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Abstract Chronic kidney disease (CKD) has attracted con-
siderable attention in the public health domain in recent years.
Researchers have exerted considerable effort in attempting to
identify critical factors that may affect the deterioration of
CKD. In clinical practice, the physical conditions of CKD
patients are regularly recorded. The data of CKD patients are
recorded as a high-dimensional time-series. Therefore, how to
analyze these time-series data for identifying the factors af-
fecting CKD deterioration becomes an interesting topic. This
study aims at developing prediction models for stage 4 CKD
patients to determine whether their eGFR level decreased to
less than 15 ml/min/1.73m> (end-stage renal disease, ESRD) 6
months after collecting their final laboratory test information
by evaluating time-related features. A total of 463 CKD pa-
tients collected from January 2004 to December 2013 at one
of the biggest dialysis centers in southern Taiwan were includ-
ed in the experimental evaluation. We integrated the temporal
abstraction (TA) technique with data mining methods to de-
velop CKD progression prediction models. Specifically, the
TA technique was used to extract vital features (TA-related
features) from high-dimensional time-series data, after which
several data mining techniques, including C4.5, classification
and regression tree (CART), support vector machine, and
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adaptive boosting (AdaBoost), were applied to develop
CKD progression prediction models. The results revealed that
incorporating temporal information into the prediction models
increased the efficiency of the models. The AdaBoost+CART
model exhibited the most accurate prediction among the con-
structed models (Accuracy: 0.662, Sensitivity: 0.620,
Specificity: 0.704, and AUC: 0.715). A number of TA-
related features were found to be associated with the deterio-
ration of renal function. These features can provide further
clinical information to explain the progression of CKD. TA-
related features extracted by long-term tracking of changes in
laboratory test values can enable early diagnosis of ESRD.
The developed models using these features can facilitate med-
ical personnel in making clinical decisions to provide appro-
priate diagnoses and improved care quality to patients with
CKD.

Keywords Chronic kidney disease - Delay progression -
Time-series data - Temporal abstraction - Data mining

Introduction

Chronic kidney disease (CKD) is a disease in which patients
progressively lose kidney function. CKD has drawn consider-
able attention in the public health domain in recent years.
Approximately 10% of people worldwide suffer from this
disease [1]. CKD causes considerable morbidity and markedly
influences patients’ quality of life; therefore, health profes-
sionals worldwide are attempting to derive means of
preventing its occurrence [2, 3].

The early symptoms of CKD are typically nonspecific;
they are similar to those of many other diseases. CKD is often
not diagnosed until more serious symptoms such as edema
and hematuria occur [4]. When the kidney function drops to
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5% below normal, the body cannot maintain normal metabo-
lism and the patient enters end-stage renal disease (ESRD). To
maintain life and health, patients with ESRD need a regular
lifelong dialysis support or a kidney transplant [5, 6].

A report by the United States Renal Data System (2012)
revealed that the prevalence (2584 per million population) and
incidence (361 per million population) of ESRD in Taiwan are
among the highest in the world. According to the Taiwan
Society of Nephrology (2009), the number of people currently
undergoing regular treatment for ESRD in Taiwan is approx-
imately 60 000, with an increase of 8000 people each year [7].
In the United States, the treatment and management costs for
ESRD patients is nearly $26.8 billion, constituting 5.9% of all
medical expenses. ESRD consumes a considerable portion of
medical resources [8, 9].

Clinicians and researchers have exerted considerable effort
in attempting to identify critical factors that may prevent the
progression of CKD to ESRD [10]. However, the risk factors
leading to CKD deterioration are generally highly complex
and difficult to treat [4]. Previous studies have revealed that
aging, a family history of kidney diseases, the use of analge-
sics, low socioeconomic status, and an unhealthy lifestyle are
risk factors possibly resulting in the deterioration of kidney
function [11, 12]. In addition, the progression of CKD may be
expedited when patients have other chronic diseases (eg, hy-
pertension, diabetes, high cholesterol, or cardiovascular dis-
ease) [5, 13, 14]. Because numerous potential risk factors can
cause a decline in kidney function, addressing the question of
how to accurately predict CKD deterioration based on all pos-
sible risk factors is challenging. A highly reliable prediction
model can facilitate the prediction of the deterioration of pa-
tients with CKD, thus enabling medical staff to provide early
treatment to inhibit or prevent the disease from progressing to
a more severe stage (ie, ESRD).

In clinical practice, the physical conditions of patients with
CKD are regularly recorded and managed. At each regular
examination, medical personnel record detailed information
relevant to the physical status of a patient with CKD such as
biochemical blood test records, lifestyle and drug use habits,
and patient education records. This information is recorded
and stored in an electronic medical record (EMR) system
and can be used to assist medical staff when evaluating a
patient’s condition [15—18]. Until a hospital closes a case or
declares a patient with CKD deceased, the nephrology depart-
ment continues to track the patient’s status. Therefore, the
medical records accumulate in the EMR system over time,
resulting in high-dimensional time-series data.

Most studies have applied only cross-sectional data and sta-
tistical methods to construct prediction models of CKD pro-
gression. Although cross-sectional data are accurate predictors
in prediction models of CKD progression, information regard-
ing the variation of the variables over time is ignored. For
example, blood pressure (BP) can be measured several times
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during a specific period (ie, a patient’s BP can be recorded as
time-series data). One of the easiest methods of presenting BP
variations is through mean and standard deviation. However,
BP variations also carry essential information regarding a pa-
tient’s condition, and this information cannot be presented
through mean and standard deviation. These pieces of informa-
tion can reflect changes in the physical status of patients with
CKD, which may also be major factors for predicting CKD
progression. According to our review of the literature, no study
has considered detailed information regarding the variation of
the time-series data on the problem of predicting CKD deteri-
oration. Therefore, the question of how to extract time-related
features from high-dimensional time-series data has become a
major obstacle to the prediction of CKD progression.

In the current study, effective CKD progression prediction
models were developed by evaluating time-related features.
Specifically, two main tasks had to be accomplished. The first
task entailed extracting time-related features accurately
reflecting the variation of variables for the time-series data
of patients with CKD. The second task involved developing
models for predicting CKD progression based on multiple
machine learning techniques.

To extract features regarding the variations in the status of
patients with CKD, the temporal abstraction (TA) technique
was used to extract time-related variables from the EMRs of
patients with CKD. The TA framework is a knowledge-based
framework proposed by Shahar in 1997 [19]. TA can be used
to define different change types in time-series data, such as
trends, statuses, or other complex time-related attributes. By
incorporating the clinical knowledge of experts, users can de-
fine their own TA variables. The values of these variables can
be obtained by applying a series of data preprocessing tasks to
patients’ time-series data derived from the EMR system.

In this study, complete records of patients with CKD were
collected from the EMR system in dialysis centers in southern
Taiwan from January 2004 to December 2013. The data in-
cluded the patient’s basic information, medical history re-
cords, laboratory test records, and care and nutrition tracking
records. The variable selection and extraction were performed
by consulting the relevant literature and domain experts (ie,
nephrologists). Multiple supervised learning techniques were
used to develop the prediction models including C4.5, classi-
fication and regression tree (CART) [20], and support vector
machine (SVM) [21]. Adaptive boosting (AdaBoost) was also
used to improve the predictive performance of the models
[22]. The results show that the inclusion of TA-related vari-
ables enhances the performance of the prediction models.

The rest of this paper is organized as follows. In
“Background overview and literature review” section, we re-
view related works. Subsequently, we define the problem of
mining the records of patients with CKD and explain the de-
velopment of the models. Next, experimental results are pre-
sented. Finally, we present our conclusions.
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Background overview and literature review
Definition of CKD and its stages

The kidney, an essential organ for the body’s metabo-
lism, can be affected by various diseases or injuries
including chronic diseases, recurrent infections, and uri-
nary tract obstruction. CKD is characterized by a grad-
ual loss of kidney function; specifically, this disease
occurs when the kidney is damaged and unable to ap-
propriately maintain its original function [2] for more
than 3 months.

Early symptoms of CKD are generally difficult to
detect; these symptoms do not appear until kidney func-
tion drops 30% below normal. Currently, the most com-
monly applied standards are those announced by the
Kidney Disease Outcome Quality Initiative (K/DOQI),
which uses the glomerular filtration rate (GFR) to deter-
mine the severity of the progression of CKD [23].
Patients who have a GFR of less than 60 mL/min/
1.73 m2 for more than 3 months can be diagnosed with
CKD. Such patients might also exhibit other signs of
kidney damage including abnormal kidney ultrasound
or biopsy results. Clinicians can provide specific treat-
ment, such as offering psychological support and mental
adjustment, according to a patient’s detected stage.

Clinically, GFR cannot be determined through direct
measurement; it is typically diagnosed through laborato-
ry test indicators to determine an estimated GFR
(eGFR). Experts worldwide have developed various
equations for determining GFR, tailored to various countries
and races. Most experts use the Serum Creatinine (Scr) mea-
sure along with other clinical options such as age, gender, and
race. Modification of Diet in Renal Disease (MDRD), or the
revised MDRD-S, is the most commonly used method,
followed by the Cockcroft-Gault (CG) calculator. However,
several scholars have found that for people with a high GFR,
MDRD can cause systematic underestimation errors, resulting
in reduced accuracy. To increase the accuracy of GFR, Levery
et al. [24] developed a new GFR equation in 2009, called the
Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI). This equation can be effectively used to estimate normal
kidney function. Currently, the National Kidney Foundation
(NKF) in the United States has adopted the CKD-EPI
equation.

Although medical staff can evaluate the decline in
kidney function in patients by evaluating the eGFR,
they cannot further understand related information re-
garding the progression of CKD if only the eGFR is
clinically evaluated. Therefore, how to construct a reli-
able prediction model and identify CKD patients who
are at potential risk of deterioration has become an es-
sential question in medical research [8].

Factors and research affecting the progression of CKD

Studies have revealed that the factors leading to CKD progres-
sion are extremely complicated. According to the information
from Taiwan Society of Nephrology (2007), three causes of
dialysis exist: diabetes (43.2%), glomerulonephritis (25.1%),
and hypertension (8.3%). Controlling these top three factors is
critical.

Laboratory tests evaluate several items, such as eGFR, pro-
teinuria, calcium, phosphorus, sodium, and albumin (ALB),
which are used to create prediction models [25, 26]. Lorenzo
etal. [25] determined that proteinuria is a risk factor leading to
decreased renal function. Hallan et al. [26] revealed that gen-
der, low amounts of exercise, diabetes, a higher body mass
index (BMI) and waist circumference, high BP, the use of
antihypertensive medications in therapies, low high-density
lipoprotein cholesterol, triglycerides, and high blood sugar
are all risk factors considerably increasing disease progres-
sion. Othman et al. [27] reported that in multiple regression
analysis, changes in BMI and younger age were independent-
ly associated with the rate of decline in GFR. Go et al. [28]
showed that a decrease in GFR led to a deterioration of kidney
function in patients, which could increase the chance of
cardiovascular-related diseases, thus necessitating hospitaliza-
tion for treatment. In a previous study, indoxyl sulfate and p-
cresylsulfate were added according to the suggestion of Wu
and colleagues (2011) to provide further clinical information
for predicting the risk of kidney function deterioration in pa-
tients with CKD [29]. Perotte et al. [30] used a time-series
model (i.e., a variant of Kalman filter) to generate time-
related features from both laboratory test results and patient
notes. With the considerations to these features, the proposed
risk stratification model for CKD progression prediction out-
performs other baseline models.

Survival prediction models have been frequently used for
analysis when predicting the risk of CKD progression, with
two of the most common being the Kaplan—-Meier model and
the Cox model. However, these two prediction models are
based on incomplete information, implying that one can ob-
tain only limited information from the analysis results.

In this study, we mainly collected patients’ demographic
data, physical examination results, and information about
complications and personal habits as well as other relevant
information as study variables. Unlike considering only the
feature set generated by the data mining algorithm in Perotte
etal. [30], our approach was driven by the clinical experts; that
is, the clinical experts can define their own TA variables from
the time-series of each laboratory examination item.

Data mining in kidney research

In recent years, data mining (DM) has been used for analyzing
CKD, ESRD, and hemodialysis (HD) information as well as
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other related laboratory tests and clinical data [16, 31-33].
Chou et al. [34] proposed a method that entails incorporating
rough set theory (RST) into the analysis process for evaluating
and verifying a patient’s blood dialysis data. In this method,
RST is used for rule extraction from granulated data, and C4.5
and artificial neural networks (ANN) are subsequently used to
compare the accuracy of prediction models before and after
screening. The results revealed that the decision attribute of
the Kt/V ratio can help doctors reduce diagnosis time.

Altintas et al. [35] used the DM technique to find the risk
factors causing death in patients undergoing hemodialysis and
also examined the interaction styles of these factors. Yeh et al.
[6] combined the TA technique with a data mining model to
analyze laboratory test data from hemodialysis patients. In
addition to identifying the patterns of hospital stays as found
in past studies, they observed clinically significant timing
trends that had previously gone unnoticed. Belazzi et al. [36]
developed a hemostatic system through Matlab by using in-
formation, such as BP and duration of dialysis, of patients
subjected to dialysis treatments thrice a week. The results
indicated that the developed systems can significantly im-
prove the hemodialysis clearance rate, facilitated achieving
the right amount of dialysis for patients, and improved the
quality of dialysis care. The application of DM technology
in kidney-related research demonstrates the importance of
medically related data analysis and discussion with medical
experts in related fields and has facilitated the process of en-
suring the accuracy of the analysis results.

Temporal abstraction

TA focus on the extraction of qualitative aspects of time series
based on rules that are defined by clinical experts [19, 33]. TA
can be used to define different change types in time series
data, such as trends, statuses, or other complex time-related
attributes. Generally speaking, temporal abstraction can be
classified as basic TA and complex TA [36]. Basic TA is often
used to detect numerical or symbolic time series, and the ep-
isode found is presented through a qualitative approach [6,
36]. In particular, two types of TA were extracted: trend
TAs, which capture the increasing, decreasing, or stationary
patterns in a numerical time series, and state TAs, which detect
qualitative patterns corresponding to low, high, and normal
values in a numerical or symbolic time series. Complex TA
is used to analyze the temporal relationship between interval
series. The temporal relationships investigated correspond to
the 13 temporal operators [19], which include BEFORE,
FINISHES, OVERLAPS, MEETS, STARTS, DURING, their
corresponding inverse relations, and EQUALS. Recently,
several researches integrated TA with data mining tech-
niques to develop a decision support system to predict
hospitalization of hemodialysis (HD) patients in order to
reducing hospitalization rate [6, 19, 36].
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Method

The proposed CKD progression prediction models comprise
the following modules (Fig. 1): data processing and filtering,
TA, and classification modules.

Data collection and preprocessing

Data from 2066 patients with CKD were collected from
January 2004 to December 2013 at one of the biggest kidney
health center in a metropolitan hospital in southern Taiwan.
The center provides services such as CKD health education,
CKD case management and dialysis. The St. Martin De Porres
Hospital Institutional Review Board approved the study
protocol.

This study focused on finding TA-related variables to
predict the progression of CKD. In practice, collecting
the data from patients with CKD at the ecarly stages is
difficult because the symptoms regarding CKD normally
do not appear until patients have reached at least stage
3 or 4 CKD. Therefore, most of patients with CKD at
the early stages do not have routine body examinations
and to extract the values of TA-related variables from
these patients is infeasible.

Based on aforementioned reasons, the experimental data in
this study included only patients with stage 4 CKD and having
no dialysis treatment during 1-year study period (i.e., 538
patients). For each selected patients, one-year-long laboratory
data were collected after stage 4 CKD onset to determine the
values of TA-related variables. Because stage 4 CKD patients
usually have a routine body examination every 3 months, a 1-
year study period allows us to collect 4 body examination
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results for each patient. Patients with the number of body
examinations less than 4 were deleted from the experimental
data set. If the patients have more than 4 body examinations,
we only consider the first 4 results in generating the values of
TA-related variables. As a result, a total of 463 patients were
included in the experimental evaluation. Among them, 132
cases deteriorated to ESRD 6 months after the last date of their
one-year-long laboratory data and 331 cases remained at
stage 4.

The dependent variable represented whether patients with
stage 4 CKD exhibited signs of ESRD (ie, stage 5 CKD)
6 months after collecting their final laboratory test informa-
tion. According to the National Kidney Foundation, ESRD is
defined as the GFR decreases to less than 15 ml/min/1.73m?.
Because GFR cannot be determined by direct measurement
and clinicians usually adopt biochemical test indicators to de-
termine an estimated GFR (eGFR), this study determine CKD
stage based on eGFR.

Table 1 lists all the selected patient information. In the
EMR system, detailed information regarding each case, in-
cluding demographic data, drug use, history, habits, laboratory
tests, body checkup, and health education assessment, was
recorded. Categorical variables included items such as gender,
whether the patient smoked or used herbal medicine in med-
ical history, and health education. These variables were con-
stant over time and could be encoded directly. Continuous
variables were primarily the results, such as body checkup
and laboratory tests; the values of these variables were record-
ed each quarter year.

In addition, the clinicians determined the standard values of
every laboratory test item. It is because most of the laboratory
test values of CKD patients differ from those of a person
without CKD. The identification of abnormal laboratory test
values may be the important factors in determining the pro-
gression of CKD patients. In this study, two clinicians first
examined the descriptive statistics of the patients with stage
4 CKD. Specifically, the mean, and both the one and the two

standard deviations away from mean were considered as the
thresholds of laboratory test values. After that, both two clini-
cians manually checked each threshold and altered the value
according to their expertise.

Patients were divided into the following groups according
to age: young (19-30 y), young adult (3144 y), middle-aged
(45—64y), and elderly (older than 65 y). Most patients (333, or
71.92%) were aged 65 years or older. The elderly group
contained 162 (48.65%) men and 171 (51.35%) women. In
88 (19.01%) cases, patients had taken traditional herbal med-
icine before; moreover, 25 cases (5.40%) had high cholesterol,
84 (18.14%) smoked, 34 (7.34%) drank, and 5 (1.08%)
chewed betel nut.

TA module

Figure 2 illustrates the TA variables conversion process flow.
First, the kidney and DM experts cooperatively defined the
TA rules. After the data processing step, the variables were
converted into TA format according to TA rules. Specifically,
the patients’ laboratory data were inputted into both the basic
and complex TA algorithms to retrieve the values of TA var-
iables. Finally, the records containing TA variables were
stored in a database.

TA mechanisms can extract various types of changes, in-
cluding state and trend, from time-series data. During this
step, we consulted with kidney experts to verify the patient’s
laboratory test record and define the TA rules. We used two
categories of TA variables: basic TA and complex TA vari-
ables [19, 36].

Basic TA variables can be identified from numerical or
symbolic time-series. In particular, two types of TA variables
were extracted: state TA variables, which detect qualitative
patterns corresponding to low, high, and normal values in a
numerical or symbolic time-series, and trend TA variables,
which capture the increasing, decreasing, or stationary pat-
terns in a numerical time-series.

Table 1 The selected variables

for CKD patients Categoty Variable Type
Demographic Gender Categorical
Age Numerical

Drug use Chinese herbs, Analgesics Categorical

History Diabetes, Hypertension, Cardiovascular disease, High Categorical
cholesterol, Anemia, Gout

Habit Smoke, Alcohol, Betel quid chewing, Exercise Categorical

Laboratory Creatinine, BUN, HB, Hct, WBC, RBC, Ca, P, Na, K, Cl, Numerical
Mg, Uric Acid, Cholesterol, Triglyceride, Albumin, iPTH,
Total Protein, Sugar [AC], Urine Protein, HDL-Cholesterol,
LDL-Cholesterol, Fe, Ferritin, ACRatio, Ca x P

Body checkup Height, Weight, Waist, Hips, Systolic pressure (SBP), Diastolic ~ Numerical
pressure (DBP)

Health education assessment ~ Health education, Cognitive appraisal, Behavior appraisal Categorical
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Each laboratory test item generated state TA variables ac-
cording to the TA rules. However, the numbers for each type
of test item differed. The laboratory test items in the TA rules
are defined in Table 2. A total of seven possible types of status
exist: extremely high (XH), high (H), higher than normal
(N/H), normal (N), lower than normal (N/L), low (L), and
extremely low (XL). For example, based on the threshold
value in Table 2, the seven state TAs of Creatinine are XH
(Creatinine >14.98), H (14.98 > Creatinine >12.94), N
(12.94 > Creatinine >10.91), N/H (10.91 > Creatinine
>8.87), N/L (8.87 > Creatinine >6.84), L (6.84 > Creatinine
>4.81), and XL (Creatinine <4.81); the five state TAs of ALB
are H (ALB >6.97), N/H (6.97 > ALB >5.77), N (5.77 > ALB
>4.57), N/L (4.57 > ALB >2.17), and L (ALB <2.17).

To retrieve the value of a state TA variable, the average
value of a laboratory test item at two adjacent time points need
to be calculated and then mapped into the TA rules in Table 2.
Trend TA variables were defined by checking the trend of the
values between two adjacent time points (quarter year). The
types of trend TA were divided into S (steady), I (increasing),
and D (decreasing). Combing both the state and trend TA
finally yields the value of the basic TA variable.

For example, Table 3 shows the examination data for ALB
for each quarter-year. The average of ALB for seasons 1 and 2
is 5.54; therefore, the state TA of ALB for season 1-2 is N.
Similarly, the average of ALB for season 2-3 is 4.24, indicat-
ing that the state TA of ALB for seasons 2—3 is N/L. In addi-
tion, because the ALB values of season 1-2 is 4.83 (N) and
6.25 (N/H), respectively, the value of the ALB from season 1
to season 2 is increasing (N — N/H), that is, the trend TA of
ALB for season 1-2 is I. Therefore, the basic TA of ALB for
season 1-2 is N-I.

@ Springer

Complex TA variable is used to analyze the temporal rela-
tionship between two adjacent basic TA variables. The com-
plex TA was derived through basic TA information for every
test item by using a time calculation approach. The symbol >
was also used in the current study to connect two basic TA
values and then combine them to determine the complex TA.
For example, in Table 3, because the basic TAs of ALB for
seasons 1-2, 2-3, and 3—4 are N-I, N/L-D, and L-D, respec-
tively, three complex TAs can be obtained: N-I > N/L-D,
N-I > L-D, and N/L-D > L-D.

Classification techniques

We adopted several common supervised learning techniques,
including C4.5, CART, and SVM, to construct the prediction
models [20, 21]. In addition, AdaBoost, proposed by Freund
and Schapire [22], was integrated to enhance the prediction
performance of the proposed models. AdaBoost can self-
adjust the prediction models during the calculation process,
thereby reducing the classification error rate by updating the
weights of samples. AdaBoost combines multiple learning
algorithms to construct a strong classifier with high accuracy,
thereby improving the classification effectiveness [37-39].

Experimental evaluation
Evaluation design and performance measurement

We used Weka open-source machine learning software
(www.cs.waikato.ac.nz/ml/weka/) to construct the prediction
models based on C4.5, CART, and SVM. AdaBoost was
further used to enhance effectiveness of the prediction models.
The data set containing the records of patients with CKD
was imbalanced. Specifically, 132 cases deteriorated to ESRD
6 months later (Y) and 331 cases remained at stage 4 (N) in the
experimental data set. We resampled the data set to avoid the
class imbalance problem. A total of 132 cases from the 331
patients with stage 4 CKD were randomly selected and inte-
grated with all 132 ESRD patients into one balanced data set
(ie, the ratio of Y/N is 1:1). In addition, certain useful cases in
the patients with stage 4 CKD may not have been selected
during the resampling process, resulting in the loss of valuable
information for classification. Therefore, a random resampling
technique was applied 30 times to construct 30 data sets.
This study used creatinine as the baseline model.
Specifically, creatinine model included the newest creatinine
value in one-year-long laboratory data, age, and gender at
stage 4 CKD onset, as independent variables. To determine
whether the consideration of TA modules improved the accu-
racy of the prediction models, two experimental data sets, with
and without the TA module, were generated for further com-
parison. We used 10-fold cross validation to verify the
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Table 2  Threshold values of biochemical test items for TA transformation

Item Unit Number of threshold ~ Threshold values

Creatinine mg/dl 6 14.98(XH) 12.94(H) 10.91(N/H) 8.87(N/L) 6.84(L) 4.81(XL)
BUN mg/dl 6 48.20(XH) 44.41(H) 42.51(N/H) 34.91(N/L) 33.02(L) 29.22(XL)
HB g/dl 6 16.99(XH) 14.47(H) 13.22(N/H) 8.19(N/L) 6.93(L) 4.42(XL)
Hct % 6 38.32(XH) 35.85(H) 34.61(N/H) 29.65(N/L) 28.42(L) 25.94(XL)
WBC x1000/ul 6 13.17(XH) 11.67(H) 10.17(N/H) 4.16(N/L) 2.66(L) 1.16(XL)
RBC x1000/ul 6 11.48(XH) 10.18(H) 8.87(N/H) 6.26(N/L) 495(L) 2.34(XL)
Ca mg/dl 6 14.29(XH) 12.11(H) 11.02(N/H) 6.65(N/L) 5.56(L) 3.38(XL)

P mg/dl 4 8.06(H) 6.77(N/H) 1.64(N/L) 0.35(L)

Na meq/l 6 143.89(XH)  141.78(H) 139.67(N/H)  135.44(N/L) 133.33(L) 131.21(XL)
K mg/dl 6 9.11(XH) 7.90(H) 6.69(N/H) 5.48(N/L) 3.06(L) 1.86(XL)
Uric_Acid (M) mg/dl 6 12.66(XH) 11.34(H) 10.01(N/H) 4.72(N/L) 3.39(L) 2.07(XL)
Uric_Acid (F) mg/dl 6 12.30(XH) 10.98(H) 9.66(N/H) 4.40(N/L) 3.08(L) 1.76(XL)
Cholesterol mg/dl 6 180.40(XH)  177.81(H) 176.51(N/H)  171.33(N/L)  170.04(L) 167.45(XL)
Triglyceride mg/dl 6 136.90(XH)  133.31(H) 131.52(N/H)  124.34(N/L) 122.54(L) 118.96(XL)
ALB gm/dl 5 6.97(H) 5.77(N/H) 4.57(N/L) 2.17(L)

Urine Protein mg/dl 2 79.52(N/H) 64.09(N/L)

iPTH pg/ml 2 87.21(N/H) 76.33(N/L)

Total Protein mg/dl 2 9.00(N/H) 4.22(N/L)

Sugar mg/dl 6 134.86(XH)  131.98(H) 130.54(N/H)  124.79(N/L)  123.35(L) 120.48(XL)
Fe pg/dl 6 76.60(XH) 73.41(H) 71.81(N/H) 65.41(N/L) 63.82(L) 60.62(XL)
Ferritin ng/dl 2 229.40(N/H)  219.30(N/L)

HDL_Cholesterol  mg/dl 6 48.88(XH) 45.94(H) 44.46(N/H) 38.57(N/L) 37.10(L) 34.15(XL)
LDL Cholesterol  mg/dl 6 99.68(XH) 96.76(H) 95.30(N/H) 89.46(N/L) 88.00(L) 85.09(XL)
ACRatio pg/mg 2 109.46(N/H)  56.20(N/L)

CaxP mg"2/dI"2 6 43.67(XH) 41.13(H) 39.85(N/H) 34.76(N/L) 33.49(L) 30.94(XL)
BMI kg/m™2 5 35(S0) 30(MDO) 27(MIO) 24(0W) 18.5(UW)

SBP mmHg 5 180(XH) 160(VH) 140(H) 120(N/H) 90(L)

DBP mmHg 5 110(XH) 100(VH) 90(H) 80(N/H) 60(L)

reliability of the proposed prediction models. The predictive
performance was measured by evaluating the accuracy, sensi-
tivity, specificity, and the area under the curve (AUC) of the
receiver operating characteristic curves of each classification

model [40].

Table 3 Example of TA

transformation

Assume that CKD7p represents the number of patients who
entered ESRD and are accurately identified as ESRD patients;
CKD7y represents the number of patients who did not enter
ESRD and are accurately identified as stage 4 CKD patients;
CKDpgp represents the number of patients who did not enter

Season 1 Season 2 Season 3 Season 4
Albumin (ALB) ALB_1: 4.83 (N) ALB_2:6.25 (N/H) ALB_3:2.23 (N/L) ALB 4:1.2 (L)
Avg. value of two 5.54 (N) 424 (N/L) 1.715 (L)
adjacent items
State TA N N/L L
Trend TA I (N — N/H) D (N/H — N/L) D(NL — L)
Basic TA ALB_BasicTA_12: N-1
ALB BasicTA 23: N/L-D
ALB BasicTA 34: L-D
Complex TA ALB_ComplexTA 1: N-I > N/L-D

ALB_ComplexTA _2: N-1>L-D
ALB ComplexTA 3: N/L-D > L-D
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ESRD but are inaccurately identified as ESRD patients;
CKDry represents the number of patients who entered
ESRD but are inaccurately identified as stage 4 CKD patients.
The definitions are formulated as follows:

CKDyp

CKDsensitivity = , 1

Sensitviy = (CKDyp + CKDpy ) (1)
CKDyy

CKDsecificivy = . 2

Spectficly ™ (CKDyy + CKDpp) 2)

The predictive ability of each model was evaluated by cal-
culating the AUC. In general, if the predictive accuracy of the
proposed model is perfect, its AUC is nearly 1. If the AUC is
between 0.8 and 0.9, then the model has high predictive accu-
racy. If its AUC is between 0.7 and 0.8, then the proposed
model is acceptable. We compared the pros and cons of each
prediction model according to accuracy, sensitivity, specifici-
ty, and AUC and then selected the most appropriate model for
predicting the course of disease progression in patients with
CKD.

Results

Table 4 lists the experimental results. Here, we report only the
mean and standard deviation of the results of the 30 generated
data sets to simplify the explanation. Regarding the single
classifiers, the CART model demonstrated the highest AUC,
followed by SVM; C4.5 registered the lowest AUC. The AUC
of the CART model was between 0.6 and 0.7, indicating that
an acceptable predictive ability. After the integration of

AdaBoost, the AUC and specificity of the CART model were
still the highest among the classifiers. However, SVM had the
highest accuracy and C4.5 demonstrated the highest sensitiv-
ity. After the integration of AdaBoost, the predictive power of
CART improved significantly. The CART model exhibited
the highest performance among all single classifiers, and the
integration of AdaBoost significantly enhanced the perfor-
mance of this model. Overall, the CART model integrated
with AdaBoost (AdaBoost + CART) demonstrated the most
accurate prediction regarding the deterioration of patients with
CKD. In addition, considering TA-related features in the con-
structions of CART and SVM classifiers (both in single clas-
sifier form and in the integration with AdaBoost) increased the
prediction performance, which indicates that TA-related fea-
tures greatly affect the deterioration of CKD. In addition, we
further compared the prediction performance between the best
proposed model (i.e., AdaBoost + CART techniques with
considerations of TA-related features) and the baseline model.
As shown in Table 3, the results showed that our model out-
perform the creatinine model. The AUC of the creatinine
model is close to 0.5, meaning that its prediction ability is
almost similar to random guessing.

We adopted four feature selection modules provided by
WEKA to determine the factors influencing the deterioration
of CKD. Specifically, the average of the rank results obtained
from Gini, ChiSquared, InfoGain, and GainRatio modules
were used to rank the importance of factors. The top 25 factors
found in this study are summarized in Table 6.

According to the assessment results, gender was the most
critical factor affecting the deterioration of CKD among the
first 25 variables that exerted the greatest impact. Age was
also a major factor at stage 3. Gender and aging are related

Table 4 Evaluation results of the

prediction models (Mean + std. dev.) C4.5 CART SVM

With TA Single Accuracy 0.500 £0.015 0.606 + 0.041 0.652 +0.037
Sensitivity 0.738 +0.100 0.603 + 0.052 0.614 &+ 0.042

Specificity 0.250 + 0.084 0.619 £ 0.063 0.692 + 0.047

AUC 0.490 £ 0.075 0.653 £0.033 0.652 +0.037

Adaboost Accuracy 0.502 +£0.018 0.662 + 0.031 0.667 +0.035

Sensitivity 0.742 £0.105 0.620 +0.038 0.630 + 0.037

Specificity 0.261 £0.119 0.704 + 0.036 0.700 + 0.041

AUC 0.495 £ 0.062 0.715+£0.035 0.707 £ 0.036

Without TA Single Accuracy 0.563 +0.032 0.604 + 0.036 0.634 +0.037
Sensitivity 0.555+0.103 0.574 +0.057 0.606 £ 0.039

Specificity 0.571 £0.110 0.636 +0.052 0.662 £ 0.044

AUC 0.580 = 0.043 0.635+0.038 0.634 £ 0.037

Adaboost Accuracy 0.601 +0.037 0.657 +0.030 0.643 +0.032

Sensitivity 0.584 +£0.043 0.608 + 0.041 0.600 + 0.039

Specificity 0.618 +0.054 0.706 + 0.034 0.687 £ 0.043

AUC 0.642 +0.039 0.705 £ 0.036 0.672 +0.031
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Table 5 Evaluation results of the

proposed and the baseline models Method Accuracy Sensitivity Specificity AUC
using AdaBoost + CART (mean + std. dev.)  (mean + std. dev.)  (mean +std. dev.)  (mean = std. dev.)
technique
With TA 0.662 +0.031 0.620 +£0.038 0.704 £0.036 0.715 £0.035
Creatinine (baseline) 0.500 +0.032 0.482 +0.064 0.518 £0.085 0.502 £0.031

to a decline in kidney function [25, 26, 29, 41-44]. For the
CKD patients, the variables exerting the greatest impact are
consistent with those reported in previous studies, indicating
that renal function [3, 26, 45, 46], BP [25, 26], and blood Hct
[47, 48], are all vital indicators.

According to the Taiwan Society of Nephrology’s Dialysis
Information (2007), diabetes (43.2%), glomerulonephritis
(25.1%), and hypertension (8.3%) are the main reasons for
patients eventually requiring dialysis. This report illustrated
the importance of controlling hyperglycemia, hyperlipidemia,
and hypertension in preventing CKD. This is consistent with
the features we have found in Table 6.

This study found that kidney function-related factors have
considerable impact on CKD progression. In clinical examina-
tions of patients with CKD, two evaluation indices, Scr and

Table 6 Average

Results of the Rank Variables
importance of study
variables obtained from 1 Gender
Gini, ChiSquared, 2 Ser 4
InfoGain, and GainRatio 3 Diabetes
modules )
4 Age (in years)
5 BUN 4
6 BUN_BasicTA_34
7 Hct 4
8 Betel Nut
9 Het 3
10 Scr 3
11 cognitive assessment
12 BUN_BasicTA_23
13 BUN 3
14 Hypertension
15 Hyperlipidemia
16 BUN_ComplexTA_3
17 Current drinking
18 SBP_ComplexTA 1
19 Hct_BasicTA_34
20 Heart disease
21 Current smoking
22 BMI_BasicTA_23
23 SBP_3
24 SBP_ComplexTA_3
25 BUN_ComplexTA_1

Bold font indicates TA-related variables

blood urea nitrogen (BUN), are periodically tested. Calculating
the patients’ eGFR through the Scr can provide a clearer un-
derstanding of the disease progression and deterioration.
Recording changes in kidney function over a long period can
facilitate the process of determining the severity and progres-
sion of CKD (eg, Scr 4, BUN 4, BUN Basic 34, Scr 3,
BUN Basic 23, BUN 3, BUN Complex 1). We also found
factors related to chronic disease or lifestyle oriented including
diabetes, hypertension, high cholesterol, cardiovascular dis-
ease, chewing betel nut, drinking, and smoking. Previous stud-
ies have also indicated that a significant correlation exists be-
tween gout and a decline in kidney function, rendering it a
potential risk factor for the progression of the disease [49, 50].

Most of the relevant Hct factors have time information
variables. Showing changes in Hct by recording it over a long
period can identify the severity and progression of the disease.
Previous studies have proven that anemia may also exacerbate
the symptoms of kidney disease [51-53]. Het, HB, and other
indicators have also been reported to be correlated with the
progression of CKD [47, 48]. The experimental result showed
that the cognitive assessment value was also essential.
Strengthening patient’s awareness of CKD through measures
such as health education, lifestyle changes, diet, and dialysis
can improve the condition of patients and their quality of life
[10, 54, 55]. Therefore, health education should be included as
a reference factor when determining CKD progression.

Discussion

Patients with stage 4 CKD have a low understanding of their
disease status, indicating that medical institutions must en-
hance patient care and improve health education at each stage
[10, 54, 55]. Patients should reach a certain level of awareness
and proactively improve their self-care, which can help them
to control the disease and mitigate the deterioration of kidney
function. Such health education can be provided to a patient or
someone close to said patient, such as a spouse, child, relative,
or friend. Educational courses regarding diet, medication, reg-
ular exercise, and dialysis treatment can also be arranged. At
the fourth stage, most patients begin dialysis treatment, and a
kidney transplant will be required if no attention is paid to the
disease progression.

Because the CART model exhibited the highest perfor-
mance among all prediction models, we consulted with ex-
perts and identified the meaningful rules from the CART mod-
el. Tables 7 shows the occurrences and accuracy rate of each
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Table 7 Clinically meaningful rules for the progression of CKD to ESRD

No Rules Occurrence Accuracy

1. Age = (elderly) AND BUN_ComplexTA 3 = (XH-D > XH-I)] (N-S > N-S)| (N-D > N-I)| (H-S > H-S))| 5 93%
(H-D > N-D)| (N-I > N/H-S)| (XL-S > L-I) AND Hct 4 = (Normal) AND BMI_4 = (Normal)

2. Age = (elderly) AND BUN_ComplexTA 3 = (XH-D > XH-I)| (N-S > N-S)| (N-D > N-I)| (H-S > H-S)| 9 86%
(H-D > N-D)| (N-I > N/H-S)| (XL-S > L-I) AND Albumin 4 = (Normal) AND Diabetes = YES

3. Age = (elderly) AND BUN_ComplexTA 3 = (XH-D > XH-I)|(N-S > N-S)|(N-D > N-I)|(H-S > H-S)| 8 84%
(H-D > N-D)|(N-I > N/H-S)|(XL-S > L-I) AND Regular exercise = NO AND Smoking = YES

4. Age = (elderly) AND BUN_ComplexTA 3 = (XH-D > XH-I)|(N-S > N-S)|(N-D > N-I)|(H-S > H-S)| 2 100%
(H-D > N-D)|(N-I > N/H-S)|(XL-S > L-I) AND Regular exercise = NO AND Diabetes = YES AND
Hypertension = YES

5. Age = (elderly) AND BUN_ComplexTA 3 = (XH-D > XH-)|(N-S > N-8)|(N-D > N-I)|(H-S > H-S)| 13 89%
(H-D > N-D)|(N-I > N/H-S)|(XL-S > L-I) AND Regular exercise = NO AND Diabetes = YES AND
Hypertension = YES

6. Age = (elderly) AND BUN_ComplexTA 3 = (XH-D > XH-I)|(N-S > N-S)|(N-D > N-I)|(H-S > H-S)| 11 100%
(H-D > N-D)|(N-I > N/H-S)|(XL-S > L-I) AND Regular exercise = NO AND BUN BasicTA
23 = (XH-D)|(XH-I)

. Age = (elderly) AND Heart disease = YES AND CKD awareness = (total, partial) 3 75%
8. Age = (elderly) AND Heart disease = YES AND CKD awareness = (total) AND Smoking = YES 100%

rule. These rules can be divided into IF and THEN categories.
Each rule results in the progression of stage 4 CKD patients to
the ESRD after 6 months. As shown in Table 7, the TA-related
variables exert a major effect; almost every major rule con-
tains complex TA patterns, implying that long-term tracking
of changes in laboratory test values can enable early diagnosis
and facilitate the process of mitigating the deterioration of
CKD.

Rules 1-6 show that for elderly patients with stage 4 CKD,
no deterioration in BUN indicators occurs among the labora-
tory tests. However, if the patient has a poor lifestyle, does not
exercise, smokes, or has complications or other illnesses such
as heart disease or diabetes, deterioration to ESRD occurs
casily.

Conclusion

CKD has become a major concern and has attracted the atten-
tion of experts in the public health domain. To determine the
progression of CKD, several studies have established predic-
tion models to discover the potential factors affecting patient
deterioration. Therefore, how to construct a reliable prediction
model; identify patients that have potential risks of deteriorat-
ing to ESRD; and execute early detection, prevention, and
disposal are critical topics in medical research.

This study proposes effective CKD progression prediction
models that involve considering time-related features. The
aim of this study was to establish a reliable prediction model
for patients at different stages of CKD to enable medical per-
sonnel to understand and forecast the progression of CKD
symptoms. This study also demonstrates that time-related fea-
tures are clinically meaningful and can be used to mitigate the
deterioration of CKD.

@ Springer

According to the experimental results, the accuracy of the
prediction models can be improved effectively when integrat-
ed with the TA module. The prediction model established
using the AdaBoost + CART model has a higher prediction
efficiency compared with the other models. To determine the
relevant factors that inhibit the deterioration of CKD in pa-
tients, this study evaluated the importance of the variables.
Factors that may affect the progression of the disease are gen-
der, age, other chronic diseases (ie, diabetes, hypertension,
high cholesterol, cardiovascular disease), renal function (Scr,
BUN), BP, blood (Hct), BMI, and health education (aware-
ness evaluation); These factors have already been proven to
correlate with the deterioration of renal function in past stud-
ies. In addition, the time-related features detected through
consultation with the clinical experts can provide deeper
knowledge to explain the progression of CKD.

According to the experimental results, we can create novel
decision support systems to help medical personnel to under-
stand the patient status in the future. Moreover, to prevent
deterioration to the next stage after 6 months, doctors and
health education staff can gather additional information re-
garding the variations in the status of CKD patients for devel-
oping a more appropriate treatment program.

This study has several limitations. The experimental data
collected the records from a single hospital in southern
Taiwan. Only one-year-long laboratory data (i.e., 4 times a
year) were considered in developing prediction models.
Therefore, the generalizability of the results to other CKD
patients from different regions or countries is limited. Future
studies should consider expanding sample size for confirming
the validity of the model, such as including clinical cases from
other hospitals in experimental evaluations. In addition, this
study considered only a few relevant variables to construct
CKD progression prediction models, but the proposed models
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obtain fair prediction accuracy only. In practice, the factors
affecting CKD deterioration are extremely complex; there-
fore, to improve the prediction accuracy, we suggest that fu-
ture studies could analyze other potential factors. Possibilities
include environmental factors, education level, socioeconom-
ic status, diet, medication, nutrition assessment projects, and
geographic region.
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