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Abstract In order to assist the diagnosis procedure of heart
sound signals, this paper presents a new automated method for
classifying the heart status using a rule-based classification tree
into normal and three abnormal cases; namely the aortic valve
stenosis, aortic insufficient, and ventricular septum defect. The
developed method includes three main steps as follows. First,
one cycle of the heart sound signals is automatically detected
and segmented based on time properties of the heart signals.
Second, the segmented cycle is preprocessed with the discrete
wavelet transform and then largest Lyapunov exponents are cal-
culated to generate the dynamical features of heart sound time
series. Finally, a rule-based classification tree is fed by these
Lyapunov exponents to give the final decision of the heart health
status. The developed method has been tested successfully on
twenty-two datasets of normal heart sounds and murmurs with
success rate of 95.5%. The resulting error can be easily corrected
bymodifying the classification rules; consequently, the accuracy
of automated heart sounds diagnosis is further improved.
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Introduction

Heart diseases including valve disorders are still one of main
leading causes of death. The cardiac auscultation can be used
for early detection of abnormal function of the heart before
recommending other diagnosis modalities. It is the technique
of interpreting heart sounds, which result from electromechan-
ical activity of the cardiac muscle during each heartbeat such
as the atrioventricular (AV) valves closure and opening events
[1].

Heart valves produce low frequency transient signals in
case of normal heart sounds. For pathological cardiac sounds
or murmurs [2], they result of turbulence in blood flow
through stenosis or regurgitation through the cardiac valves.
High-frequency noise-like sounds present heart murmurs [3].
In this study, we investigated normal heart sounds and three
different cases of the heart abnormalities; namely the aortic
valve stenosis (AS), aortic insufficient (AI), and ventricular
septum defect (VSD).

Stethoscopes are the standard aid to acquire and hear the
heart sounds [2]. However, the cardiologist needs extensive
training and practical experience with good hearing ability to
perform the auscultation technique successfully. Although
electronic stethoscopes have been developed to overcome
the drawbacks of traditional stethoscopes, but they sometimes
need a professional adjustment to make clearly all portions of
the heart signal audible. To avoid these complications of using
stethoscopes, the phonocardiography is alternatively used for
displaying the sounds produced by the heart in a graphical
form similar to the electrocardiograms [4]. Therefore, the
heart diseases can be visually appeared in the corresponding
phonocardiogram (PCG) signals.

Non-stationary property and large variations of PCG sig-
nals make visual accurate diagnosis of the heart status a diffi-
cult task [5]. Hence, employing digital signal processing
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methods to automatically analyze PCG signals can ease and
assist the diagnosis procedure of the heart status. Features
extraction and classification are two major steps of PCG rec-
ognition algorithms [6]. In previous studies, characterized fea-
tures of the PCG signals could be extracted based on signal
transformation methods either in frequency or time-frequency
domains such as Fourier transform, short time Fourier trans-
form (STFT) [7], and wavelet transform [8].

The wavelet transform provides time-varying monitoring
window of adjustable sizes for slow frequencies and narrow
enough for tracking rapidly changing ranges. Various intelli-
gent systems have been developed to classify heart sound
abnormalities for symptom detection and computer-aided di-
agnosis, such that the wavelet transforms were applied for
segmentation and feature extraction with supervised neural
networks for classification of the PCG signals [6, 8]. But the
coefficients of wavelet transform as representation of heart
signal features are still limited, because they don’t provide
information about the underlying nonlinear signal dynamics
[9]. In this study, Lyapunov exponents of chaotic bio-signal
time series [10] are integrated with discrete wavelet transform
(DWT), in order to determine dynamical measures of PCG
signals as useful parameters for clinically recognizing heart
murmurs.

Multilayer perceptron (MLP) Neural networks and support
vector machines (SVMs) have been widely used in many pre-
vious studies for classifying PCG signals [3, 5, 11]. These
classifiers must be initially trained well by all possible heart
sounds and murmurs data to give correct classification results.
Practically, it is not available to have a standard data collection
of PCG signals; consequently, supervised classifiers suffer
from the lack of sufficient training PCG datasets, affecting
the classification accuracy. On the other hand, advanced hard-
ware resources with long time, e.g. several days, may be need-
ed to perform the successful training initialization of super-
vised classifiers.

In order to avoid the drawbacks of classifier training phase,
this study presents a rule-based classification tree (RCT) for
unsupervised classification of PCG signals into normal, AS,
AI, and VSD based on both the experts’ rules and PCG fea-
tures extracted from Lyapunov exponents. The RCT model
provides Bif-then^ rules which can easily read and interpret
similar to the personal diagnosis procedure by physicians in
medical applications [12].

Materials and methods

Datasets

Twenty-two sets of heart sounds and murmurs data have been
used in this study. The datasets are taken from a public data-
base produced by the CliniSurf, Faculty of Medicine,

University of Bern, Switzerland. They include 3 sets for nor-
mal healthy heart and 19 sets represent three cases of heart
abnormalities, which divided into 4, 10, and 5 datasets for AS,
AI, and VSD, respectively. Each dataset contains about 15
heartbeat cycles with a sample rate of 44.1 kHz.

Segmentation of heartbeat cycles

Automatic segmentation of one heartbeat cycle is the first step
of the heart sound signals analysis and diagnosis procedure.
Some previous studies used the electro-cardiogram (ECG)
recordings to assist in segmenting the heart sounds [1].
However, the corresponding synchronized ECGs are not
available all the time with the PCG collections data as present-
ed in this study.

Spectral analysis was successfully used to separate the
heart sound signals into individual cycles, such that the orig-
inal signal is down sampled by a factor of four to give the
maximum power of the first and second heart sounds (S1 and
S2) in each cycle using Daubechies four and five-coefficients
(DUB4 and 5) wavelet, respectively [13]. Heart sounds were
also segmented based on cycle frequency and dynamic clus-
tering in time-frequency domains [14].

To avoid the complexity of segmenting PCG signals based
on signal decomposition and reconstruction using time-
frequency analysis, this study used a simple and effective
algorithm to segment the heart sounds into cycles in time
domain only [15, 16]. As one heart beat is characterized by
four temporal states S1, systolic phase, S2, and diastolic
phase; the dataset will be divided into segments each contains
these four phases. From a previous study, it has been found
that the maximum duration of S1 and S2 is within 150 ms
[16], so a maximum value within 150 ms ranges is considered
as a peak. Using the sampling frequency of the PCG datasets,
that is equivalent to about 6000 samples. In addition, Shannon
Energy technique [17] has been adopted where the energy of
the heart sound signal has been calculated to attenuate the
effect of low noise and maximize the S1 and S2 sounds.

The segmentation procedure can be summarized in the fol-
lowing steps:

& Calculate and normalize Shannon Energy of the dataset
using Eq. 1.

Shannon Energy ¼ −x2 � logx2 ð1Þ

& Detect all the peaks within a predefined threshold of the
max value. In this paper, any threshold between 40% to
90% of the maximum value has been tested successfully.

& Detect only the significant peaks of S1 and S2. A maxi-
mum value of an overshoot within 150 ms range is con-
sidered as a peak and its location was registered. Other
peaks within this range are rejected.
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& Using the peak locations and the length of the whole
dataset; determine the average cycle length and the num-
ber of cycles.

& Divide the dataset into cycles using the determined aver-
age length.

The segmentation technique resulted in individual cycles
that contain the four phases of the heartbeat. Moreover, the
spectral characteristics of the resulted cycles were estimated
using welch method and compared to that of the whole dataset
to ensure the consistency of the segmentation procedure. No

significant differences have been found between the spectrum
of one heart sound cycle and that of the whole dataset.

Preprocessing of heart sounds using DWT

The DWT can be viewed as a constant filter bank with octave
spacing between the centers of the filters such that the wavelet
transform decomposes a discrete signal, x[n], into two sub-
signals of half its length.

The DUB4wavelet [18] is used here to preprocess the PCG
recordings, because it is the most accurate type of wavelets to

Table 1 Normalized Lyapunov exponents of all tested heart sounds datasets

Dataset Lyapunov Exponents

Normal #1 0.5569 0.3416 0.4177 0.4009 0.4933 1.0000 0.5061 0.5412 0.3966 0.9574

Normal #2 0.5881 0.3729 0.3688 0.2775 0.6262 1.0000 0.5141 0.4357 0.5612 0.855

Normal #3 0.3845 0.3714 0.3784 0.3576 1.0000 0.5253 0.3620 0.4040 0.7319 0.3998

VSD #1 0.3304 0.2475 0.2879 0.2742 0.8077 0.9409 1.0000 0.9875 0.8471 0.6966

VSD #2 0.4069 0.3810 0.3350 0.3492 0.6609 0.8873 1.0000 0.9575 0.9009 0.8633

VSD #3 0.3755 0.3364 0.3079 0.3480 0.8146 1.0000 0.9441 0.9834 0.8057 0.3561

VSD #4 0.9269 1.0000 0.9434 0.8635 0.3306 0.3837 0.8707 0.9280 0.8887 0.9664

VSD #5 0.5294 0.4824 0.4295 0.3442 0.4187 1.0000 0.9450 0.8996 0.9421 0.9536

AS #1 0.3412 0.3518 0.7273 1.0000 0.9882 0.7868 0.7013 0.2520 0.3528 0.2971

AS #2 0.3583 0.3228 0.3386 0.8778 0.7897 0.6009 0.2754 1.0000 0.4619 0.3692

AS #3 0.2880 0.2235 0.7319 1.0000 0.8429 0.4156 0.7585 0.2509 0.3514 0.1245

AS #4 0.2922 0.2946 0.8779 0.9468 1.0000 0.6326 0.8124 0.2659 0.3170 0.3229

AI #1 0.6256 0.6038 0.5602 0.8714 0.9218 0.9922 0.8056 0.6380 0.6136 1.0000

AI #2 0.5389 0.7525 0.4595 0.4493 0.5706 0.8145 0.9994 1.0000 0.9164 0.9674

AI #3 0.5835 1.0000 0.6176 0.7162 0.5516 0.9259 0.8413 0.9295 0.8335 0.7565

AI #4 0.6127 0.6873 0.3883 0.3428 0.3815 0.7528 1.0000 0.9513 0.9636 0.9288

AI #5 0.5327 0.6978 0.3987 0.4252 0.3933 0.6395 0.9244 1.0000 0.9929 0.7894

AI #6 0.6399 1.0000 0.5357 0.7095 0.5745 0.9948 0.6677 0.6374 0.7071 0.5672

AI #7 0.5340 0.9481 0.5269 0.6671 0.5029 1.0000 0.8218 0.7132 0.7388 0.7188

AI #8 0.5684 0.9239 0.5132 0.5833 0.5809 1.0000 0.6909 0.6547 0.5857 0.4876

AI #9 0.5038 1.0000 0.4087 0.6366 0.5275 0.9502 0.7156 0.7033 0.5431 0.4844

AI #10 0.5690 0.8032 0.5640 0.5695 0.5043 0.7910 0.8463 1.0000 0.8804 0.7843

Fig. 1 Developed rule-based
classification tree for automated
diagnosis of phonocardiogram
signals into normal (N), aortic
stenosis (AS), ventricular septum
defect (VSD), and aortic
insufficient (AI)
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accomplish this task, as demonstrated by previous studies
[19–21]. The third level of approximation of the heart sounds
was selected to represent the tested datasets without losing the

main features of original signals. Moreover, this approxima-
tion of the heart signals is smooth and noise free because of the
wavelet filtering.
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Fig. 2 Automatic segmentation results of PCG datasets: a Normal heart, b VSD, c AS, and d AI. The first row represents the original PCG dataset, the
second row is the normalized energy of the heart signals, third row is the peak locations and last row is the segmented PCG cycle

Fig. 3 Comparison between real
and detected heart beat cycles for
all tested PCG datasets, with an
error in the dataset of VSD #4
only
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Features generation using lyapunov exponents

Calculating the largest Lyapunov exponent is the common test
for chaos in data time series if it has a positive value [9]. The
Lyapunov exponent is a statistical measure of divergence be-
tween two orbits starting with slightly different initial condi-
tions. Assuming d0 and dn are initial divergence between two
trajectories and divergence between These orbits after n steps,
respectively, the value of largest Lyapunov exponent, λ, can
be calculated by

λ ¼ lim
n→∞

1

n
ln
d0
dn

ð2Þ

In this study, ten largest Lyapunov exponents were calcu-
lated and normalized from the observed time series of PCG
signals by dividing each preprocessed dataset into ten equal
regions with d0 less than 10−5. A summary of the resulted
Lyapunov exponents for all tested PCG dataset is illustrated
in Table 1. The bold values of Lyapunov exponents indicate
the distinguishable features of each category of all tested PCG
datasets and used to construct the rules of the developed clas-
sification tree, as presented in the following section.

Building the RCT model of the heart health status

Tree models such as classification and regression trees (CART)
have been widely used for predictive modeling and data mining
[22]. The basic idea of a classification tree is to construct a
binary decision tree sequentially by using splitting if-then rules
based on variables to partition the data in such a way to reduce
the conditional variation in response to these variables. Many
algorithms have been proposed in the literature to automate
growing the classification tree with the training data, e.g. diag-
nosing heart sounds [23]. However, in this study we developed

a non-learning static RCT model using the largest Lyapunov
exponents to directly decide the health status of the heart. The
position and value of each Lyapunov exponent (LPE) are used
to derive the following splitting rules, in order to give the cor-
rect output of RCT if the heart has either normal healthy con-
dition or a specific disease, as shown in Fig. 1:

Rule 1: If LPE #2 ≥ 0.6 then the heart disorder is AI, else
Rule 2: If LPE #2 & #3& #4& # 8 ≤ 0.5 then the heart is
normal (N), else
Rule 3: If LPE #9 < 0.5 then the heart disorder is AS, else
Rule 4: If LPE #9 ≥ 0.5 then the heart disorder is VSD,
else the heart disorder is undefined.

Results and validation

Successful segmentation of four different datasets of the PCG
signals into single heartbeat cycles are shown in Fig. 2. The
original heart signals, corresponding normalized energy and
final segmented cycle of the heart sounds are depicted for each
PCG dataset. Fig. 3 shows a comparison between detected and
real heartbeat cycles of all tested datasets, in order to evaluate
the accuracy of the segmentation algorithm. All tested datasets
have about fifteen cycles (or peaks). An error occurred only in
dataset of VSD #4, because the expected time length of one
heartbeat was long to show two heart cycles of this special
VSD case. The cycles in the rest of PCG datasets are however
correctly detected, achieving a success rate of 95.5%.

Cross validation was used to evaluate the performance of
the developed RCT of PCG signals. It results in a confusion
matrix with four possible outcomes; namely true positive
(TP), false negative (FN), true negative (TN), and false posi-
tive (FP) [11, 24]. Table 2 illustrates classification results of all
tested PCG datasets using the developed RCT. The dataset of
VSD #4 is only misclassified due to the overlapped rule of
recognizing the AS heart disorder, as depicted above in Fig. 1.
Therefore, the developed RCT has been manually adjusted to
overcome this misclassification error by adding new splitting
rule (dashed line) as shown in Fig. 4.

Evaluation results of the developed PCG classification meth-
od is presented in Table 3. Measured classification performance
of VSD and AI heart disorders showed accuracy of 95.45%
because of one misclassified VSD dataset, but accurate results
of 100% are validated for both tested normal and AS datasets.

Table 2 Classification results of all tested PCG signals

PCG Classifier results

Target classification
of the PCG signals

Normal VSD AS AI

Normal 3

VSD 4 1

AS 4

AI 10

Table 3 Evaluation results of the
developed PCG classifier TP FP TN FN Sensitivity (%) Specificity (%) Accuracy (%)

Normal 3 0 19 0 100% 100% 100%

VSD 4 0 17 1 80% 100% 95.45%

AS 4 0 18 0 100% 100% 100%

AI 10 1 11 0 100% 91.67% 95.45%
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Discussion

Validation of our developed method for automated diagnosis
of PCG signals demonstrated the effectiveness and flexibility
of both Lyapunov exponents to identify the important features
of chaotic heart sounds and the unsupervised RCT to classify
different heart disorders successfully.

Figure 3 shows the segmentation error of one heartbeat
cycle in the dataset VSD #4, which has been manually
corrected to continue the workflow of PCG classification
method. However, automatic segmentation of PCG signals
into heartbeat cycles was accurate for 21 of 22 tested datasets
based on time-domain properties of the heart sounds, i.e. am-
plitude and distance thresholds.

The advantages of RCTs are exploited in this study to em-
ploy unsupervised classification of the PCG signals based on
Lyapunov exponents. As illustrated in Tables 2 and 3, classifi-
cation and evaluation results of the developed PCG classifier
showed robust performance to assist the diagnosis procedure of
the heart health status accurately. The misclassified error was
only appeared in the dataset VSD #4, and it has been easily
fixed by modifying the splitting rules, as depicted in Fig. 4.

Deriving if-then rules of the developed RCT presents the
critical step to achieve correct classification results. It may
require continuous updating because of increasing the total
number of PCG datasets, or adding other heart diseases, or
any unexpected error, as illustrated in Table 2. Therefore, au-
tomating this step using optimization methods can be investi-
gated in the future work. Nevertheless, the performance of our
developed classification method of PCG signals is still supe-
rior to the other classification methods, which depend mainly
on the success of the training phase.

Conclusions

A new automated diagnosis method of PCG signals has been
developed to classify different clinical cases of the heart health

status. The developed diagnosis method is mainly based on
normalized Lyapunov exponents and the RCT. Compared to
the previous studies, our classification method is unsuper-
vised, and can successfully cover large variations of twenty-
two PCG datasets, without the need for any training data.
Additionally, real-time application of automated heart sounds
and murmurs diagnosis in the clinical field is an important
prospect of this study.
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