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Abstract In this paper, we address the problem of detect-
ing human falls using anomaly detection. Detection and
classification of falls are based on accelerometric data and
variations in human silhouette shape. First, we use the expo-
nentially weighted moving average (EWMA) monitoring
scheme to detect a potential fall in the accelerometric data.
We used an EWMA to identify features that correspond with
a particular type of fall allowing us to classify falls. Only
features corresponding with detected falls were used in the
classification phase. A benefit of using a subset of the orig-
inal data to design classification models minimizes training
time and simplifies models. Based on features correspond-
ing to detected falls, we used the support vector machine
(SVM) algorithm to distinguish between true falls and fall-
like events. We apply this strategy to the publicly available
fall detection databases from the university of Rzeszow’s.
Results indicated that our strategy accurately detected and
classified fall events, suggesting its potential application to
early alert mechanisms in the event of fall situations and its
capability for classification of detected falls. Comparison of
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the classification results using the EWMA-based SVM clas-
sifier method with those achieved using three commonly
used machine learning classifiers, neural network, K-nearest
neighbor and naı̈ve Bayes, proved our model superior.
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Introduction

Background

The direction of activity recognition research is receiving
increasing attention, motivated by the rapid development
of information, communication technologies and intelligent
video systems. This paper presents a method of human fall
detection aimed at alleviating this major health concern.
Several studies have shown that falls are a main reason
for the hospitalizations of elderly, disabled, overweight and
obese people [1, 2]. As shown in the study [3] given by
the World Health Organization, 30 % of people over 65
fall at least one each year [3], and that 47 % of those who
have fallen cannot get up without help [4]. Furthermore, a
Eurostat study predicted that this category of the population
will increase from 17,1 % to 30 %. This represents a rise
from 84.6 million people in 2008 to 151.1 million people in
2060 [3]. Although often not fatal, falls can lead to serious
injury and even death [5]. Furthermore, effects on health are
more detrimental if the person remains lying on the ground
for a long period of time after falling (long-lie). By 2020,
falls are predicted to increase medical care expenditures by
$43.8 billion [6, 7]. Thus reliable fall detection and classi-
fication systems will improve quality of life, and increase
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levels of safety and potentially reduce medical expenses
[7, 8].

Numerous networks and research projects (e.g., E-
NO FALLS network, Fall Detector For The Elderly
(FATE), the European profound project, Fall-Watch and
BIOTELEKINESY) have been launched in an effort to
design reliable, unobtrusive fall detection models for pre-
vention and increase safety aimed at improving the quality
of life of the elderly. Over the past two decades, researchers
and engineers have developed several fall detection tech-
niques that can be split into two main approaches: non com-
puter vision based and computer vision based [9–17]. Non
computer-vision-based fall detection approaches typically
depend on information captured by sensors. These meth-
ods use acoustic sensors [18], floor vibration sensors [18]
and human body movements to detect a fall [15–17, 19,
20]. However, the reliability of acoustic sensors is limited
by their sensitivity to extraneous noise, causing a high num-
ber of false alarms, floor vibration sensors can only provide
information about surface equipped with sensors. Installa-
tion of floor vibration sensors is costly if they cover much
area and they are only effective if they cover the location
of a fall. Bodily movements can be detected by wearable
sensors (e.g., inertial measurement units), which are emerg-
ing as a favorable approach [10, 21, 22] because they are
easy to set up, low cost [21] and perform automatic fall
detection [9, 23–25]. Wearable sensors-based fall detection
can be categorized into two main classes: i) threshold-based
techniques, in which a fall is declared when accelera-
tion magnitude overpass a predefined threshold; and (ii)
machine-learning techniques [26]. Bourke et al. [27] used a
bi axial gyroscope, where threshold and acceleration angles
on a chest are defined to identify a fall. Sposaro et al.
presented a fall detection solution called iFall, which uses
sensors embedded on smart watches and smartphones [28].
False alarms ratio can be reduced by applying a verification
phase, where once the fall is detected, a verification message
is sent asking the user’s confirmation. If the user doesn’t
reply, an alert message is automatically sent. Tong et al. pro-
posed a human fall detection and prediction system using a
Hidden Markov model classifier, where tri axial accelerom-
eter data is collected as a time series [22], and Gibson et al.
proposed a multi-classifier system for accelerometer-based
fall detection [19].

Alternatively, computer-vision-based fall detection meth-
ods rely on information, such as shape, obtained from
images and videos [9, 20, 29]. Various vision systems have
been investigated, such as single charge-coupled device
camera [29], multiple cameras [30], specialized omnidirec-
tional cameras [31] and stereo-pair cameras [32]. Liu et
al. [33] and Kwolek [20] proposed using the body’s cen-
ter of gravity as an indicator of a human fall by evaluating
if the distance between two centers on two adjacent frames

is significantly different [33] or if the body’s center of
gravity is too close to the floor [20]. These approaches
have limited application because the floor can be assimi-
lated into background, making it difficult to differentiate it
from the monitored person in each frame [20]. Rougier et
al. [28] extracted the body’s change in shape information
and the head’s velocity to manually appropriate a threshold
to distinguishing between fall-like and true-fall sequences.
However, using these methods, a high false detection ratio
is obtained (several fast sitting activities were misclassified
as a falls) and its performance was strongly dependent on
the threshold value. Auvinet et al. [10] proposed fall detec-
tion using a reconstructed 3-dimensional human silhouette.
Falls were detected with reasonable accuracy by considering
the volume distribution along the vertical axis, such that an
alarm was generated when the majority of this distribution
was suddenly near the floor according the predefined time
threshold. However, this method required many cameras
(four or more), and a graphic processing unit was necessary
for treatment. Foroughi et al. [34] proposed using an approx-
imated ellipse of the silhouette of a human body as features
for developing a neural network classifier to identify falls.
Kwolek and Kepski [10] presented a fall detection method
using a depth camera and sensor data; falls were classi-
fied by support vector machine (SVM) algorithm. Similarly,
Bian et al. [35] presented joint extraction features based on
a pose-invariant randomized decision tree; a support vec-
tor machine classifier was used to distinguish between falls
and daily activities. Stone [36] characterized a body’s ver-
tical state in frame sequences, and an ensemble of decision
trees was applied to determine the confidence that a fall had
really occurred.

Motivation and contribution

To achieve improved performance of fall detection and
classification, we use both visual data from a camera and
accelerometric data captured by an accelerometer. We start
by using only accelerometric data in the detection stage to
provide real-time, and fast processing; these data do not
require any pretreatment. We use an accelerometer as the
fall indicator in this study. To reduce false alarms caused by
confusion between real falls and fall-like activities, a clas-
sification stage is applied only to detected cases through
visual data. The main contributions of this paper can be
summarized as follows:

– Indeed, most existing fall detection methods based on
accelerometer data compare the amplitude of accelera-
tion with a prefixed threshold that is manually fixed and
generally results in a high number of false alarms. The
methods described in this paper, aim to reduce errors
in detecting fall events using a statistical framework
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for successful early fall detection. We were motivated
by the superiority of the exponentially weighted mov-
ing average (EWMA) metric to detect small changes
in the process mean [37], making it very attractive as
an anomaly detection chart. The main advantage of this
method is that it can easily be implemented in real time
because of its low computational cost. Specifically, we
use the EWMA control chart based on the accelero-
metric data as a starting point to reduce the size of
the data used as input in the classification phase. This
considerably reduces computational burden and favors
reasonable accuracy. Then, we employ a classification
algorithm to further classify detected falls.

– In fact, only data from the camera is concerned in the
classification step. In this work, we define features that
will successfully differentiate real falls from fall-like
events. We base the extracted features on non-zero pix-
els that constitute the human body. More specifically,
we use five partial occupancy areas (i.e., the number
of pixels in each area of an image) of the body to
detect and classify falls. Only features corresponding to
detected falls will be used in the classification phase.
Using a subset of the original data to design classifica-
tion models has the benefits of minimizing training time
and promoting model simplicity. Once an event was
classified as a fall based on these features, we applied
the SVM algorithm to verify the event as a true fall.
We chose the SVM classifier for its high generaliza-
tion performance; its algorithm can behave as a linear
or nonlinear classifier by exploiting linear or nonlin-
ear kernels, respectively. And because SVM maps the
input vector (feature vector) into a higher feature space
using the kernel trick, it can solve linearly non separa-
ble cases. This is particularly helpful when features are
confused, because these features are non linear.

The rest of the paper is organized as follows: Section
“Fall detection” presents fall detection based on accelero-
metric data and outlines the EWMA monitoring chart and
its use in fall detection. Section “Classification strategy”
presents the vision-based fall classification steps and the
classification algorithms used to distinguish real falls from
fall-like events. Section “Experimental results” evaluates
the performance of the proposed method, and Section
“Conclusion” concludes this study with some remarks.

Fall detection

In this paper, we propose fall detection strategy that com-
prises two main complementary phases: detection and clas-
sification. The detection phase uses statistical monitoring
charts to detect falls based on accelerometer data in real-
time. Once the fall is detected, its type is identified (real

fall or fall-like). However, detection based only on iner-
tial sensors presents some limitation in separation between
real falls and some ordinary activities (generally considered
as sudden movements). To discern real falls from fall-like
events, we used monitoring charts that identify features cor-
responding to falls that are useful for fall classification
purposes. Furthermore, the key role of the classification
phase is to distinguish between a real fall, and activities sim-
ilar to a fall such as intentional lying down or stretching out.
Specifically, in this phase only the detected sequences are
used as the input data for classification, making this method
computationally fast. This classification method separates
sequences into real fall and fall-like classes by perform-
ing an efficient background subtraction algorithm to extract
the human body foreground. To improve the segmented
images, a post-processing stage is applied. Features describ-
ing human posture are then extracted and used as the input
for classification purposes. When a sequence is classified
as a fall, an alarm signal is sent to caregivers (such as
emergency or family members) via modern communication
systems. The flowchart of the proposed fall detection system
is illustrated in Fig. 1. Each step will be described in detail
in the next sections. In this section, the detection phase will
be described.

Fall detection using accelerometric data

The binary decision making process of fall detection
requires that falls be identified from non-fall events based
on some relevant features of the data. In this work, we
present fall detection algorithms based on accelerometer
data taken from the University of Rzeszow’s fall detec-
tion dataset (URFD), a set of publicly available acceleration
data collected via an accelerometer x-IMU (256Hz) [10].
The placement of the sensors is important because different
parts of the body accelerate at different rates during move-
ments. As reported in [10, 22, 38], for an accelerometer it
should be placed in the pelvis region to properly represent
the movements involved in a fall because this region pro-
vides the best approximation of the mass center [10]. Thus,
in this study we also placed the IMU accelerometer near
the pelvis region, as illustrated in Fig. 2. The accelerometer
collects data in three dimensions: longitudinal acceleration
(x-axis), lateral acceleration (y-axis) and vertical acceler-
ation (z-axis). Here, the magnitude of acceleration, a, in
three-dimensional space, which is the vector norm, is used
as fall indicator and is defined as

a =
√

a2
x(t) + a2

y(t) + a2
z (t), (1)

where ax(t), ay(t), az(t) represent the acceleration compo-
nents x, y, z axes, respectively, at the instant t .

The magnitude of acceleration is discriminative enough
to describe the human activities because both dynamic and
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Fig. 1 Schematic representation of a fall detection system

static accelerations are considered [10, 21, 22]. The peaks in
acceleration magnitude, which are generated by the ground
reaction force when the foot hits the ground, are commonly
used to detect a fall [39]. Examples of acceleration change
curves during daily activities like picking up an object, sit-
ting down standing up and a fall event are depicted in the top
of Fig. 3 from left to right. The plots shown in the bottom
of Fig. 3 illustrate the corresponding change of in tri-axial
acceleration components. It can be observed that during sit-
ting or down or standing, the value of a is around 1.7g,
during some daily activities, such as picking up an object
approximatively 2.7g and during fall 6.8g. Note that the
magnitude of acceleration changes significantly when falls
occur in comparison to non-fall activities (Fig. 3). Using this
comparison operation as an indicator, we allow for a rela-
tively low complexity of computation for fast processing as
a fall detection method.

Fig. 2 Schematic of a coordinate system

One common fall detection approach using tri-axial
accelerometer data functions by defining a threshold for
triggering an alarm: a fall is declared when the magnitude
of acceleration surpasses this prefixed threshold value. The
threshold value, however, is fixed manually based on the
magnitude of acceleration and thus cause a considerable
number of false alarms. Other machine-learning algorithms
have been used to detect falls but they typically have rela-
tively high computational cost because their estimation and
tuning model parameters cannot be used in real time. Here,
we lower computational costs of detecting falls using the
EWMA algorithm. Univariate statistical monitoring meth-
ods, such as the EWMA control scheme [40], have only
recently been introduced to detect small anomalies and
improve performance of the human fall detection. Here, our
main goal is to exploit the advantages of the EWMA mon-
itoring scheme to detect a fall based on the magnitude of
acceleration. We present a brief introduction to EWMA and
how it can be used in fall detection in the next Section.

Exponentially weighted moving average
monitoring chart

Detecting the particular anomalies that occur in a monitored
system is based on checking whether the current measure-
ments are statistically different from the a priori known
faultless measurements (i.e., measurements without anoma-
lies). EWMA charts weight the last observation based on its
importance in characterizing the process [41]. These charts
can detect small shifts in the process mean as they are time-
weighted. According to the literature, EWMA is one of the
most frequently used control charts for monitoring process
mean because of its flexibility (allows suitable parameters to
be selected to achieve the highest possible performance) and
sensitivity to small shifts. The EWMA control scheme was
first introduced by Roberts [42], and it has since been exten-
sively used in time series analysis [37, 40, 43–46]. Assume
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Fig. 3 Acceleration (top row) and the tri-axial acceleration components (bottom row) observed while, (left panel) sitting down standing up,
(middle panel) picking up an object and (right panel) falling

that {x1, x2, . . . , xn} are individual observations collected
from a monitored process. The EWMA statistic is computed
using the following equation [40]:

⎧
⎨
⎩

zt = λxt +
(

1 − λ

)
zt−1 if t > 0

z0 = μ0, if t = 0,

(2)

where μ0 represents the mean of fault-free data and λ ∈
(0, 1] is a weighting parameter that determines the tempo-
ral memory of the EWMA decision function. The EWMA
chart is generally suitable for detecting relatively small
changes when λ is chosen to be small, and it is suitable for
detecting relatively large changes when λ is chosen to be
large [40, 47]. The literature recommends using a smoothing
parameter value between 0.2 and 0.3 for most monitoring
purposes [40, 48]. This chart provides us with significant
evidence to conclude that there is an anomaly at the i-th
time point if the decision statistic zt exceeds the control lim-
its that are expressed in terms of the asymptotic standard
deviation of the decision statistic.

zt < μ0 − Lσzt or zt > μ0 + Lσzt , (3)

where σzt = σ0

√
γ

(2−γ )
[1 − (1 − γ )2t ] is the standard devi-

ation of zt , σ0 is the standard deviation of the anomaly-free
or preliminary data set and L is the width of the control
limit, which in practice is usually specified as 3, which cor-
responding to a false alarm rate of 0.27 %. In this paper, we
use a one-sided version of an EWMA for fall detection [40].

Accelerometer-based EWMA fall detection comprises
two stages: training and testing. This approach is schemat-
ically illustrated in Fig. 4 and outlined in the following
steps.

(i) Training involves computation of a magnitude of
acceleration from the fall-free data and the EWMA
control limit for detection (see Eq. 3) .

(ii) Testing is a comparison of the magnitude of accel-
eration of the new measurements with the previously
computed threshold for making decision.

One disadvantage of anomaly detectors such as the
EWMA chart, is that they can detect different types of
anomalies, but they cannot distinguish the type of anomaly.
In this paper, machine learning algorithms are applied to dis-
tinguish false falls from true falls. Specifically, the EWMA
fall detector identifies a fall, the system extracts the moni-
tored person and use the classifier to confirm the fall event.
If the EWMA decision statistic is below the threshold,
then new accelerometric data is collected. The classification
stage is executed only when a potential fall is detected by
EWMA scheme, which significantly reduces computational
costs and false alarms.

Classification strategy

During classification, only data from the camera are
taken into account (i.e., no sensor data). In general,
computer vision-based methods include four major steps:
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Fig. 4 The flow chart of the
EWMA-based fall detection
algorithm

data acquisition or collection, image segmentation, feature
extraction, fall classification. During data acquisition, spe-
cific variables are recorded to determine whether the person
has suffered a fall. In image segmentation, the body’s sil-
houette is extracted from the image sequence and then used
in the feature extraction step, which determines discrimina-
tive information needed as input in fall classification steps.
The presence or absence of true falls is then distinguished
by the fall classification phase where each sequence is diag-
nosed as fall or fall-like activities. In this section, we explain
the extraction of the body’s silhouette that is used to calcu-
late the fall descriptors, discuss these descriptors and briefly
describe the machine-learning techniques used to perform
the classification task.

Segmentation and preprocessing

For segmentation, the body’s silhouette is extracted from
the input image sequence using a background subtraction
technique [49, 50]. The background image is defined as a

reference to eliminate the unchanged pixels in the frame
sequences. This method is suitable here because it can man-
age multiple component models [50]. Figure 5 illustrates
an example of the background subtraction algorithm, where
background and input frames are represented by the two
images on the left, respectively, and background subtraction
frames before and after applying morphological operators,
are shown on the right.

Feature extraction

Accurate feature extraction is necessary for video-based fall
classification, where extracted features have a direct impact
on successful classification. The extracted features have to
be invariant to image translation when the position of human
body changes in the image and to scaling when the dimen-
sions of the silhouette change as the distance between the
monitored person and camera varies. Previous works have
performed feature extraction by focusing on shape informa-
tion to detect and classify falls; fore example, the body’s

Fig. 5 Results of the background subtraction algorithm
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Fig. 6 Samples of partitioned human body areas

center of gravity [33], key joints [35], horizontal and verti-
cal dimensions of the bounding box or approximated ellipse
of the silhouette. However, these features cannot always dis-
tinguish among body postures, especially when there is a
high degree of similarity between activities (e.g., dimen-
sions and orientations of the ellipse are the same for both
bending and sitting postures, as shown in Fig. 6b–c). For this
reason, instead of using the body’s geometrical shape we
base the extracted features on non-zero pixels that consti-
tute the human body. More specifically, we use five partial
occupancy areas (i.e., the number of pixels in each area of
an image) of the body to detect and classify falls. These
areas typically correspond to the action of body parts when
in a standing posture. As shown in Fig. 6d, the body is
divided into five portions. These areas were determined
using the body’s center of gravity (xG, yG), which is simply
the barycenter of the pixels.

xG = 1

N

N∑
i=1

xi, yG = 1

N

N∑
i=1

yi, (4)

where N is the number of pixels representing the human
body, and xi and yi denote the horizontal and vertical coor-
dinates of the pixels composing the human body, respec-
tively. Partitioning is performed by tracing five segments
from the body’s center of gravity as shown in Fig. 6d. The
first segment is vertical, the second and third segments are

located at 45◦ on either side of the vertical segment and the
fourth and the fifth segments are situated at 100◦ on either
side of the third and fourth segments (see Fig. 6d). The cen-
ter of gravity and the five areas are computed for each image
to represent the feature frame that we expect to be a precise
characterization for human gesture classification.

A normalization phase, where each area value is divided
by the global body area, is performed to negate any concerns
related to scaling. Given the total number of pixels making
up the body area, A, and the number of pixels making up
the partial areas Ai ; i = 1 . . . 5, the normalized partial areas
are given as:

Ri = Ai∑5
i=1 Ai

. (5)

Figure 7 shows the time evolution of the five features
(A1 − A5) while daily activities are performed (walking,
standing, bending and siting, standing up) and Fig. 8 com-
pares these features while walking to those while falling. We
observe that these features change significantly just prior to
and while falling, signaling the occurrence of an event that
is significantly separable from the activities of daily living
(ADL) (see Fig. 8).

Note that these ratios are invariant to translation and scal-
ing, and that they take into account the rotation information
necessary for fall detection. In other words, the extracted

Fig. 7 Time evolution of
features extracted from data
during ADL (walking, standing,
bending and siting, and standing
up)
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Fig. 8 Time evolution features
extracted from data with fall
between frame number 430
to 490

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

1

A
2

A
3

A
4

A
5

ratios are discriminative enough to describe human pos-
tures and computationally simple enough to allow for fast
processing. Finally, since frames of a video sequence are
assimilated to an observation sequence, the set of ratios
that are computed for each frame are then concatenated to
form the whole feature vector corresponding to the video
sequence (see Fig. 9).

Fall classification

Now, we seek to discern between some intentional move-
ments, considered to be fall-like activities, and real falls
reported during the detection phase. Given a set of training
data points with training labels, we now aim to determine
the class label for an unlabeled set of testing data. Classifi-
cation algorithms consist of training and testing phases. In
training phase, a model is constructed from the training data
(e.g., assign the system certain fall sequences as training
samples) and the in the testing phase, the constructed model

is used to classify the remaining sequences (testing sam-
ples) according to their features. In this section, we provide
a brief description of some most commonly used classifiers,
namely SVM, neural network, naı̈ve Bayes and K-Nearest
Neighbor (KNN). In this work, we used only SVM for fall
classification and the others are explored only for compari-
son. For more details about classification algorithms, please
refer to [55].

Support vector machine algorithm

The SVM algorithm was first introduced by Vapnik [51],
and it has since been used extensively in classification and
detection [52]. The key idea behind the SVM algorithm is
first to map the input space into a high-dimensional fea-
ture space (transformed space) via a kernel function, which
makes the data approximately linear, and then to build an
optimal separating hyperplane in the new space to distin-
guish between classes [51, 53]. The support vectors are

Fig. 9 Features used to detect
a fall



J Med Syst (2016) 40: 284 Page 9 of 16 284

the training data points that are closest to the separating
hyperplane; these points represent the maximum-margin
hyperplane for the training data. In this way, SVMs look
for a maximum margin hyperplane to separate data. Further
details on SVM can be found in [51].

In this work, the SVM algorithm is used to classify falls.
Although other algorithms may also have been suitable, the
SVM classifier was selected for its ability to behave as both
a linear and a nonlinear classifier through the exploitation
of linear and nonlinear kernels, respectively. In this study,
the SVM was employed to find a function (i.e., an optimal
separating hyperplane) to map each detected fall into their
corresponding labeled space yk ∈ {+1, −1}, where +1 and
−1 represent true fall and false fall, respectively.

The optimization separation function in SVM can be
defined as follows:

min
w,ξ

1

2
WT W + C

n∑
i=1

ξi, (6)

where C is the regularization parameter; ξ corresponds to
slack variables introduced, which acts as a penalty term;
and w represents the normal vector to the hyperplane. The
optimal w is obtained as:

w =
n∑

i=1

yiαiϕi(xi) (7)

and the decision function is given by

f (x) = sgn

( n∑
i=1

yiαik(xi, xj ) + b

)
, (8)

where ϕi(xi) is the transformation applied to xi , αi corre-
sponds to Lagrange multipliers, b is the bias term, and xj

is a test observation. K(xi, xj ) represents the kernel func-
tion. Various kernel functions can be used for mapping
processes [51].

For comparison sake, we tested neural network, K-
nearest neighbor, and naı̈ve Bayes classifiers. These classi-
fiers were chosen because they are widely used in pattern
recognition problems. A brief description of the three com-
parative classifiers is provided.

Neural network classification

Neural network classifier is a supervised algorithm that can
use multiple input, output and hidden layers with an arbi-
trary number of neurons [54]. The most widely used neural
classifier today is the multi-layer perception ( network with
the back propagation learning algorithm to optimize the
network. The classic architecture of this classifier includes
three layer types: input layers, hidden layers and output
layers. Each layer comprises one or several neurons. The

input layers classify the features, the hidden layers are gen-
erally determined empirically and relatively to the expected
classification accuracy and the output layer corresponds to
the defined classes. Each class corresponds to a node in
output layer. The output node value should provide the cor-
responding class for the input data (i.e., a high output value
is expected on the correct class node and a low output
value on all the rest). The optimal number of hidden layers
and its corresponding neurons depends on each application.
Although the neural network classifier has been applied to
numerous fall detection applications [34], it is limited by
using empirical risk minimization and non structural risk
minimization and are more prone to over fitting problem.

K-nearest neighbor

The KNN algorithm is a non parametric classifier rested
on the notion of a neighborhood [55, 56]. It is a simple
classifier because there is no training involved and only
distances between training samples are evaluated (e.g., the
Euclidean distance function). The basic KNN algorithm
uses the closest neighbors of the not-yet-classified new
instances to classify them. Every time that a new example
needs to be classified, it is compared with all the samples in
the dataset. Consequently, KNN algorithms use a straight-
forward approach to solve classification problems [57].

Naı̈ve Bayes classifier

Naı̈ve Bayes classifier is a probabilistic supervised machine
learning technique based on Bayes’ theorem [58]. It
assumes that all input data related to a class is indepen-
dent of each other. During this stage, the algorithm learns
the conditional probability of samples from the training
data. During the test phase, the classification is accom-
plished by computing the posterior probability for all classes
and then predicting the class with the highest probability
value. This classifier is easy to implement and can achieve
satisfactory results in most of the cases [59]. It handles
missing values by ignoring the instance during probability
estimate calculations; however, it is based on the indepen-
dence assumption, which may not hold for some attributes
and is often inappropriate for real world data.

Classification performance measures

Several measures can be used to evaluate the performance
of a classifier, such as the receiver operating characteris-
tic (ROC) analysis, the area under the curve (AUC) and the
F-measure [60, 61]. The ROC curve is the simplest graph-
ical tool for illustrating the performance of a classification
algorithm. We recall that the ROC plots sensitivity, which is
relative to the true positive rate (TPR) against 1-specificity,
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which is relative to the false positive rate (FPR) over a range
of the classification threshold.

T PR = Number of correctly classified falls

Total number of fall incidents
,

FPR = Number of missclassified non-falls

Total number of non-fall incidents
. (9)

The AUC defines the quality of a classification method by
using it as an index of accuracy, where an AUC of 1 corre-
sponds to an ideal classification, an AUC of 0.5 corresponds
to a chance classification, and an AUC > 0.9 corresponds
to a good classification. In this study, ROC curves were
plotted and AUC values were then computed to compare
classifications algorithms. We also evaluated the quality of
classification methods using the F-measure. This coefficient
examines the influence of random testing on the classifica-
tion rate. It is computed by the combination of recall (r) and
precision (p) ratios, where the recall represents the ratio of
true positive number (tp) to the total numbers of elements
in the positive class, while the recall represents the ratio
of the true positive number (tp) to the sum true positive
and false negative elements. The F-measure is expressed as
follows [61]:

F = (1 + β2).
p.r

(β2.p) + r
, where p = tp

tp + fp
and

r = tp

tp + f n
. (10)

Because values of recall and precision ratios can vary from
0 to 1, the F-measure combines them into a single value for
effectiveness. In this work the parameter β is fixed to 1.

Experimental results

In this section, we evaluate the abilities of the EWMA fall
detector with the SVM classifier to detect and classify a
fall. The performance of this method is compared to that
of conventional KNN, neural network, and naı̈ve Bayes
classifiers.

Detection results

This tests the effectiveness of the proposed EWMA fall
detector through the practical accelerometer data obtained
from the publicly available URFD datasets [10]. The URFD
dataset comprises 70 (30 falls; 30 ADL, such as walk-
ing, sitting down, crouching down; and 10 sequences with
fall-like activities, such as quickly lying on the floor and
lying on the bed/couch) sequences with their corresponding
accelerometric data recorded in different rooms (e.g., like
office, classroom). All sequences containing falls include
half from sitting on a chair and half from standing/walking.
Fall events and ADL were measured from three volunteers
over 26 years of age. Data from the three volunteers was
recorded using using an x-IMU accelerometer, placed near
the pelvis, with sampling rate of 256 Hz (see for details [10,
21]).

First, using training fall-free data, which contains ADL,
such as picking-up an object from the floor, walking,
crouching down, sitting down and standing up, the decision
threshold of EMWA was computed based on the magnitude
of acceleration. The EWMA scheme was constructed using
the EWMA parameters λ = 0.4 and L = 3, and the EWMA
threshold value was found to be UCL = 2.12.

To show the effectiveness of the proposed strategy, three
case studies are presented. In the first case some ADL, such

Fig. 10 The time evolution of
the EWMA statistic in the case
of picking up an object from the
floor (Case A, first example)
(top) and its corresponding
acceleration components
(bottom). The horizontal dashed
line denotes the control limit E
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Fig. 11 The time evolution of
the EWMA statistic in the case
of sitting down into a chair
(Case A, second example) (top)
and its corresponding
acceleration components
(bottom). The horizontal dashed
line denotes the control limit E
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 Sitting down into a chair

as sitting down and standing up, picking up objects and sit-
ting down on a chair are given (case A). In the second case,
it is assumed that the testing data contains a true fall or a
fall-like event (case B). In the third case, the testing data is
assumed to contain false falls (i.e., fall-like activities, such
as lying down) (Case C).

Case A - monitoring fall-free ADLs activities

In the first case study, the EWMA monitoring chart is
performed on fall-free data recorded from volunteers per-
forming ADL. Two examples of daily activities, picking up
an object from the floor and sitting down into a chair, are

presented. Figures 10 and 11 depict acceleration compo-
nents of each sequence of the dataset and their correspond-
ing EWMA decision results. A plot of the decision function
of the EWMA chart (shown in Figs. 10 and 11) shows that
the EWMA statistic is always below the threshold value and
confirms that the data contains only normal daily activities,
where no falls are present. The most pronounced EWMA
value is at the instant of picking up an object from the floor.

Case B - true fall

Two examples are presented here to illustrate the capacity
of the EWMA fall detector to detect a true fall event. In

Fig. 12 The time evolution of
the EWMA statistic in the case
of falling from a standing
position (Case B, first example)
(top) and its corresponding
acceleration components
(bottom)
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Fig. 13 The time evolution of
the EWMA statistic in the
presence of a fall event fall from
a chair (Case B, second
example). (top) and its
corresponding acceleration
components (bottom)
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the first example, the testing data used to test the perfor-
mance of the EWMA monitoring chart contain a fall from
a walking or a standing position. The person stands at the
beginning of a fall and then falls abruptly from standing to
lying on the floor. The results of the EWMA chart and its
corresponding accelerometric data are illustrated in Fig. 12,
clearly showing that this chart detected the fall without
false alarms.

A fall can occur not only when a person is standing, but
also from a sitting position on a chair or from a lying on
a bed during sleep. In the second example, the testing data
contain a fall event from a chair. Monitoring results of the
EWMA chart are shown in Fig. 13. The dashed red lines

represent the 95 % confidence limit used to identify possible
anomalies. The chart successfully detects this fall.

Case C: False fall - Lying down

In the third case study, the testing data contain lying down
on the floor or false falls. The results using the EWMA chart
(shown in Fig. 14) show that it could successfully detect
false falls,

Because the EWMA chart cannot distinguish real falls
from certain fall-like actions, such as lying down, a clas-
sification module should be added after the fall detection
step.

Fig. 14 The time evolution of
the EWMA statistic in the
presence of a fall event (Case C)
and when λ = 0.4. The
horizontal dashed line denotes
the control limit
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Table 1 Performance
comparison between EWMA-
SVM, KNN, neural network
and naı̈ve Bays algorithms

Classifier Accuracy Se Sp Precession Recall F-measure AUC

KNN 91.94 1 0.86 0.838 1 0.91 0.93

Neural network 95.16 1 0.91 0.903 1 0.95 0.95

Naive Bays 93.55 1 0.886 0.87 1 0.93 0.94

EWMA-SVM 96.77 1 0.9394 0.9355 1 0.9667 0.97

Classification results

To assess the detection ability of the classification strat-
egy using the EWMA fall detector and SVM classifier
(EWMA-SVM) fall classification strategy, we performed
experiments on the publicly existing fall detection databases
form URFD [10]. Falls and ADL used in this work are
recorded with an RGB camera. The URFD dataset com-
prises 30 images per sequence for fall and typical ADL
classes. All sequences are recorded with color cameras and
synchronized with their corresponding accelerometer data.
We evaluated the EWMA-SVM classifier and compared it
with KNN, neural network, and naı̈ve Bayes classifiers. We
used a three-fold cross-validation to evaluate the classifiers.

Table 1 compares the proposed fall detection and clas-
sification strategy of the EWMA-SVM with that using the
other classifiers, KNN, neural network, and naı̈ve Bayes,
with detection phase. Note that because classification per-
formance depends on the classifier’s parameters, parameters
were optimized for each classification method during the
training phase (parameter tuning phase), corresponding to
maximum classification accuracy. For the neural network
classifier, we varied the parameters to select the optimal
multi layer perception architecture to achieve one hidden
layer with fifteen neurons, which corresponded to the best
classification rate. For the KNN classifier, the choice of k

value depends strongly on the type of data. In this work, we
varied the parameter k from 1 to 20 to establish that k = 3
was the optimal value. For naı̈ve Bayes classifier, a Gaus-
sian model is adapted as predictor distribution model. The
values of the corresponding mean and standard deviation
are 3.43 and 0.38, respectively. Finally, we have iteratively
tested the SVM-kernel parameters, σ the width of Gaussian
kernel and C the parameter for the soft margin cost func-
tion, which controls the influence of each support vector;

Table 2 Average training and testing processing times (s) for each
classification method

Classifier Training time (s) Testing time (s)

KNN 0.22

Neural network 2.65 0.15

Naive Bays 0.61 0.26

EWMA-SVM 0.182 0.0207

this process involves trading error penalty for stability. The
pair with the highest accuracy was selected (σ = 0.125 and
C = 27 = 128).

The results shown in Table 1 demonstrate that the inte-
grated EWMA-SVM strategy is more accurate at detecting
falls than any classifier alone, indicating that combining the
detection phase with a classifier allows us to distinguish
between daily activities and falls, reducing the space of
training and testing data used as input for classification. The
EWMA-SVM combination outperformed the neural net-
work in the fall detection application likely because SVMs
have a simple geometric interpretation and provide a sparse
solution via structural risk minimization, unlike neural net-
works, which use empirical risk minimization. SVMs are
less prone to over fitting than are neural networks. The
EWMA-SVM outperformed KNN due to the ability of SVM
to train important data sets, compared to the complexity of
the KNN algorithm, which searches the nearest neighbors
for each sequence sample. The EWMA-SVM combination
also outperformed the naı̈ve Bayes classification because
of the independence assumption of the latter, which is far

Fig. 15 Classification ROC curves of the EWMA-SVM, KNN, neural
network and naı̈ve Bays algorithms
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Table 3 Performance of fall detection on URFD data sequences

Approach Database Overall Accuracy (%)

Kwolek et al. [21] SVM URFD (RGB, accelerometer and depth data) 94.28

KNN URFD (RGB, accelerometer and depth data) 95.71

The proposed approach EWMA-SVM URFD (RGB, accelerometer) 96.77

reaching and often inappropriate for a real world dataset.
Furthermore, because the SVM classification is only applied
to the data corresponding to detected cases, a reduced num-
ber of video sequences need to be classified, which makes
processing much faster than when all data must be classi-
fied (see Table 2): where the whole set of video sequences
is trained and classified into at least three classes (daily
activities, intentional lying and real falls) to produce a com-
plex training system that makes classifiers unsuitable for
application to this type of data.

Table 2 presents the average processing times for each
classification technique during training and testing phases.
Processing time is a helpful tool for comparing the com-
plexity of classifiers. During the learning phase, the neural
network classifier requires the longest time to optimize its
parameters, where EWMA-SVM presents the shortest pro-
cessing time; however, during the testing phase, the neural
network classifier has a lower processing time than does
naı̈ve Bayes or KNN classifiers. It important to note that
the KNN classifier does not have an explicit training phase,
thus, 0.22s can be considered as the processing time for
both training and testing phases. Although this processing
time is considered to be acceptable for this application, the
EWMA-SVM combination remains significantly faster with
a higher degree of accuracy than neural network, KNN, and
naı̈ve Bayes classifiers.

Figure 15 shows ROC curves corresponding to the pro-
posed EWMA-SVM approach and to neural network, KNN,
and naı̈ve Bayes classifiers. The EWMA-SVM classifica-
tion is shown to outperform neural network, KNN, and
naı̈ve Bayes classifiers (AUCKNN = 0.93; AUCNN = 0.94
AUCNaiveBayes = 0.95 and AUCEWMA−SV M = 0.97).

To highlight the efficiency of the proposed approach in
terms of recognition accuracy, a comparison with two well-
known classifiers proposed in [21] is presented in Table 3.
In [21], the authors applied both SVM and KNN clas-
sification to a set of camera sequences to obtain depth
and accelerometric data. For comparison, experiments were
conducted on the same publicly available URFD datasets,
allowing for a fair evaluation. The results shown in Table 3
clearly highlight the advantage of the EWMA-SVM meth-
ods over detecting falls by the other two classifications
(KNN and SVM). The reason EWMA-SVM fall detection
method outperforms the KNN and SVM methods given
in [21] lies in the fact that it uses the EWMA metric, which

is highly sensitive to anomaly. In [21], the detection phase
is based on accelerometric data and the decision thresh-
old is fixed manually, whereas the threshold in the EWMA
is based on the weighted moving average of all available
observations, a design that provides improved sensitivity to
fall events. In addition, low computational cost make the
EWMA chart easily implemented in real time. Furthermore,
it appears that using pixel-based area ratios adequately
describes movements made by the human body. Therefore,
based on the results of these experiments, the EWMA-
SVM approach provides a more accurate fall detection than
previously existing methods.

Conclusion

In this work, information from both acceleration sensors
and cameras were used to design a reliable fall detection
strategy. Unlike vision-based approaches, where a pretreat-
ment step is necessary, acceleration sensors do not require
a pretreatment phase. This speeds up the processing step,
making it suitable for the detection phase; however because
images from RGB camera provide more information, they
are appropriate for the classification phase. The results
show that the combined EWMA-SVM approach success-
fully separated true falls from false falls. The EWMA
identified features corresponding to falls that are pertinent
for fall classification tasks plays a key role in reducing the
size of the features used as the input data for SVM clas-
sification, which significantly reduces the computational
burden and achieves reasonable accuracy. Comparison of
the EWMA-SVM approach with four other commonly clas-
sifiers demonstrated the superior classification capacity of
EWMA-SVM.

Despite the promising results for fall detection and classi-
fication obtained using the EWMA-SVM strategy, the work
carried out in this paper raises a number of question and
provides some directions for future work. In particular, the
following points merit consideration from researchers.

• Herein, the detection of the fall is done on the basis of
accelerometric data and data form an RGB camera. In
the dark, RGB cameras are not capable of extracting the
human silhouette. Because falls often occur to elderly
people who may be alone, we plan to investigate the
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viability of using an infrared camera in the dark to
capture the images of the human body needed for the
camera detection stage.

• The URFD dataset uses fall events and ADL from vol-
unteers, although over the age of 26, does not reflect
the geriatric community. Moreover, it would be useful
to incorporate more data inputs such as heart rate and
blood pressure provided by a smartwatch or a smart-
phone to further enhance the effectiveness of a fall
detection system.
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