Description of symbol

Q† Moore–Penrose generalized inverse of matrix Q
R Dimension

Weight vector
b Bias
ℵ Kernel function
ϑ Trade-off parameter between error and margin
ξ Slack variable
α Lagrangian multiplier
Kf Kernel
deg Degree of polynomial kernel
k Type of cross-validation protocol (K2, K3, K5 and K10)
η(k, i, t) Accuracy for kth protocol, ith datasize and tth trial
ηsys System accuracy
NL Total size of US Liver dataset
T Total number of trials

ζNL

Reliability index for NL US liver images

μNL

Mean Accuracy for NL US liver images

σNL
Standard deviation of all accuracies for NL images

h Gabor Transform
(p, q) Spatial domain linear co-ordinates
(U, V) Points that are the particular 2D frequency of the

complex sinusoid
(σp, σq) Represents the characterization the spatial extent and

bandwidth of h

Table 10 Comparison between ELM-based and SVM-based learning
methods for S4 dataset

CV* Accuracy (%) Sensitivity
(%)

Specificity
(%)

AUC

Classifier ELM SVM ELM SVM ELM SVM ELM SVM

K2 83.05 71.14 86.91 71.65 78.52 67.42 0.83 0.73

K3 88.05 78.83 88.25 81.45 88.77 73.72 0.88 0.77

K5 92.18 84.65 91.27 87.77 90.42 82.34 0.91 0.86

K10 94.78 87.91 92.32 89.37 95.12 84.50 0.94 0.88

*CV: Cross-validation protocol

Table 11 Comparison between ELM-based and SVM-based learning
methods for S8 dataset

CV* Accuracy (%) Sensitivity
(%)

Specificity
(%)

AUC

Classifier ELM SVM ELM SVM ELM SVM ELM SVM

K2 85.19 74.45 88.71 78.81 81.41 71.23 0.85 0.73

K3 90.03 80.16 89.41 82.96 84.65 78.84 0.87 0.81

K5 93.27 85.14 93.46 85.95 93.14 84.49 0.93 0.86

K10 96.75 89.01 94.23 92.23 97.59 88.87 0.97 0.91

*CV: Cross-validation protocol
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Appendix F: Scientific validation

Scientific validation is always an integrated component of the
system design. For validation, one needs to run another set of
liver data sets whose results are known a priori. Since such a
clinical data is hard to obtain, we use facial biometric data set to
test the classification accuracy. We do acknowledge Dr. Libor
Spacek of Department of Computer Science, University of
Essex for providing data on biometric facial dataset, namely
Face94 [42]. This dataset consisting of male and female faces
was experimented for validation using ELM/SVM.

Face94 data set We have conducted experiments to validate
our results using Face94 data set. The Face94 data set
consists 153 individual images with various expressions
and poses seated at a fixed distance from camera. There
are 2 classes, male and female and total number of
images are 2660, of which 2260 are male images and
400 are female images. A subset of images is given in
Fig. 10. Cross-validation protocol (K2, K3, K5 and K10)
is also performed to check generalization. The valida-
tion results are shown in Table 12. It is seen ELM gives
100% accuracy across all cross-validation protocols.
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