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Abstract B-Mode ultrasound images are degraded by
inherent noise called Speckle, which creates a considerable
impact on image quality. This noise reduces the accuracy
of image analysis and interpretation. Therefore, reduc-
tion of speckle noise is an essential task which improves
the accuracy of the clinical diagnostics. In this paper,
a Multi-directional perfect-reconstruction (PR) filter bank
is proposed based on 2-D eigenfilter approach. The pro-
posed method used for the design of two-dimensional (2-D)
two-channel linear-phase FIR perfect-reconstruction filter
bank. In this method, the fan shaped, diamond shaped and
checkerboard shaped filters are designed. The quadratic
measure of the error function between the passband and
stopband of the filter has been used an objective function.
First, the low-pass analysis filter is designed and then the PR
condition has been expressed as a set of linear constraints on
the corresponding synthesis low-pass filter. Subsequently,
the corresponding synthesis filter is designed using the
eigenfilter design method with linear constraints. The newly
designed 2-D filters are used in translation invariant pyrami-
dal directional filter bank (TIPDFB) for reduction of speckle
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noise in ultrasound images. The proposed 2-D filters give
better symmetry, regularity and frequency selectivity of the
filters in comparison to existing design methods. The pro-
posed method is validated on synthetic and real ultrasound
data which ensures improvement in the quality of ultra-
sound images and efficiently suppresses the speckle noise
compared to existing methods.
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Introduction

In recent years, ultrasound imaging is widely used tool by
a radiologist for medical diagnosis and treatment of various
diseases. The ultrasound images are corrupted by speckle
noise in its acquisition and transmission. This noise causes
the poor image quality which is the major drawback of the
ultrasound imaging. Speckle noise occurred in an ultrasound
image by the constructive and destructive interferences from
backscattered ultrasound waves. Speckle noise is modelled
as the multiplicative noise. The noise appears in a granular
pattern which makes it difficult to visually or automat-
ically interpret the image data and reduces the efficacy
of clinical diagnostics [1]. Therefore, speckle suppression
is a critical preprocessing step and plays a vital role in
ultrasound imaging. Speckle reduction improves the clini-
cal diagnosis mainly in two applications: enhancement of
edges and auto-segmentation improvements [1, 2]. Since the
speckle noise diminishes the quality of ultrasound images,
it is important to preserve the edges of relevant tissue
information and textural information while removing the
speckle. A number of algorithms have been proposed over
a period to resolve the problem of speckle noise. Some of
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the classical filters are the Lee filter [3], Frost filter [4],
Kaun filter [5] and maximum a posteriori filter (MAP) [6].
However, these approaches do not assume any character-
istics of the speckle and hence leads to remove important
structural details of the tissues. Some of the improved meth-
ods attempted to overcome the problem of poor definition
of edges such as speckle reducing anisotropic diffusion
(SRAD) [7] and improved detail preserving anisotropic dif-
fusion filter (DPAD) [8]. This method involves an edge
sensitive anisotropic diffusion process. Similarly, advanced
SRAD (OSRAD) [9] method has been proposed which uses
the directional filtering using diffusion matrix to preserve
the boundaries of the ultrasound image. However, these
approaches still have the limitation of removing the struc-
tural details such as small lesions and small tissue structures
of the tiny cyst. Recently, nonlocal means methods such
as optimized Bayesian nonlocal means (OBNLM) [10]
reported for speckle noise denoising, however, this method
assumes a local region of homogeneity which may cause
the enhancement of speckle noise in those regions. More
recently proposed Anisotropic diffusion filter with mem-
ory based on the statistic of speckle content improved the
denoising results, but, algorithms suffer from the computa-
tional burden. With the above facts, the problems in existing
ultrasound image filtering approaches are summarized as:
1) the relevant structural information of the different tissues
in the ultrasound image is not accurately characterized. 2)
although the edges are preserved by diffusion approaches,
diffusion filters suffers from over filtering which causes loss
of information.

In consideration of these issues, this paper presents a
novel Multi-Directional Perfect Reconstruction Filter bank
based on 2-D eigenfilter approach. In this method, 2-D PR
directional filters are designed with eigenfilter approach.
The proposed method suppresses the speckle efficiently
while preserving the structural tissue information of ultra-
sound image. This noise reduction occurs due to its multi-
scale multi directional decomposition scheme used with
proposed 2-D directional filters.

In advanced medical computing and imaging devices, the
two-dimensional (2-D) FIR filter banks (FBs) are widely
used due to its important factor i.e. directionality. Direc-
tionality feature in transform efficiently handles the singu-
larities present in 2-D signals. The 2-D FBs possess excel-
lent phase characteristics and low coefficient sensitivity.
Although 2-D filter bank designs are more complex as com-
pared to 1-D FBs, it provides more flexibility in the design
and gives better performance. The conventional mean max
design approaches give the smallest length filters for a
given specification [11]. In these algorithms, it is difficult
to incorporate both time and frequency domain constraints.
These algorithms require linear programming technique
which demands large memory space and considerable time.

However, proposed eigenfilter approach is based on the
computation of an eigenvector of a appropriate real, sym-
metric, and positive definite matrix, which is numerically
efficient [11]. Moreover the advantage of the eigenfilter
approach is that we can add linear constraints easily and
requires simple computation [12, 13]. In this method, the
objective is to design 2-D filters by minimizing the error
between desired frequency response and frequency response
of the 2-D filter to be designed. Many design techniques
have been developed for the design of 2-D filters in the lit-
erature [11, 14–18]. Some of these design techniques are
based on window function methods, McClellan transforma-
tion methods and optimization techniques [15]. However,
the limitation of these methods is that PR condition can-
not be preserved for the resultant multidimensional filter
bank [19].

Linear phase of the FBs is desirable in the medical
image processing applications. To have a linear phase in
2-D FBs, the 2-D filter impulse response needs to be centro-
symmetric [20]. This is obtained by using non-separable
sampling in the filter bank called as quincunx subsampling.
The quincunx subsampling in a 2-D two channel PR filter
bank design is of particular importance. It results in the ideal
subbands that are a diamond in shape. The Diamond shape
filters preserve significant amount of horizontal and vertical
information in the subbands, but it rejects most of the high
diagonal frequencies. Human visual system is less sensitive
to diagonal high spatial frequencies compared to horizontal
and vertical high spatial frequencies. In such applications
diamond shape filters are useful. However, fan-shaped fil-
ters with directional sensitivity are necessary in practice and
have been used to process geoseismic data [21]. Various
methods for the design of two channel quincunx filter bank
have been presented in [22, 23]. Recently, design meth-
ods of 1-D and 2-D filter designs have been appeared in
[12, 13, 24–27]. However, these methods are restricted on
only diamond shaped 2-D filter designs. The 2-D wavelet
based denoising for general images are proposed in [28,
29]. The bilateral filtering and stationary wavelet transform
based approaches are found in the literature which is used
for the ultrasound liver and mammography image denois-
ing [30, 31]. There is no directional filter bank technique in
the literature which is specifically used for medical images.
However these directional filters are used for denoising of
some medical images. These filters can be used for other
imaging applications also.

In this paper, a Multi-Directional Perfect Reconstruction
filter bank using Translation Invariant Pyramidal Direc-
tional Filter bank (TIPDFB) is proposed to reduce the
speckle noise more effectively. The 2-D directional filters
used in the TIPDFB [32] are designed by proposed eigen-
filter approach which ensures the linear phase and perfect
reconstruction properties of the filter bank. In this design,
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we considered fan shaped, diamond shaped and checker-
board shaped filters which are important in the directional
filter banks. We first design 2-D low-pass analysis fil-
ter by using eigenfilter formulation [27]. Then from the
designed low-pass analysis filter, we impose linear con-
straints on the corresponding synthesis low-pass filter to
achieve the perfect reconstruction condition and the corre-
sponding synthesis low-pass filter is designed. The design
ensures that the obtained filters satisfy the perfect recon-
struction criteria and have better performance measures over
existing 2-D filters. Moreover, the proposed denoising tech-
nique suppresses the speckle efficiently while preserving its
directional information in the ultrasound images.

The paper is organized as follows. Section “Proposed
method” provides a brief about proposed TIPDFB method
and eigenfilter approach to the design of 2-D two channel
linear phase perfect reconstruction FBs. The experimen-
tal results on ultrasound image denoising are discussed and
compared in Section “Experimental results and discussion”
with existing methods. The conclusion is given in Section
“Conclusion”.

Proposed method

To simplify the exposition, the architecture TIPDFB and
its tree structure for directional filter bank implementation
is discussed first. Then we discuss the proposed design
method for 2-D directional filters using 2-D eigenfilter
approach with few design examples.

Translation invariant pyramidal directional filter bank
and its implementation structure

Directionality is an important factor in effective image
representation. This is achieved by using directional fil-
ter banks which are unique in their ability to break down
a multi-dimensional signal into directional subbands with
higher angular resolution. The conventional 2-D DFB were

first introduced by Bamberger and Smith in [33], which
is implemented by l-level tree-structured decomposition
which leads to 2l subbands of wedge shape frequency
partitioning as shown in Fig. 1a. This method has a dis-
advantage that low frequency band gets divided into all
subbands. This paper uses the Translation invariant pyrami-
dal directional filter bank (TIPDFB) which is also related to
translation invariant contourlet transform. The key idea is to
divide frequency plane into several parts which corresponds
to specific frequency direction. This gives more accurate
directional subbands with low-pass and high-pass frequency
partitioning as shown in Fig. 1b. The low-pass subbands
gives coarse approximation information whereas high pass
subbands gives the directional information of the image.
The proposed ultrasound image denoising architecture is
shown in Fig. 2. The ultrasound speckle noise is modeled as
a multiplicative noise [34]. This multiplicative noise is dif-
ficult to remove than the additive noise. The speckle noise
model for an ultrasound image can be approximated as

g(x, y) = f (x, y)ηm(x, y) + ηa(x, y) (1)

Where, g(x, y) is the noisy recorded ultrasound image of
spatial locations (x, y), f (x, y) is the noise free image,
ηm(x, y) represent the multiplicative speckle noise and
ηa(x, y) is the additive noise. The effect of additive noise
is insignificantly small compared with the multiplicative
noise and hence it is discarded. Therefore above equation
becomes

g(x, y) ≈ f (x, y)ηm(x, y) (2)

The logarithmic transformation is used before TIPDFB for
converting multiplicative speckle noise into additive noise.
This is defined as below.

log g(x, y) = log f (x, y) + log ηm(x, y) (3)

The TIPDFB is then applied on log g(x, y).
The TIPDFB transform mainly consists of two stages:

a Laplacian Pyramid (LP) decomposition [35] and direc-
tional filter bank (DFB) decomposition [28] as shown in

Fig. 1 Frequency Partitions (a)
Bamberger and Smith’s Method
(b) Proposed TIPDFB

a b
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Fig. 2 General Structure for
Speckle Reduction using
TIPDFB

Fig. 2. Laplacian pyramid decomposes the ultrasound image
into approximation information and radial bandpass sub-
bands with different directional information. Then DFB is
applied to each radial bandpass subbands where maximum
fine structural details of the ultrasound image for a num-
ber of directions are extracted and preserved [28]. Speckle
content is high frequency component due to which it lies in
the high frequency subbands. Therefore all the directional
subbands are thresholded with estimated threshold value to
suppress the speckle noise. Translation invariant transform
is necessary for image denoising application which avoids
the errors sensitive to the positions of discontinuities in the
image.

The DFB in second step can be implemented by using
tree structure decomposition as shown in Fig. 3. This
tree structure gives the frequency partitioning as shown in
Fig. 1b. The 2-D two-channel PR directional filters used
in this structure are designed by proposed 2-D eigenfilter

approach given in next subsection. The PR property means
that if there is no error in the filter bank, the reconstructed
signal at the output is same as the input signal. Because the
2-D filters used at each stage of tree structure filter banks
are PR filters and the entire filter bank is PR filter bank.
The subband images of DFB are decimated by following
sub-sampling matrices

Q0 =
[
1 −1
1 1

]
Q1 =

[
1 1

−1 1

]
R0 =

[
1 1
0 1

]

R1 =
[
1 −1
0 1

]
R2 =

[
1 0

−1 1

]
R3 =

[
1 0
1 1

] (4)

After getting detail directional subbands, we apply hard
thresholding to each subband and we reconstruct the thresh-
olded subbands to achieve the speckle reduced denoised
image. The optimal threshold value is estimated using
Baye’s shrinkage rule [36].

Fig. 3 Tree structure directional
filterbank decomposition
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Background of 2-D two-channel linear phase FIR PR
filter bank

A typical 2-D two channel PR filter bank with quincunx
sampling is shown in Fig. 4.

The filters H0(z1, z2) and H1(z1, z2) represent the anal-
ysis low-pass and high-pass filters, respectively. Similarly,
F0(z1, z2) and F1(z1, z2) denote synthesis filters. In the
quincunx sampling, the points on n1 + n2 = even quin-
cunx sublattice are unmodified while points which are not
on n1 + n2 = odd sublattice are set to zero. That means,
half of the samples are discarded effectively. The perfect
reconstruction (PR) condition of the filter bank can be
expressed as

H0(z1, z2)F0(z1, z2)−H0(−z1,−z2)F0(−z1,−z2) = 2z−l1
1 z

−l2
2
(5)

where l1 and l2 are delays.

H0(z1, z2)F0(z1, z2) − H0(−z1, −z2)F0(−z1, −z2) = 0

(6)

If we choose high-pass filters as

F0(z1, z2) = H1(−z1, −z2) and

F1(z1, z2) = −H0(−z1, −z2)

Equation 6 satisfies. Therefore from Eq. 5 product filter
P(z1, z2) can be defined as

P(z1, z2) = H0(z1, z2)F0(z1, z2) (7)

which gives

P(z1, z2) − P(−z1, −z2) = 2z−l1
1 z

−l2
2 . (8)

Hence, the design objective of a PR filter bank can be
problem of designing P(z1, z2).

Eigen filter approach to design 2-D two-channel PR
filter banks

Design of analysis 2-D lowpass filter

This section presents the eigenfilter approach to design of
2-D low-pass analysis filter. In this approach, objective is to

Fig. 4 Two channel filter bank with perfect reconstruction

minimize the quadratic measure of error function between
the passband and stopband of the filter in 2-D frequency
domain. This can be formulated as

E = αEp + βEs (9)

where

Ep =
∫∫

passband

[HD(w1, w2) − H0(w1, w2)]
2 dw1dw2

Es =
∫∫

stopband

[H0(w1, w2)]
2 dw1dw2.

where, HD(w1, w2) is the desired frequency response,
H0(w1, w2) is the actual frequency response of 2-D filter
and α, β are weighting constants which control the relative
accuracies of the approximation in passband and stopband,
respectively. Main focus is to minimise the error function
which is written in the form of E = aT Ja where a is real
vector and J is the real, symmetric and positive definite
matrix. The intention is to find real vector a whose elements
belongs to the 2-D filter impulse response h0[n1, n2].

Consider a quadrantal symmetric 2-D FIR filter with
center of symmetry at origin

h0[n1, n2], −N1 < n1 < N1, and N2 < n2 < N2

The frequency response for quadrantal symmetric filter can
be expressed as

H0(w1, w2) =
N1−1

2∑
n1=0

N2−1
2∑

n2=0

a(n1, n2) cos(n1w1) cos(n2w2)

(10)

where H0(w1, w2) is actual frequency response and
a(n1, n2) is related to filter impulse response h0[n1, n2] as
below

a(0, 0) = h0[0, 0] for n1 = 0, n2 = 0

a(n1, 0) = 2h0[n1, 0] for n1 = 1 : N1 − 1

a(0, n2) = 2h0[0, n2] for n2 = 1 : N2 − 1 (11)

a(n1, n2) = 4h0[n1, n2] for n1 = 1 : N1 − 1, n2 = 1 : N2 − 1

Let, N1 = N2 = N & Defining column vectors a and
ĉ(w1, w2) as

a= [a(0, 0), a(0, 1), . . . , a(0, N2) | a(1, 0), a(1, 1), . . . , a(1, N2) |
· · · | a(N1, 0), a(N1, 1), . . . , a(N1, N2)]T

(12)



31 Page 6 of 13 J Med Syst (2017) 41: 31

ĉ(w1, w2) = [1, cos(w2), . . . , cos((N2 − 1)w2) |
cos(w1), cos(w1).cos(w2), . . . , cos(w1).

cos((N2 − 1)w2) |
cos((N1 − 1)w1, cos((N1 − 1)w1).cos(w2), . . . ,

cos((N1 − 1)w1)cos((N2 − 1)w2)]
T (13)

The frequency response for the filter H0(w1, w2) can be
written as

H0(w1, w2) = aT .ĉ(w1, w2) (14)

With this, the passband error and stopband error can be
expressed as Ep = aT Jpa and Es = aT J sa, with

Jp =
∫∫

passband

[ĉ(ωref )−ĉ(w1, w2)[ĉ(ωref ) − ĉ(w1, w2)]T dw1dw2

and

J s =
∫∫

stopband

[ĉ(w1, w2)][ĉ(w1, w2)]T dw1dw2

where ωref is the reference frequency point in the passband
region. Hence, the total error to be minimized in the Eq. 9
can be rewritten as

E = αEp + βEs = aT Ja, where J = αJp + βJ s . (15)

Here, J is the real, symmetric and positive definite matrix.
According to Rayleigh principle [37], the eigenvector cor-
responding to minimum eigenvalue of J gives minimum E.
Therefore, the analysis low-pass filter coefficients obtained
from the elements of the eigenvector corresponding to
minimum eigenvalue of J yield minimum passband and
stopband error.

Design of synthesis 2-D low pass filter

The coefficient of polynomial H0(z1, z2) are elements of
eigenvector of J (as in Eq. 15) corresponding to minimum
eigenvalue. We can obtain the coefficients of polynomial
F0(z1, z2) using Eq. 8 and the coefficient of polynomial
P(z1, z2).

Assume that h0(n1, n2) and f0(n1, n2) are the zero phase
filters with square region of support of the size [P,Q], P

& Q are the lengths of filter on n1 & n2 axes respectively.
Hence h0(n1, n2) and f0(n1, n2) can be expressed as

h0[n1, n2] = non-zero for − P ≤ n1, n2 ≤ P

f0[n1, n2] = non-zero for Q ≤ n1, n2 ≤ Q.

Note that, p[n1, n2] is the 2-D convolution of h0[n1, n2]
and f0[n1, n2] as given below

p[n1, n2] =
Q∑

k1=−Q

Q∑
k2=−Q

f0[k1, k2].(h0[n1 − k1, n2 − k2]),

for − (P + Q) ≤ n1, n2 ≤ (P + Q). (16)

Since f0[n1, n2] is zero phase, f0[n1, n2] =
f0[−n1, −n2]. For zero phase filter with centro-symmetry
the independent coefficients of f0[n1, n2] are
(

f0[0, n2], 0 ≤ n2 ≤ Q

f0[n1, n2], 1 ≤ n1 ≤ Q, −Q ≤ n2 ≤ Q

)
.

(17)

Hence, f0[n1, n2] has 2Q2 + 2Q + 1 number of indepen-
dent coefficients. Therefore, Eq. 16 can be rewritten using
independent coefficients of f0[n1, n2] as follows:

p[n1, n2] = f0[0, 0].h0[n1, n2]

+
Q∑

k2=1

f0[0, k2].(h0[n1, n2−k2] + h0[n1, n2 + k2])

+
Q∑

k1=1

Q∑
k2=−Q

f0[k1, k2]. (18)

×(h0[n1 − k1, n2 − k2] + h0[n1 + k1, n2 + k2])
for − (P + Q) ≤ n1, n2 ≤ (P + Q).

Note that, h0[n1, n2] and f0[n1, n2] are zero phase, which
follows that p0[n1, n2] is also zero-phase (i.e. p0[n1, n2] =
p0[−n1, −n2]) and set of independent coefficients are( {n1 = 0, 0 ≤ n2 ≤ N}
1 ≤ n1 ≤ N, N ≤ n2 ≤ N

)
, where N = P + Q. (19)

From Eq. 5 for perfect reconstruction, it is required that

p[n1, n2] = 1 for n1 = n2 = 0

p[n1, n2] = 0 for

[
n1
n2

]
= Q1

[
m1

m2

]

m1, m2 are integers and n1, n2 �= 0. (20)

This states that p[n1, n2] = 0 for all the points on quincunx
sublattice: LAT(M)), i.e. for n1 + n2 = even locations.

Let NL denote the number of locations (n1, n2), where
p[n1, n2] = 0. Then, we have

NL = N − 1

2
+

⌊
N.(2N + 1))

2

⌋
, when N = odd integer

NL = N

2
+ N.(2N + 1)

2
, when N = even integer
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a b
Fig. 5 Frequency responses of 2-D Diamond shaped FBs

Thus, from Eqs. 18 and 20, we can solve NL + 1 equa-
tions for 2Q2 + 2Q + 1 unknowns, which are independent
coefficients of f0[n1, n2].

Now, we impose linear constraints in the form of Cf = d
[12]. By arranging the independent coefficients f0[n1, n2]
in vector f, Eq. 20 can be rewritten as

Cf = [1 0 · · · 0]T . (21)

Where C is matrix of size (NL + 1) × (2Q2 + 2Q + 1)
which is obtained from Eq. 18, f is a vector of unknown
coefficients of f0[n1, n2] of size (2Q2 + 2Q + 1) × 1 and
d = [1 0 · · · 0]T . Equation 21 has multiple solutions and
we want one optimal solution. So, we rewrite constraints as
follows

Ĉf = 0 (22)

where, the matrix Ĉ = C − d.ĉ
t
(ω0)

HD(ω0)
[12]. All the vec-

tors which satisfy the constraints (22) can be expressed as
f = Ub, where, the columns ofU form an orthonormal basis
for the null space of the matrix Ĉ and b is any real vector
of appropriate length. We used singular value decomposi-
tion (SVD) to find the orthonormal basis for the null space
of matrix Ĉ. Our aim is to minimize fTJf under a constraint
(22), which can be expressed as E = bTUTJUb. Hence,

the optimal solution b of this simplified problem is the
eigenvector of the matrix UTJU corresponding to minimum
eigenvalue. Finally, the desired optimal solution f is equal
to Ub whose elements are the coefficients of the synthesis
low-pass filter f0[n1, n2].

To design 2-D Diamond shaped analysis low-pass fil-
ter h0(n1, n2), we consider, wp1, wp2 and ws1, ws2 which
describe the passband and stopband cutoff frequencies in
the w1 and w2 axes. With filter size N1 = N2 = 29,
wp1 = wp2 = 0.4π , ws1=ws1 = 0.6π , α = β = 0.5 and
ωref = (0, 0). For this h0(n1, n2), we design correspond-
ing synthesis filter f0(n1, n2) with Q=35. The frequency
response H0(w1, w2) and F0(w1, w2) are shown in Fig. 5a.
and b. respectively.

Design of 2-D fan shaped FBs

The fan shaped filters can be obtained by transforming the
rows of the diamond shape filters by e−jπ , that means the
fan shaped FBs can be designed by interchanging the sign of
the diamond shape FB in row or column direction. Hence,

H
f

0 (w1, w2) = H0(w1 + π,w2) (23)

F
f

0 (w1, w2) = F0(w1 + π,w2) (24)

a b

Fig. 6 Frequency responses of 2-D Fan shaped FBs
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a b

Fig. 7 Frequency responses of 2-D checkerboard shaped FBs

We design 2-D fan shaped analysis filter h0(n1, n2) in which
ws stopband cutoff frequency, with filter size N1 = N2 =
23, ws = 0.16π , α = β = 0.5. From designed low-pass
analysis filter h0(n1, n2), we design corresponding synthe-
sis low-pass filter f0(n1, n2) with Q=35. The frequency
response H

f

0 (w1, w2) and F
f

0 (w1, w2) are shown in Fig. 6a
and b respectively.

Where, H
f

0 (w1, w2) and F
f

0 (w1, w2) are analysis low-
pass and synthesis low-pass filters of the Fan shaped filter
banks respectively.

Design of 2-D checkerboard shaped FBs

Down-sampling of fan shape filters H
f

0 (w1, w2) and

F
f

0 (w1, w2) by quincunx sampling matrix yields the
checkerboard shaped filters.

Hc
0 (z1, z2) = H

f

0 (z1z2, z1z
−1
2 ) (25)

Fc
0 (z1, z2) = F

f

0 (z1z2, z1z
−1
2 ) (26)

For the design of checkerboard filters, we use the same
specifications as fan shaped filters. The frequency response
of analysis low-pass Hc

0 (w1, w2) and synthesis low-pass
Fc
0 (w1, w2) filters are shown in Fig. 7a and b respectively.

Experimental results and discussion

To solve the issue of speckle noise in ultrasound image, the
Multi-Directional Perfect Reconstruction (PR) Filter Banks
have been proposed using 2-D eigenfilter design. We have
computed following important properties of the designed 2-
D filters and compared them with existing filters as below,

1. Symmetry: Symmetry can be used to measure the near-
orthogonality of filters. In this paper, we use ‖H0 −
F0‖2 as measure for symmetry.

2. Regularity: Regularity is one of the important properties
of a wavelet FBs. The Regularity of the proposed filters
can be computed by measuring the sobelov index. [37].

3. Energy of the Error: The Energy of error is also known
as frequency selectivity. It is a measure of the energy of
error between designed normalized 2-D low-pass filter
and the ideal filter. Total energy of the error is defined as

E =
∫ 2π

0

∫ 2π

0
| D(w1, w2) − H(w1, w2) |2 dw1dw2

The results have been presented in Table 1. It is observed
that the proposed 2-D filters designed by 2-D eigenfilter
method provide better symmetry, good regularity and lower
energy of the error which leads to the better frequency

Table 1 Properties measure of
the proposed 2-D filters Type of filter Method Energy of the error Symmetry Regularity

Diamond (29x29) Eslami’s Method [38] 1.3434e+06 1.1062 0.0814

Yue Lu Method [29] 3.0497e+05 1.5931 0.0055

Proposed method 6.2447e+04 0.1110 0.1180

Fan (23x23) Eslami’s Method [38] 10.0611e+05 1.1062 0.0608

THFB [39] 1.3434e+06 1.5931 −0.18616

Proposed method 4.6191e+04 0.1595 0.06107

Checkerboard (23x23) Eslami’s Method [38] 2.4596e+05 0.89462 0.05185

THFB [39] 8.3711e+06 1.53469 −0.19078

Proposed Method 1.5401e+05 0.15007 0.06611
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selectivity of the filters as compared to other design meth-
ods and hence gives better result in denoising of speckled
images. These filters are then used in a multi-directional
perfect reconstruction filter bank. In the proposed approach,
TIPDFB separates directional information of the ultrasound
image which is relevant to the clinical features into differ-
ent directional subbands. Noise generally contained in the
detail subbands, therefore, we threshold the detail subbands
to suppress the speckle content present and reconstruct the

original image. We obtained hard thresholding using Bayes’
shrinkage rule. This threshold is capable of preserving
structural information of the ultrasound image.

To evaluate the performance of proposed method, we
performed several experiments on synthetic images and
real ultrasound images. The performance of the proposed
method is compared with existing speckle reduction meth-
ods such as SRAD [7], OBNLM [10], and ADMSS [40].
Figure 8a shows a synthetic image of kidney phantom in

Fig. 8 Denoising result on
kidney phantom (a) Original
Image (b) Speckled noisy
phantom image (c) SRAD (d)
OBNLM (e) ADMSS (f)
Proposed Method

a b

c d

e f
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Samples

Fig. 9 Comparison of Relative Intensity profiles of denoised image and noisy image with SRAD, OBNLM, ADMSS and Proposed Method

which speckle noise is added. The denoised images shown
in Fig. [8c-e] are obtained from SRAD [7], OBNLM [10],
ADMSS [40] and proposed denoising method respectively.
Under visual assessment, the proposed method depicts good
boundaries and structural information of tissues present
in the ultrasound images with a substantial reduction in

speckle noise. For clear illustration, the intensity profiles
are shown in Fig. 9 along with the highlighted line in the
noisy image. From the intensity profiles, it is clear that the
proposed method gives superior results. Experimentation
also carried on the real ultrasound noisy images. Figure 10
shows the denoising results of real breast cyst image

Fig. 10 Denoising result on
Breast cyst philips norm image
(a) Original Image (b) SRAD
(c) OBNLM (d) ADMSS (e)
Proposed Method

a b c

d e
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Fig. 11 Denoising result on
abdomen and retro peritoneum
liver database images (a)
Original Image (b) SRAD (c)
OBNLM (d) ADMSS (e)
Proposed Method

a b c

d e

obtained with all existing methods and proposed method.
The proposed method comparatively reduces the speckle
noise while preserving all the edges and contrast, whereas
the SRAD method loses some edge information. The results
of denoising on the abdomen and retro peritoneum liver
database images are shown in Fig. 11. These ultrasound
images were obtained from the publicly available abdomen
and retro peritoneum liver and breast cyst database from
”http://www.ultrasoundcases.info/”. The proposed method
is implemented in MATLAB R2014@a software on a com-
puter (Intel i7 3.40 GHz CPU and 8-GB RAM). The com-
putational time for proposed method and existing methods
are given in Tables 2, 3, and 4.

To investigate the quantitative performance of the pro-
posed method over existing methods following evaluation
metrics are used.

Table 2 Performance measures for denoising result on kideny image

Method MSE SNR PSNR SSIM Computational

Time (sec)

SRAD [7] 5.59e03 0.0394 29.39 0.0113 0.89567

OBNLM [10] 246.8 17.35 36.16 0.7934 3.82367

ADMSS [40] 76.93 21.60 38.72 0.7868 76.6941

Proposed method 58.51 22.82 39.29 0.8259 1.9297

1. Mean Square Error (MSE): MSE measure the quality
change between original image (X) and denoised image
(Y). It is given by

MSE = 1

N2

N−1∑
i,j=1

(Xij − Yij )
2

2. Signal to Noise Ratio (SNR): The SNR compares
desired signal to the noisy signal. The higher value
of ratio indicates less prominent the noise is. It is
expressed in decibels (dB) as

SNR = 10 log10
σ 2

σ 2
e

where, σ 2 and σ 2
e are the variance of the original image

and variance of the error (difference between original
image with denoised image) respectively.

Table 3 Performance measures for denoising result on breast cyst
images

Method MSE SNR PSNR SSIM Computational

Time (sec)

SRAD [7] 6.49e03 0.0325 29.06 0.2643 0.919897

OBNLM [10] 342.32 32.19 35.45 0.5630 3.601547

ADMSS [40] 118.19 20.33 37.70 0.7663 64.07764

Proposed method 101.46 21.05 38.099 0.8773 1.987828

http://www.ultrasoundcases.info/
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Table 4 Performance measures for denoising result on abdomen and
retro-peritoneum liver database images

Method MSE SNR PSNR SSIM Computational

Time (sec)

SRAD [7] 6.5e03 0.00345 29.04 0.7678 1.04186

OBNLM [10] 60.06 23.49 39.2 0.7146 3.8823

ADMSS [40] 58.9 23.83 39.28 0.8470 104.944

Proposed method 57.87 24.53 39.32 0.8626 2.0935

3. Peak Signal to Noise Ratio (PSNR): The PSNR defined
as ratio between maximum power of signal and the
power of the noise in the signal.

PSNR = 10 log10
S2

MSE

where, S is maximum intensity of the image. PSNR
measures the quality of the denoised image.

4. Structural Similarity Quality Index Measurement
(SSIM): SSIM is used for measuring the similarity
between two images. It measures the image quality.

SSIM = 1

M

M∑
i=1

(2μxμy + C1)(2σxy + C2)(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

)

where μi and σi are the mean and standard deviation of
the pixel intensities at the ith location respectively and
Ci is the constant. The value of SSIM represent the ideal
structural similarity between 0-1.

Proposed Method was tested on different ultrasound
images like kidney phantom, breast cyst and liver image and
results are listed in Tables 2, 3 and 4 respectively. From
these results, it is observed that proposed method gives bet-
ter denoising results. It is also observed that edges and
finer direction information efficiently preserved, which ulti-
mately achieves good speckle noise suppression with edge
preserving characteristics.

Conclusion

In this paper, a Multi-Directional Perfect Reconstruction
(PR) Filter Bank design based on 2-D eigenfilter approach
has been proposed. The proposed design of 2-D two-channel
linear phase FIR filter banks have been used to design 2-
D fan shaped, diamond shaped and checkerboard shaped
type filters. The designed filter banks satisfy the perfect
reconstruction criteria. Few design examples of 2-D PR fil-
ters have been demonstrated to show the effectiveness of
the method, and it is observed that the proposed 2-D filters
provide better symmetry, good regularity and lower energy

of the error which leads to the better frequency selectivity
of the filters as compared to other design methods. More-
over, the denoising algorithm used with proposed filters
truly separates the clinical features and speckle noise in the
ultrasound images. To quantify the performance of ultra-
sound image denoising, experiments have been carried on
synthetic and real ultrasound images. It is observed that the
performance of denoising is notably improved in terms of
PSNR, SNR, MSE and SSIM evaluation metrics.
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