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Abstract Mathematicalmodeling and simulation with med-
ical applications has gained much interest in the last few
years, mainly due to the widespread availability of low-cost
technology and computational power. This paper presents
an integrated platform for the in-silico simulation of trauma
incidents, based on a suite of interacting mathematical mod-
els. The models cover the generation of a scenario for an
incident, a model of physiological evolution of the affected
individuals, including the possible effect of the treatment,
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and a model of evolution in time of the required medical
resources. The problem of optimal resource allocation is
also investigated. Model parameters have been identified
according to the expertise of medical doctors and by review-
ing some related literature. The models have been imple-
mented and exposed as web services, while some software
clients have been built for the purpose of testing. Due to its
extendability, our integrated platform highlights the poten-
tial of model-based simulation in different health-related
fields, such as emergency medicine and personal health sys-
tems. Modifications of the models are already being used
in the context of two funded projects, aiming at evaluating
the response of health systems to major incidents with and
without model-based decision support.

Keywords Trauma incidents · Mathematical modeling ·
Simulation · Web services · Personalized medicine

Introduction

“Personalized medicine” is the current medical philosophy
geared towards “...medical decisions, practices, interven-
tions and/or products being tailored to the individual patient
based on their predicted response or risk of disease” [1, 2].
By following a patient-specific, tailored approach to med-
ical care it is expected that side effects decrease while the
efficacy of therapies increases. Given this basic concept, the
applications of personalized medicine span a wide array of
medical specialties. While the emphasis has been placed,
in recent years, towards genome-based personalization [3]
(given the exponential development of genomic techniques),
this emphasis does not in fact exhaust all possible ways in
which therapy can and should be customized to the needs of
the single patient under observation.
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Another relatively recent approach to the assessment of
the peculiarities of each patient’s response to medical inter-
vention has been the use of mathematical and computer
modelling techniques [4]. These have also undergone an
exponential development over the past few years [5], due to
the technological progress making cheap computing power
widely available, supporting in this way time-honored math-
ematical tools, such as dynamical systems and different
kinds of differential equations, with modern numerical
model simulation and identification.

One application of these patient-specific model identifi-
cation approach occurs in the preparation and in the decision
support for mass emergency crises [6, 7]. In the heat and
urgency of a major incident involving hundreds of victims,
under the heightening pressure of insufficient resources,
logistic problems, escalating death counts and public opin-
ion, the availability of computer decision support tools (able
to model, identify and track the pathophysiology of each one
of the many wounded or intoxicated patients) represents a
major leap forward in our ability to deliver pertinent, rea-
soned, prioritized care, customized to the real needs of each
individual person [8] seeking medical attention.

In the field of person-specific modeling, recent attention
has been devoted to the particular case of trauma incidents
[9]. In this context, this paper presents an integrated plat-
form for the in-silico simulation of trauma incidents, based
on a suite of interacting mathematical models. The mod-
els cover the generation of a scenario for an incident, a
model of physiological evolution of the affected individuals,
including the possible effect of the treatment, and a model
of evolution in time of the required medical resources. The
problem of optimal resource allocation is also investigated.
Model parameters have been identified according to the
expertise of medical doctors (such as emergency surgeons
and trauma experts) and by reviewing some related litera-
ture. The models have been implemented and exposed as
web services, while some software clients have been built
for the purpose of testing.

Our suite of models has been originally conceived for an
application to disaster medicine [10]. In particular, modifi-
cations of the models presented in this paper represent the
cornerstone of the decision support systems developed in
the European funded projects IMPRESS [24] and PULSE
[25]. Anyway, beyond the results developed in the context of
projects, our framework provides a basic layer for the gener-
ation of the scenario of an incident (with randomly sampled
data, in the case when data from the field are not available)
and the prediction of the evolution of the patient condi-
tions and the related resources, in the presence of health
care, not limited to the occurrence of a major incident. As
a consequence, due to its extendability, our integrated plat-
form highlights the potential of model-based simulation and
can be easily extended and readapted in other health-related

fields, such as chronic diseases [11], Personal Health Sys-
tems [12], Pervasive Health [13] and Internet of Things [14].
To this aim, it is sufficient the design of a mobile app/device,
with Internet connectivity in order to call our suite of web
services, and exploit the results properly in the different
settings.

We also mention that a peculiar feature of our model-
ing suite is that, in a context of integrated simulation with
many affected people, it enables the management of the
health care resources and a prediction of their evolution in
time. This makes simulations more realistic in a crisis sce-
nario, since it is not possible (in general) to provide the best
therapy to all the patients in condition of limited resources.
Furthermore, an important related problem is the prediction
of the hospital surge capacity, defined as “a term of art refer-
ring to the ability of a hospital in a mass casualty incident
to augment bed availability by maximizing resources and
discharging as many patients as safely possible” [15]. Our
platform provides an answer to these problems by means
of a simple logistic model, interacting with the aforemen-
tioned patient model to possibly quantify in real-time the
resource consumption due to the health care delivery and
their possible increase due to surge capability.

Of course, the use of models in real contexts poses the
fundamental issue of validation and overall evaluation of
the system, which is a very important problem whose solu-
tion is complex and out of the scope of the present work.
Clearly, simulations of the models at the present stage do
not allow to infer conclusions about the performance of
the health system, which depends on the real amount of
resources available, on their geographic position, as well as
on the intensity of the incident and other temporary factors
(traffic conditions, etc.). On the other hand, evaluation and
validation are fundamental issues and are deeply addressed
by aforementioned FP7 European projects PULSE [25] and
IMPRESS [24], which address, in different ways, the con-
struction of Decision Support Systems (DSS), which call
customized versions of our models (according to the client-
server paradigm mentioned above and better described in
the paper), based on real-time data (coming from the field)
and use the returned information to help personnel take
the right decision in a emergency context with hard time
constraints.

In the context of those projects, some table-top exercises
and live demos have been organized to test the system and
stress the medical services in realistic conditions, with the
aim of evaluating the results in presence and in absence
of model-based decision support. We here mention the
IMPRESS demo, which took place in Palermo (Italy) in
June 2016, with the participation of about 600 people and
involving National Health Service, Emergency Services,
Red Cross, Coast Guard and Civil Protection, which evalu-
ated the response of the health system to a ship explosion (a
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combination of chemical and trauma incidents) producing
sudden release of toxicants in the zone of Palermo harbor
[24]. The PULSE live demo took place in Cork (Ireland)
in September 2016 aiming at testing the performance of
a different decision support platform in the context of a
stadium-crush scenario during a concert [25]. Evaluation
results from the PULSE and IMPRESS projects are still not
available, but the interested reader is referred to the material
available on the websites of the projects.

A preliminary version of the models (limited to the
physiological evolution) has been presented in the confer-
ence publication [16]. With respect to that work, this paper
addresses also the generation of the scenario of a trauma
incident, the model of the resource evolution, the problem
of resource allocation and the client-server implementa-
tion. With respect to the patient and health care model, the
present paper illustrates a novel interpretation in terms of
a hybrid dynamical system [17], and provides some sam-
ple tables of parameter values, resulting from interviewing
medical doctors and emergency surgeons working at the
Catholic University of Sacred Heart.

The paper is structured as follows: “Trauma incident
scenario generation” describes the scenario generation of a
trauma incident, “Patient and health care modelling” illus-
trates the model of patient and health care, “Resource
modelling” addresses the resource evolution model and
“Resource allocation in an integrated simulation” addresses
the problem of optimal resource allocation. “Implementation
and preliminary simulations” describes the principles of the
client-server implementation of the models and some pre-
liminary simulations, while “Concluding remarks and future
work” offers concluding remarks and poses some ideas for
future research work.

Trauma incident scenario generation

The description of the modeling platform starts from the
scenario generation, which consists in the generation of the
first frame (initial condition) for the evolution of the models
that will be described later.

We consider a possible set of trauma incidents:

– motorway accident;
– bridge collapse;
– ship explosion;
– train crash;
– stadium crush;

and we consider 6 possible trauma zones, which correspond
to the regions of the human body usually considered in the
evaluation of the Abbreviated Injury Scale (AIS) [18]:

– Head/neck

– Face
– Chest
– Abdomen
– Extremities
– External

to which we assign some estimated probabilities of occur-
rence, which depend on the type of incident. Table 1
includes reasonable values for a stadium incident.

The scenario generator takes, as inputs, the number of
total number of “bystanders”, a size of the incident (which
affects the average ratio of injured people over the total
number of bystanders), the spatial coordinates of the inci-
dent and its physical dimensions (to consider the area
beyond which there are no people affected).

A random number of injured people (virtual patients)
is then generated over the total number of bystanders,
depending (on average) on the prescribed size. The affected
people have individual spatial coordinates and are randomly
distributed over the given area, according to some spa-
tial probability density depending on the kind of incident.
Accordingly, affected individuals have in general different
distances from the incident location.

Each virtual patient is generated with independently sam-
pled random lesions. A degree of severity (a number in the
real interval [0, 1]) is associated to each lesion, with the
following properties:

– it is decreasing (on average) with the distance of the
person from the incident;

– it depends on a random individual component.

Future versions of the model will take into account
conditional dependences among different lesions.

Patient and health care modelling

This section describes a model of the physiological evolu-
tion of the patient conditions, as a consequence of a trauma
incident and with the possible presence of therapies. It con-
stitutes the core of our modeling platform, due to its tight
interaction to all the other modules.

In agreement with the ABCDE Primary Survey and
Resuscitation [19], there are only five main ways to die,
from fatal complications involving: Airways (A), Breathing

Table 1 Estimated probabilities of lesion occurrences for a stadium
incident

Head/neck Face Chest Abdomen Extremities External

20 % 10 % 80 % 30 % 40 % 20 %



234 Page 4 of 12 J Med Syst (2016) 40: 234

(B), Circulation (C), Disability of Nervous System (D),
Extra Damage or Exposure (E). Accordingly, the dynamic
model of an individual affected by an incident consists in a
set of 10 normalized physiological variables, based on the
ABCDE paradigm:

(A1) airway patency: intact, at risk, partially obstructed,
or completely obstructed;

(B1) respiratory rate and drive;
(B2) tidal volume and mechanics;
(B3) oxygen saturation and transport;
(C1) heart pump function;
(C2) circulation filling and resistances;
(D1) central nervous system function, Glasgow Coma

Scale (GCS);
(D2) seizures;
(D3) cholinergic activity;
(E1) exposure, hypothermia, burns.

Despite its simplicity, the 10 physiological variables cap-
ture some major characteristics of interest for the health
evolution of a person involved in a trauma incident.

We consider 20 state variables, given by a vector x of
10 normalized physiological values (with values in [0, 1])
and a vector v of 10 velocities (rates of change, with val-
ues in R), for the 10 physiological variables. Vectors x and
v may be also referred to as “positions” and “velocities”, by
analogy with kinematic systems. The physiological value 1
indicates full health (100 %), while 0 indicates the phys-
iological value under which the individual conditions are
compromised (death).

As a modeling framework, we rely on the formalism
of (Stochastic) Hybrid System [17, 20], which we readapt
here with the purpose of keeping the notation as simple
as possible. Hybrid Systems allow to describe, in particu-
lar, impulsive differential equations, i.e. dynamical systems
with a continuous dynamics (flow, represented as a vector
field F ) and a discrete number of discontinuities in time
(jumps or resets, modelled by the jump function G), due to
events (or transitions) that can be controlled or uncontrolled
(either non-deterministic or stochastic) or due to the state
variables reaching the boundary of their domain.

Our model considers a simple model of continuous evo-
lution, described by the continuous flow function F :

F :
{

ẋ = v

v̇ = 0
(1)

and with initial (nominal) condition x(0) = 1, v(0) =
0, where 1 and 0 are the 10-dimensional vectors of ones
and zeros, respectively. Note that the initial condition is an
equilibrium of Eq. (1), corresponding to full health.

It is readily seen that the velocities do not change, except
at the event times. As a consequence, the velocities in v

are piecewise constant functions of time, while the physi-
ological variables in x are piecewise linear. The values of
discontinuities at the event times are determined according
to the jump/reset function G:

G :
{

x+ = sat[0,1] (x + �)

v+ = v + α
(2)

where x+ and v+ indicate that the next values of x and v as
a function of current states, � and α are dependent of the
kind of transition, and sat[0,1] is the component-wise satu-
ration operator in the interval [0, 1]. We consider 2 types of
events/transitions:

– incidents: this is a case of (�, α) being negative, to
model the effect of the lesions affecting the individual
(see “Trauma incident scenario generation”);

– health care: this is a case of (�, α) being positive, to
model the effect of the therapies on the individual (see
also “Resource modelling”);

Some remarks are in order: incident transitions are
uncontrolled, i.e. they are considered as external events. In
this case, the values (�, α) in the reset function (2) have
a stochastic characterization, depending on the lesions and
severities sampled at the incident generation (see “Trauma
incident scenario generation”). In our framework, there is
typically just one incident event at the beginning of the sim-
ulation, but the model supports multiple incidents without
loss of generality. In this case, the model would follow the
superposition principle, with linearly increasing and addi-
tive response to damages. Table 2 includes the maximal

Table 2 Maximal
instantaneous damages � and
damage rates α (expressed in
[1/h]) for the considered
trauma lesions and some
physiological variables

B1 B1 · · · C2 C2 · · · D1 D1 E E

� α · · · � α · · · � α � α

Head/neck −0.3 −1.2 · · · 0 −0.6 · · · −0.9 −1.2 −0.1 −0.3

Face −0.2 −1.2 · · · 0 −0.6 · · · −0.6 −0.6 −0.1 −0.3

Chest −0.9 −0.6 · · · −0.9 −1.2 · · · −0.4 −0.6 −0.1 −0.3

Abdomen −0.2 0 · · · −0.9 −1.2 · · · −0.2 0 −0.1 −0.3

Extremities 0 0 · · · −0.5 −1.2 · · · −0.2 0 −0.1 −0.3

External 0 0 · · · −0.4 −0.6 · · · 0 0 −0.9 −0.6
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instantaneous damages � and the maximal damage rates
α for the considered trauma lesions and some physiolog-
ical variables. For the general cases of a patient affected
by several lesions, the values of (�, α) in the reset func-
tion (2) will be computed as the sum of the (�, α) of the
corresponding lesions, weighted by their severities.

On the other hand, health care transitions are controlled
since they occur at times which are depending on the deci-
sion of the Health Care System and on the actual therapy
chosen for a patient. In this case, � and α in (2) are the
vectors of variations induced on the physiological variables
by the considered therapy. Table 3 includes the instanta-
neous improvements � and healing rates α for the some
therapies and some physiological variables. Symmetrically
to the case of multiple lesions, one can consider health
care resources that are able to deliver multiple therapies at
once (see “Resource modelling”). In this case, the values of
(�, α) in the reset function (2) will be computed as the sum
of the (�, α) of the therapies provided by the health care
resource allocated to the individual.

The second kind of discontinuity in (1) is given by the
state-dependent transitions, which we formalize as follows:

Gx :
{

v+
i = 0 if (xi == 0 && vi < 0)

or (xi == 1 && vi > 0) for some i.
(3)

The conditions posed in Eq. (3), called guard conditions
in the context of hybrid systems, guarantee the invariance
of state vector x in the set [0, 1]10. This kind of transi-
tion corresponds to the cases of either completely damaged
or perfectly restored physiological variable, namely it may
occur either when a physiological value xi reaches its lower
bound 0 due to a lesion (vi < 0), or when a physio-
logical value reaches its upper bound 1 due to a therapy
(vi > 0), respectively. In both cases, the jump function
resets the velocity vi to the null value, hence preventing the
physiological value xi from leaving its domain [0, 1].

We complete this section by defining a patient scoring
(color code) function. The patient scoring (which can be
assimilated to a triage code) provides a more qualitative
information with respect to the physiological continuous
variable; nevertheless, this score is important in medical
decision making because it gives an order of priority for
the intervention on affected individuals, especially when the

resources are not enough to satisfy the demand (see next
section).

We preliminary define the expected time of death (ETD)
as

ET D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
vi<0

i=1,...,10

− xi

vi
if min

i=1,...,10
xi > 0 && min

i=1,...,10
vi < 0

0 if min
i=1,...,10

xi = 0

+∞ otherwise

(4)

which is the minimum time (in hours) taken by each phys-
iological variable to reach its lower bound. ETD can be
regarded as the continuous output y = ET D(x, v) of the
hybrid model (1)–(3), depending just on the continuous
state. Then, we define some intervals of interest for the
ETD:

ET D

⎧⎪⎪⎨
⎪⎪⎩

∈ [0, ET Db) ⇒ Black code
∈ [ET Db, ET Dr) ⇒ Red code
∈ [ET Dr, ET Dy) ⇒ Yellow code
∈ [ET Dy, +∞) ⇒ Green code

(5)

where ET Db = 0.1 (6 minutes), ET Dr = 0.5 (30 min-
utes) and ET Dy = 6 (6 hours) are possible threshold values
of the ETD under which the color code is considered black,
red, yellow, respectively. Note that the color code abstracts
into a set of 4 possible values the information of the contin-
uous state, so it could be also restated as a mode of behavior
(or discrete state) for the physiological model. This intro-
duces additional state-dependent jumps depending on the
progressive worsening of the color code in absence of health
care.

Figure 1 illustrates and summarizes the model described
so far. Some formalism is skipped for the sake of clarity, in
particular transitions from any discrete state to discrete state
are allowed (driven by incidents and health care delivery),
including self-loops on the discrete states.

A possible evolution starts from the initial condition
(x, v) = (1, 0), which is an equilibrium point of the
system, until an incident occurs. An incident causes in gen-
eral an uncontrolled transition (dashed arrow) into another
state (for example corresponding to a yellow color code).
Further state-dependent transitions (dash-dot arrows in the
figure) into red and black codes are possible, as long as the

Table 3 Maximal
instantaneous improvements �

and healing rates α (expressed
in [1/h]) for the some
therapies and some
physiological variables

B1 B1 · · · C2 C2 · · · D1 D1 E E

� α · · · � α · · · � α � α

Oxygen 0 0.06 · · · 0 0 · · · 0 0.06 0 0

Intubation 1 60 · · · 0 0 · · · 0.1 0.3 0 0

Ambu bag 0.5 30 · · · 0 0 · · · 0.05 0.15 0 0

Saline infusion 0 0 · · · 0.2 6 · · · 0 0 0.2 3

Blood infusion 0 0 · · · 0.4 6 · · · 0 0 0.1 3
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Fig. 1 Illustration of the hybrid system describing the patient and
health care model. The aggregated vector (x, v) denotes the contin-
uous state, while y is the continuous scalar output representing the
ETD. There are 4 modes or discrete states associated with the color
codes. The initial condition is indicated by an ingoing arrow on the
green mode. State-dependent, uncontrolled and controlled transitions

are denoted by dash-dotted, dashed and solid arrows, respectively.
The guard conditions governing the state-dependent transitions are
indicated by square brackets. The jump functions (resets) for con-
trolled/uncontrolled transitions are included in boxes. The effects of
incidents and health care delivery correspond to negative and positive
values for the entries in (�, α), respectively

patient keeps worsening in absence of therapies. At some
time(s), one or more therapies are delivered (controlled tran-
sitions, solid arrows), so that the continuous state is reset
(by means of the pair (�, α)) and the color code shows
an improvement. The evolution will go on until either the
healthy equilibrium (x, v) = (1, 0) is restored or the death
equilibrium (x, v) = (0, 0) is reached.

Resource modelling

As described in the previous section, therapies are usually
provided by health care assets or resources, which pro-
vide more than a therapy at the same time. An example
is given in Table 4 for a subset of possible resources and

therapies. Additionally, in an integrated simulation, health
care resources (including hospitals) have a physical posi-
tion, hence a relative distance from the incident, which
affects the minimum possible delay in providing the health
care. Last, but not least, a therapy can be provided only if
a resource is available and able to deliver such a therapy. A
model of logistic evolution of the health care resources is
then necessary to take into account the health care needs.
This is object of this section.

The optimal dispatch of the injured people according to
the spatial position/availability of the resources (and also
traffic condition) in a major incident goes beyond the scope
of the present paper, mainly because the problem can be
easily solved in real-time contexts by means of numer-
ical solvers implementing (approximated) minimum-path

Table 4 Logical matrix of
health resources vs. included
therapies, for a subset of
resources and therapies

Resource vs. Therapy Oxygen Intubation Ambu bag Cardio Surgery Blood

Ambulance X X X

Emergency Room X X X X

Operating Theatre X X X X X

First Responders X X

Adv. Medical Post X X X

The symbol X indicates that a given resource can provide the corresponding therapy
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strategies. Instead, our resource modeling currently focuses
on two different aspects:

– the total number of resources increases in time, since
(depending on the severity of the incident) a number of
additional health assets can be made available after the
occurrence of the event (hospital surge capability [15]);

– the number of allocated resources varies in real-time
during the incident management (up to 12-24 hours
from it) according to the number of affected people,
their lesions, and the kind of therapies they require
(see “Trauma incident scenario generation”–“Patient
and health care modelling”).

While the current level of allocated resources can be
easily tracked by the local health services and electronic
records (and it is difficult to model a priori, mainly because
of lack of information and general assumptions), the pre-
diction of the total number of resources can be performed
according to the following model, based on a Hill function:

L(t) =
⌊
L0 + �max

(t − t0)
γ

(t50 − t0)γ + (t − t0)γ

⌋
t ≥ t0,

(6)

where �·� indicates the largest previous integer and
– t0 is the initial time;
– L0 is the nominal amount of resource at the initial time

t0;
– �10 = L0 is the nominal increase of the resource cor-

responding to the value num aff ected = 10, where
num aff ected denotes the total number of injured
people;

– �max = �10 log(num aff ected) is the maximal
increase of the resource;

– t50 is the time required to reach half of the maximal
increment of the resource;

– γ affects the steepness of the function, in particular the
rate of increase of the resource around t50.

Note that the previous model considers assets with inte-
ger values and assumes that the larger is the number of
affected people, the more additional resources can be made

Fig. 2 Examples of trends for the Hill function and different parame-
ter values

available, which is a common assumption in surge capacity
modeling. The current level of resources available for fur-
ther allocation is given by the difference between L(t) and
the number of already employed assets.

Possible trends for the Hill function, for different param-
eters and same initial values, are illustrated in Fig. 2.
Alternative choices, such as sigmoid (logistic) functions, are
also possible. A sample of the parameters fitted for the Hill
case can be found in Table 5.

Resource allocation in an integrated simulation

In the previous two sections, we studied two independent
models of evolution for the individual patient conditions
and for resources availability. While, as already mentioned,
a full integration of those models for the goal of decision
support is out of the scope of the present work, in this
section we provide some insights into the problem of the
optimal allocation of the available resources with respect to
the health care needs of the affected people.

Consider an incident involving N people and with M

different types of resources available. Given a patient char-
acterized by a health condition (x, v) at some time t , we
define for each resource j characterized by a pair of vec-
tors (�j , αj ) (see “Patient and health care modelling”) the
quantities (letters “ET” stand for “expected time”)

ET Dj(x, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
vi+α

j
i <0

i=1,...,10

− xi+�
j
i

vi+α
j
i

if min
i=1,...,10

xi > 0 && min
i=1,...,10

vi + α
j
i < 0

0 if min
i=1,...,10

xi = 0

+∞ otherwise

(7)

ET 90j (x, v) = inf{t ≥ 0 : xi + �
j
i + (vi + α

j
i )t ≥ 0.9 ∀i = 1, ..., 10} (8)

ET 90+
j (x, v) = inf{t̄ ≥ 0 : xi + �

j
i + (vi + α

j
i )t ≥ 0.9 ∀i = 1, ..., 10 ∀t ≥ t̄} (9)
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Table 5 Critical resources to
be increased for some health
resources involved in a trauma
incident scenario

Resource name Unit Basal Level L0 [in units] Time t50 [h]

Triage patients/h 2 20

Emergency Room number of beds 2 6

Intensive Care Unit number of beds/function 4 70

General Surgery number of teams in house 1 1

Cardio Surgery number of teams in house 2 1

Ambulances number 1 1

Values are given for high-level trauma centers

Some comments are in order. The definition of
ET Dj(x, v) generalizes the one of expected time of death
ETD in Eq. (4) when the resource j is applied to a patient
characterized by the pair (x, v). Instead, ET 90j (x, v) rep-
resents the first time at which the considered individual
shows at least the 90 % of health status on all the physiolog-
ical variables. In this sense, ET 90j (x, v) is a good indicator
of the patient health within a short time horizon, but it does
not ensure that the patient conditions will not drop under
90 % in the future. Hence, we also define a permanent

recovery time ET 90+
j (x, v) ≥ ET 90j (x, v), representing

the time after which the patient conditions stay definitively
above the 90 % threshold.

The previous definitions allow to prioritize the resources
for a given patient according to different concepts of opti-
mality, in particular by choosing the resource maximizing
the expected death time ET D or minimizing the recov-
ery time ET 90 or ET 90+. Hence, one can define three
M-dimensional vectors RD, R90 and R90+ including the
required amount of each resource type in the three cases:

RDj =
∣∣∣∣∣
{

lk = min

{
arg sup

j̄=1,...,M

ET Dj̄ (x
k, vk)

}
: lk = j, k = 1, ..., N

}∣∣∣∣∣ , j = 1, ...,M,

R90j =
∣∣∣∣∣
{

lk = min

{
arg inf

j̄=1,...,M
ET 90j̄ (x

k, vk)

}
: lk = j, k = 1, ..., N

}∣∣∣∣∣ , j = 1, ...,M,

R90+
j =

∣∣∣∣∣
{

lk = min

{
arg inf

j̄=1,...,M
ET 90+

j̄
(xk, vk)

}
: lk = j, k = 1, ..., N

}∣∣∣∣∣ , j = 1, ...,M. (10)

For simplicity, in the case of multiple optimizers in the
expressions above, we choose the asset of minimal index
and the generic patient k is characterized by the state
(xk, vk).

The previous computations determine the vectors of re-
sources needed and are useful in an non-critical setting where
resources are not limited and the geographic distance of the
resources from the affected is not considered. In this case,
it is again possible (in principle) to resort to constrained
joint optimization (at the expense of higher computational
complexity) in order to achieve a suboptimal allocation.

In more realistic situations, logistic factors, traffic con-
ditions and actual limited resource availability play an
important role in determining the optimal resource alloca-
tion, since one needs also to take into account the worsening
of the patient conditions by the time the therapies are deliv-
ered. In this case, the resource evolution model in Eq. (6)
can be employed to increase the expected availability of
assets at future times. A formal integration of these models
will be object of future investigation.

The aforementioned non-idealities are difficult to include
formally in the model but are easier to test in a simula-
tion setting, by assuming limited resource availability. This
will be briefly illustrated in a simulation in the next section.
Full integration of the models and their use in a compre-
hensive live simulation in real settings are briefly discussed
in the Introduction and in the final remarks of this work
with reference to the projects IMPRESS [24] and PULSE
[25].

Implementation and preliminary simulations

The object of the present section is to illustrate the imple-
mentation architecture for the modeling platform explained
in the previous part of the article and to show preliminary
simulation results for the models described above.

To this aim, Fig. 3 shows a schematic description
of the architecture, which follows a simple client-server
paradigm: the scenario generator and the models have
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Fig. 3 Client-server architecture of the CNR-IASI modelling platform

been implemented by means of web services, running on
a LAMP (Linux-Apache-MySQL-Php) server running on
a workstation in the CNR-IASI Biomathematics Labora-
tory, located in the Gemelli Hospital in Rome, Italy. The
syntax and the input-output description of each service,
in terms of number and type of input-output parame-
ters, is contained in the Web Services Description Lan-
guage (WSDL) file, publicly available at the web address
http://biomat1.iasi.cnr.it/webservices/master/webservice.wsdl.

With the aim of exploiting the functionalities of the web
services, it is possible to build some software clients, which
connect to the CNR-IASI server by feeding the required
inputs and retrieving the output resulting from the compu-
tation of the running models (not limited to those described
in this paper). The exchange of information between client
and server occurs by means of the XML (eXtensibleMarkup
Language) [21] language according to the SOAP protocol

(Simple Object Access Protocol), which is often employed
to exchange information over computer networks in a struc-
tured way [22]. A major feature of SOAP is the indepen-
dence from any programming model, which allows to write
clients in any programming language, provided they are
able to exchange XML-based information with the server by
means of SOAP.

For the purpose of testing of the basic functionalities of
the modeling web services, we implemented some clients in
the Java language [23] in Netbeans IDE. Figures 4, 5 and 6
provide some screenshots of the clients calling the func-
tionalities of Scenario generator (ScenGen.php), Patient and
Health Care modeling (SickEvo.php and StatScoring.php)
and Resource evolution prediction (LogEvo.php).

Figure 4 shows the generation of a scenario, with a num-
ber of bystanders equal to 500 and low ratio of affected
people. The spatial coordinates are in the zone of Rome and
the minimum delay estimated to provide the health care is
around 30 minutes. The system generates 17 injured people,
with different lesions, and 3 red codes.

Figure 5 addresses the Patient and Health Care model
(web service). An individual with a damage in the variable
B3 (Oxygen Saturation) is evaluated as a yellow code. An
appropriate therapy is chosen and the conditions are evalu-
ated again after 1 hour, resulting in a green code since the
functionality is completely restored.

Figure 6 illustrates the Resource evolution modeling ser-
vice. A subset of inputs (number of affected people and pre-
diction interval) is entered and the availability of resources
in a high-level trauma center is evaluated; according to the
model, the number of emergency rooms is estimated to

Fig. 4 A Java client for the
Scenario generator

http://biomat1.iasi.cnr.it/webservices/master/webservice.wsdl
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Fig. 5 A Java client for the Patient and Health Care model, involving also the triage (color code) functionality

increase from 2 to 4 units within the prediction interval (12
hours).

We conclude this section by describing simulations
obtained running some of the models described in the theo-
retical part, and whose results are briefly synthesized in the
plot in Fig. 7. We ran the scenario generator illustrated in
“Trauma incident scenario generation” to build 500 affected
people in a severe incident, at different distances from the

event location. The average status of the patients right after
the event is around 50 % (by computing the mean of the 10
physiological variables).

At this point, the patient model in “Patient and health care
modelling” is called in absence of therapies. The average of
the individual linear trajectories results in a linear monoton-
ically decreasing average health trajectory (red dash-dotted
line in Fig. 7). We note that after 1 hour, the average patient

Fig. 6 A Java client for the Resource model
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Fig. 7 Simulation results for the evolution of the patient-health care
model applied to 500 individuals affected by lesions in a major inci-
dent. The curves are averaged with respect to the 10 physiological
values and to the 500 persons. Resources are allocated to maximize
the expected time of death in an ideal setting (unbounded resources,
blue solid line) and in a more realistic setting (limited resources, black
dashed line). The average trajectory in absence of health care is also
shown (red dash-dotted line)

condition drops under 30 %, implying that the absence of
health-care delivery within a couple of hours would result
in the health status of the population to be completely
compromised.

Then, as described in “Resource allocation in an integrated
simulation”, the optimal allocation of the resources is com-
puted by maximizing the individual expected time of death
(7) and assuming no bounds on the availability of assets.
The health care is allocated at different random times for all
the individuals, depending on their positions, with the aim of
simulating the delays due to different asset locations, trans-
portation of affected to the hospitals, etc. This explains the
cumulative behavior being nonlinear as a consequence of
the progressiveness in delivering the health care. The aver-
age health exceeds the 80 % after 1 hour in the optimal
allocation (blue solid line in Fig. 7).

Finally, we consider a case where resources are limited,
and about the 70 % of the health-care is provided optimally,
while the remaining 30 % of the remaining individuals are
queued or managed by means of sub-optimal resources. In
this case, the health system is able, however, to increase
(after an initial drop) the average patient condition, which
reaches the 65 % after 1 hour (black dashed line in Fig. 7).

Concluding remarks and future work

In this work, we presented a suite of interacting models
for the in-silico simulation of trauma incidents. The models

address the generation of the scenario, the physiological
evolution of the affected people, also in presence of ther-
apies, the prediction of the evolution of the health care
assets and the problem of resource allocation, possibly in
conditions of limited amount of resources (as often occurs
in major incidents). Parameters have been tuned thanks to
the expertise of physicians working in the fields of emer-
gency and trauma, with the possibility of further refinement.
On top of the modeling layer, the implementation is based
on a client-server paradigm, according to which the mod-
els (available in form of web services) are accessible via
Internet and called by software clients via SOAP protocol.
Preliminary simulations are also included.

Since the underlying physiological model is very general
(based on the ABCDE paradigm), the modeling platform
looks very promising for the possible extension to differ-
ent kinds of medical issues with respect to the considered
trauma incidents, involving e.g. chronic diseases and per-
sonalized health systems. We note that the provided web
services, covering a large number of modeling functionali-
ties (not limited to those described in this article) are ready
to be employed as a basic modeling layer for e.g. apps, per-
sonalized health systems and wearable devices for remote
health monitoring (pervasive health applications).

Some related ideas are currently being studied and will
be object of future research effort: the scenario generator
will address multiple non-instantaneous events, the patient
model will be upgraded to include further sources of dam-
age (generalizing the concept of lesion) and to consider
coupled effects on the physiological state; a function for the
random generation of symptoms from the current state and
damages will be implemented.

Finally, the problem of validation is under investigation,
including tests in realistic conditions, allowing for a further
refinement of models and parameters. With respect to this
point, the proposed models (with some modifications) are
already being used in the context of two funded projects,
aiming at evaluating the response of health systems to major
incidents in the context of live demos, with and without
model-based decision support.
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