
SYSTEMS-LEVEL QUALITY IMPROVEMENT

A Multilayer Perceptron Based Smart Pathological Brain
Detection System by Fractional Fourier Entropy

Yudong Zhang1,2,3,4 & Yi Sun5,6
& Preetha Phillips7 & Ge Liu8

& Xingxing Zhou1,5
&

Shuihua Wang1,2

Received: 13 February 2016 /Accepted: 16 May 2016 /Published online: 2 June 2016
# Springer Science+Business Media New York 2016

Abstract This work aims at developing a novel patholog-
ical brain detection system (PBDS) to assist neuroradiolo-
gists to interpret magnetic resonance (MR) brain images.
We simplify this problem as recognizing pathological
brains from healthy brains. First, 12 fractional Fourier en-
tropy (FRFE) features were extracted from each brain im-
age. Next, we submit those features to a multi-layer
perceptron (MLP) classifier. Two improvements were pro-
posed for MLP. One improvement is the pruning tech-
nique that determines the optimal hidden neuron number.
We compared three pruning techniques: dynamic pruning
(DP), Bayesian detection boundaries (BDB), and Kappa
coefficient (KC). The other improvement is to use the
adaptive real-coded biogeography-based optimization
(ARCBBO) to train the biases and weights of MLP. The
experiments showed that the proposed FRFE+KC-MLP+
ARCBBO achieved an average accuracy of 99.53 % based
on 10 repetitions of K-fold cross validation, which was
better than 11 recent PBDS methods.

Keywords Multilayer perceptron . Pathological brain
detection system . Fractional Fourier entropy .

Biogeography-based optimization . Real-coded . Pruning

Introduction

Pathological brain detection system (PBDS) can help physi-
cians interpret medical brain images accurately [1–3]. In hos-
pitals, the picture archiving and communication system
(PACS) can provide either 3D brain or only a single slice that
is associated to the foci within the brain [4–6]. Nevertheless,
scanning the whole 3D brain is expensive and time-
consuming [7–9], hence, we proposed a PBDS for single slice
brain images.

At present, neuroradiologists used many neuroimaging
methods to detect the brains by two ways: structural and func-
tional. The structural imaging measures the inner of the brain
structure, while the functional imaging measures its functions.
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In hospitals, structural imaging is commonly used by magnet-
ic resonance imaging (MRI), since it displays better resolution
for brain soft tissues and it does not relate to any radiations,
compared to traditional X-ray and computed tomography
(CT) [10].

In recent years, various PBDSs were developed by scholars
[11–13]. They can provide user-friendly, professional, and
even personalized assistance [14–16]. Their accurate perfor-
mances motivate an increasing willingness for neuroradiolo-
gists to make decisions, and for patients to monitor healthy
conditions regularly [17–19], with the help of PBDSs.

For instances, El-Dahshan, Hosny and Salem (2010) [20]
employed techniques of discrete wavelet transform (DWT)
and principal component analysis (PCA), and used K-
nearest neighbor (KNN). Dong, et al. (2011) [21] employed
a scaled conjugate gradient (SCG)method to train the artificial
neural network (ANN). Das, Chowdhury and Kundu (2013)
[22] combined Ripplet transform (RT) with PCA and least
square SVM (LS-SVM). Wu (2012) [23] used support vector
machine (SVM) to develop PBDS. Saritha, Paul Joseph and
Mathew (2013) [24] used and spider-web plots (abbreviated
as SWP) and wavelet-entropy (abbreviated asWE). They then
employed probabilistic neural network (PNN) as the classi-
fiers. El-Dahshan, et al. (2014) [25] employed the feedback
pulse-coupled neural network (PCNN) to preprocess the brain
images. Then they combined DWT and PCA to extract fea-
tures. They finally employed back propagation neural network
(BPNN). Wang, et al. (2015) [26] employed stationary wave-
let transform (abbreviated as SWT) to take place of traditional
DWT. Afterwards, to train the classifier, they designed a new
training algorithm, viz., the hybridization of PSO and ABC
(shorted as HPA). Sun, et al. (2015) [27] combined Hu mo-
ment invariants (HMI) with wavelet entropy. Generalized ei-
genvalue proximal SVM (GEPSVM) was employed.Wibmer,
et al. (2015) [28] proposed a novel Haralick texture as image
feature. Dong, Ji and Yang (2015) [29] proposed a new image
feature as wavelet packet Tsallis entropy (WPTE) and wavelet
packet Shannon entropy (WPSE). They proved WPTE is the
extension of WPSE, i.e., WPSE is a particular case of WPTE.
In this study, we employed WPTE to extract features.
Sheejakumari and Gomathi (2015) [30] proposed an improved
PSO and used neural network, in order to classify healthy and
pathological tissues. Dong, et al. (2015) [31] used stationary
wavelet transform (SWT) and PCA. Hemanth, et al. (2014)
[32] used iteration-free artificial neural network for abnormal
brain image classification. Zhang, et al. (2015) [33] tested
wavelet packet Tsallis entropy (WPTE) and fuzzy SVM
(FSVM).

Nevertheless, the classification accuracy of above methods
do not come across realistic requirement (high accuracy and
fast detection speed), those methods can still be enhanced
[34]. Yang, et al. (2015) [35] proposed a novel feature and
named it as fractional Fourier entropy (FRFE). Their method

had been proven to be better than most of existing PBDSs.
This study continued to use FRFE.

In addition, multilayer perceptron (MLP) belongs to
feedforward neural network (FNN), and MLP has obtained
successful applications in various fields. In this study, we pro-
posed two improvements for MLP. We compared three prun-
ing techniques and introduced a relatively new algorithm to
train its weights and biases.

The structure of this paper is organized as below: Section 2
provides the materials. Section 3 shows how to extract fea-
tures by FRFE. Section 4 describes the mechanism of MLP
and presented two improvements. Section 5 shows the exper-
imental results and discussions. Section 6 concludes the paper.
The abbreviation is listed in the end of this paper.

Materials

In PBDS, there are three open access dataset, which contain
different numbers of brain magnetic resonance (MR) images.
Dataset I (D_I) contains 66 brain images, Dataset II (D_II) con-
tains 160 images, and Dataset III (D_III) contains 255 images.

Figure 1 shows the samples of MR brains, which are
all T2-weighted and with sizes of 256x256. Here T2-
weighted (spin-spin) relaxation is to give better image
contrast, so as to show different anatomical structures
clearly. Note that all pathological brains in Fig. 1 suffer
from structural alternation, which is the basis of the suc-
cess of our PBDS. Here Meningioma, glioma, sarcoma are
of neoplastic disease. AD, AD with VA, PD, HD are of
degenerative disease. MS are of inflammatory disease.
SDH is of cerebrovascular disease. Therefore, the chosen
images are of various types of brain diseases.

Feature extraction

Fractional fourier transform

Suppose we have a function x(t), we have its a-angle fractional
Fourier transform (FRFT) F as:

Fa uð Þ ¼
Z

−∞

∞
x tð ÞZ t; u

���a� �
dt ð1Þ

here t represents the time, and u denotes the frequency. Z is
defined as the transform kernel.

Z t; u
���a� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− j cot a

p
�

exp jπ t2 cot a −2ut csc aþ u2cot a
� �� � ð2Þ

Here j represents the imaginary unit. A problem ex-
ists that both cot and csc will diverge for a is set the
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value of a multiple of π. By taking knowledge from the
limitation, equation (2) can be transformed to [36]

Z t; u
���a� �

¼

D t−uð Þ a = π ¼ 2 mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jcota

p
�

exp
jπ
�
t2 cot a

−2ut csc a
þu2cota

�
0
B@

1
CA a = π ≠ m

D t þ uð Þ a=π ¼ 2mþ 1ð Þπ

8>>>>>>><
>>>>>>>:

ð3Þ

where D represents the Diract delta function and m an
arbitrary integer. For 2D FRFT, we have not only angle
(denoted by a) for x-axis, but also another angle (denot-
ed by b) for y-axis.

To show the connection between standard Fourier trans-
form (SFT) and FRFT, we showed in Fig. 2 a given rectangu-
lar function rect(t) defined as

rect tð Þ ¼
0

���t��� > 1=2

1
.
2
���t��� ¼ 1=2

1
���t��� < 1=2

8>>><
>>>:

ð4Þ

In Fig. 2, we present the FRFT results with angles from 0 to
1 with equal increase of 0.1. Remember that the SFTof rect(t)
is sinc(u). In this figure, the red line represents the real part
while the blue line the imaginary part. It is easily observed that
the FRFT result approximate to the SFT result when the value
of a increases to 1. This falls within the theoretical prediction.

Another point can be deduce is that adding an extra parameter
a can provide more information than SFT does.

Fractional fourier entropy

Yang, et al. (2015) [35] combined FRFT with Shannon entropy,
and they proposed a novel image feature based on analysis ofMR
brain images. They named this new feature as FRFE. Suppose
Shannon entropy operation is defined as H, FRFE operation is
defined asE, FRFToperation is defined beforehand asF, we have

E ¼ H ⋅F ð5Þ

Nevertheless, Yang, et al. (2015) [35] used Welch’s t-test
(WTT) and found only 12 different angle combinations are
effective features for brain images. Those angle combinations
are listed in Table 1. Therefore, our FRFE followed this setting
and we defined it as

E xð Þ ¼ H ∪
a;bð Þ∈S

F xð Þ
� 	

ð6Þ

here x denotes any brain image (pathological or healthy) and S
denotes the angle combination set

S ¼
n

0:6; 1ð Þ; 0:7; 1ð Þ; 0:8; 0:9ð Þ;
0:8; 1:0ð Þ; 0:9; 0:8ð Þ; 0:9; 0:9ð Þ;
0:9; 1:0ð Þ; 1:0; 0:6ð Þ; 1:0; 0:7ð Þ;
1:0; 0:8ð Þ; 1:0; 0:9ð Þ; 1:0; 1; 0ð Þ

o ð7Þ

(a) Healthy (b) Meningioma (c) AD with VA (d) PD

(e) MS (f) HD (g) Sarcoma (h) AD

(i) Glioma (j) SDH (k) HE (l) Toxoplasmosis 

Fig. 1 Sample of MR brains.
(AD Alzheimer’s disease, PD
Pick’s disease, MS multiple
sclerosis,HEHerpes encephalitis,
HD Huntington’s disease, SDH
subdural hematoma, VA visual
agnosia)
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Multi-layer perceptron

A multilayer perceptron (MLP) is a type of neural network,
which maps given input data to expected target data. MLP
consists of multiple layers of nodes in a directed graph, each
layer connecting fully to the next. In this study, we used the
common one-hidden layer MLP, so our modal consists of an
input layer with d=12 nodes, a hidden layer with unknown
neurons with size ofM, and an output layer with c=1 neuron
with values of either true (denoting pathological) or false
(denoting healthy).

For generality (See Fig. 3), suppose [x(n), t(n)] de-
notes the n-th training sample, where x(n) = [x1(n), x2(n),
…, xd(n)]

T (n = 1, 2, …, N) denotes the input vector
with d-dimension, and t(n) = [t1(n), t2(n), …, tc(n)]

T the
target of c-dimension. The training of MLP is an

optimization problem of minimizing the sum of mean-
squared error (MSE) E between the target tk(n) and
realistic output yk(n).

E ¼
XN
n¼1

Xc

k¼1

yk nð Þ−tk nð Þð Þ2 ð8Þ

Assume g is the activation function in hidden layer, k
the dimension of target, h the activation function in
output layer, A the weights connecting the input to hid-
den layers and B the weights connecting hidden to out-
put layers, we have

yk nð Þ ¼ h
XM
j¼0

Bk jz j nð Þ
 !

ð9Þ

0 0.1 0.2

0.3 0.4 0.5

0.6 0.7 0.8

0.9 1.0

Fig. 2 FRFT of rect function (a
changes from 0 to 1)
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where zj(n) represents the output of j-th neuron in the
hidden layer and j= 1, 2, …, M, with definition of

z j nð Þ ¼ g
Xd
i¼0

Ajixi nð Þ
 !

ð10Þ

Nevertheless, traditional MLP suffers from two shortcom-
ings: (i) it is difficult to determine the optimal hidden neuron
number; and (ii) the weight training may be trapped into local
minimum points. To solve above problems, we make two
improvements in this work.

Pruning technique

The first major problem is to define the number of hidden
neurons. One popular technique is pruning technique (PT) that
forces hidden neuron number to be more than necessary, how-
ever, this will leads to a sparsely-connected network withmost

weights near-zero. Hence, iterative methods were proposed
that removes a neuron with the lowest (or the largest) score
in each step, until the error estimation increases. In what be-
low, we will introduce how to define error estimation e and the
score function S.

Error estimation

Apparent rate error (APER) was used as the error estimation e.
It can be obtained directly from the confusion matrix. Suppose
nij is at the i-th row and j-th column in the confusion matrix,
and obviously nij denotes the sample number of class i pre-
dicted to class j, then we have

eAPER ¼

Xc

i¼1

Xc

j¼1

ni j−
Xc

i¼1

nii

 !

Xc

i¼1

Xc

j¼1

ni j

ð11Þ

APER presents the proportion in percentage of the in-
correctly classified samples. Nevertheless, APER tends to
underestimate the true rate error due to overfitting.
Therefore, Stratified cross validation (SCV) was employed
over those datasets. Table 2 shows the statistical charac-
teristics for each dataset. For D_I, it is composed of 18
healthy and 48 pathological brains. Hence, it is common
to segment D_I to 6 folds that each fold contains 3
healthy and 8 pathological brains. For D_II that has 20
healthy and 140 pathological brains, we divide it into 5
folds so that each fold consists of 4 healthy and 28 path-
ological brains. The same thing is performed for D_III.

Measure of hidden neuron

Three measures of hidden neurons were introduced and would
be compared in the experiments. Murase, Matsunaga and
Nakade (1991) [37] proposed the dynamic pruning (DP) that
scores each hidden neuron j with following equation

SDPj ¼ 1

N

XN
n¼1

Xc

k¼1

B2
k jz

2
j nð Þ ð12Þ

where S represents the score. Silvestre and Lee Luan (2002)
[38] proposed a pruning based on Bayesian detection

1

j

M c

k

1

.

.

.

1

i

d

.

.

.

.

.

.

Hidden

Neuron

Output

Neuron

Input

Node

.

.

.

.

.

.

.

.

.

xi(n)
zj(n)

yk(n)

Fig. 3 Structure of one-hidden-layer MLP

Table 1 Angle
combination of FRFE for
brain images

Combination a b

1 0.6 1

2 0.7 1

3 0.8 0.9

4 0.8 1.0

5 0.9 0.8

6 0.9 0.9

7 0.9 1.0

8 1.0 0.6

9 1.0 0.7

10 1.0 0.8

11 1.0 0.9

12 1.0 1.0

Table 2 Statistical
characteristics Name Healthy Pathological Fold

D_I 18 48 6

D_II 20 140 5

D_III 35 220 5
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boundary (BDB). The measure is similar to equation (12)
except for the drop of quadratic terms as

SBDBj ¼ 1

N

XN
n¼1

Xc

k¼1

Bk jz j nð Þ ð13Þ

Based on Kappa coefficient (KC), Silvestre and Ling
(2014) [39] proposed a relatively new measure method.
Usually a higher KC indicates a better classifier. In extreme
cases, a zero value of KCmeans the success of the classifier is
by chance, and a value of one indicates perfect classification.
KC is defined as

SKC ¼
M
Xc

k¼1

nkk−
Xc

k¼1

nk•n•k

N2−
Xc

k¼1

nk•n•k

ð14Þ

Here nk • represents the sum of k-th row of the confusion
matrix, and n• k the sum of k-th column of confusion matrix.
The definition of KC of k-th neuron is without neuron kwithin
the network, by deleting all the weights those are linking to
neuron k. Finally, the neuron that has the largest KC should be
removed, since the network without its present has the best
performance.

Training method

The secondmajor problem is to determine its optimal weights.
Traditionally, back-propagation (BP) was the most common
method to train MLP [40–42]. During the last decade, swarm
intelligence methods were employed to train MLP, such as
genetic algorithm (GA) [43], improved hybrid GA [44], bac-
terial chemotaxis optimization [45], particle swarm optimiza-
tion [46], and cuckoo optimization [47]. Biogeography-based
optimization (BBO) [48] was a novel swarm intelligence
method and had been reported to present superior perfor-
mance to other swarm intelligence approaches.

Theory of BBO

The Biogeography-based optimization (BBO) was proposed
to solve optimization problems, based on the study of geo-
graphical distribution of species. It has three main operators:
migration, mutation, and elitism [49]. The objective function
is transformed as habitat suitability index (HSI), and the
search space is transformed as suitability index variables
(SIV) [50].

Migration Migration modifies each individual in the
habitat at random. Suppose s denotes the species num-
ber, S the maximum number of species, then the

emigration rate (a) and immigration rate (b) have a con-
nection as

b sð Þ ¼ B� 1−s
S

ð15Þ

a sð Þ ¼ A� s

S
ð16Þ

here A and B represents the maximal values of emigration and
immigration possibilities, respectively. In the special case of
A=B, we have

a sð Þ þ b sð Þ ¼ A ¼ B ð17Þ

MutationMutation occurs in the SIV level. Suppose the mu-
tation rate is represented as w, and

w sð Þ ¼ 1−p sð Þ
P

�W ð18Þ

here p(s) represents the solution probability of s. P represents
the maximum value of p, and W is the maximum mutation
rate. The mutation is implemented by

D
0
i ¼ Di þ rand 0; 1ð Þ � Di;max−Di;min

� � ð19Þ

where Di represents the decision variable in the search space,
andDi,max andDi,min represents the lower and upper bounds of
the i-th decision variable.

Elitism Elitism occurs in SIV level as mutation. It aims to
keep the best solutions within the ecosystem from mutation
operator [51]. Suppose the number of elitism is l, then we
perform elitism by taking b=0 for the l elites.

Adaptive real-coded BBO

Real-coded technique has been introduced to improve the per-
formance of BBO. Gong, et al. (2010) [52] extended original
BBO and presented a real-coded biogeography-based optimi-
zation with mutation (RCBBO). Later, Kumar and Premalatha
(2015) [53] introduced adaptivemechanism into RCBBO, and
proposed adaptive RCBBO (ARCBBO).

ARCBBO suggested two improvements to improve the
standard BBO. First, ARCBBO denotes individuals by real
parameter vector; hence, Equation (19) should be modified.
Kumar and Premalatha (2015) [53] proposed a probability
based Gaussian mutation to improve the convergence charac-
teristics as

D
0
i ¼ Di þ N m;σ2

i

� � ð20Þ

where N represents the Gaussian random number with mean
of m and variance of σ2. m is assigned with the value of zero.
Secondly, adaptive mechanism is introduced to the Gaussian
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mutation, in order to improve the worst half population set by
changing σi adaptively:

σi ¼ β kð Þ �
Xn
i¼1

Fi

f min


 �
� Di;max−Di;min

� � ð21Þ

where fmin represents the minimum fitness value among the
whole ecosystem.Fi represents the fitness value of i-th habitat.
β(k) represents an adaptive parameter at k-th iteration with the
form of

β kð Þ ¼ 1−
0:995

K
� k ð22Þ

where K denotes the maximum iterative number. Note that the
above adaptive mutation is only for mutation operator. For the
ecosystem initialization, we still use random generator. In all,
Table 3 shows the pseudocode of ARCBBO. We divide it into
eight steps.

Results and discussions

Our PBDS is composed of four parts: FRFE, MLP, PT, and
ARCBBO. For the PT, we introduced three different measures

of DP, BDB, and KC, respectively. Figure 4 shows the dia-
gram of this proposed PBDS.

For statistical analysis, the stratified cross validation (SCV)
was used [54]. 6-fold SCV was employed for D_I, and then 5-
fold SCV was used for D_II and D_III. Here pathological (P)
brains were assigned as true, and the healthy (H) brains were
assigned as false. The experiment all run 10 times. The effec-
tiveness of FRFT and FRFE were already reported in [35].

ARCBBO versus BBO and RCBBO

In the first experiment, we compared ARCBBOwith standard
BBO and RCBBO. We set the hidden neuron number to 20,
and no pruning technique was employed. The average accu-
racy of 10 runs of K-fold SCV was listed in Fig. 5.

The average accuracies of D_I, D_II, and D_III by BBO
were 99.09, 97.81, and 95.76 %, respectively. The average
accuracies of D_I, D_II, and D_III by RCBBO achieved
99.24, 97.69, and 96.12 %, respectively. What is more, using
ARCBBO, the average accuracies of D_I, D_II, and D_III
were increased to 99.85, 98.38, and 97.02 %, respectively.

Figure 5 shows that the comparison among the accuracy
results obtained by BBO, RCBBO and ARCBBO validated
that the ARCBBO is more effective in training MLP for
PBDS than both BBO and RCBBO. The reason is because
real-coded and adaptive mechanism in ARCBBO can improve

Fig. 5 Comparison among BBO, RCBBO, and ARCBBO (No Pruning
Technique)

Training set

FRFE MLP

FRFE

PT

(1) DP

(2) BDB

(3) KC

Optimization

(1) BBO

(2) ARCBBO

Trained MLP

Validation Set

Training

Evaluation

Ground-truth

Dataset

Stratified

Cross

Validation

Fig. 4 Diagram of our PBDS

Table 3 Implementation of ARCBBO

Step 1 Parameter Initialization. Initialize the elite number l,
the maximum species count S, the maximum
migration rate A, the maximum immigration
rate B, the maximum iterative number K.

Step 2 Initialization. Generate a set of habitats randomly.

Step 3 Evaluation. Compute habitat suitability index (HSI)
values for each habitat

Step 4 Update. For each habitat, update its species
number s, emigration rate a, and immigration
rate b.

Step 5 Emigration. Adjust the whole ecosystem by
migration on the basis of values of a and b.

Step 6 Mutation. Adaptive Gaussian mutation was
performed on the worst half set of ecosystem.

Step 7 Elitism. Force b= 0 for the l elites

Step 8 Output. Offer the best habitat if termination
criterion is reached. Otherwise, go to Step 3.
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population diversity and exploration ability, hence, leading to
better convergence and robustness than BBO. In the future, we
will also test other improved BBO variants, such as
multiobjective BBO [55], grouping BBO [56], optimal inte-
grated BBO [57], etc.

Pruning technique comparison

In this second experiment, we compared there different pruning
techniques (PTs). ARCBBOwas chosen since it has been proven
to have better performance than BBO in Section 5.1. The com-
parison was based on 10 repetitions of K-fold SCV. APER was
chosen as the error estimation. The results were shown in Fig. 6.

Here, NPT denotes no pruning technique. For D_I, the NPT,
DP, BDB and KC approach obtains average accuracy of 99.85,
100.00, 100.00, and 100.00%, respectively. For D_II, the NPT,
DP, BDB and KC approach obtains average accuracy of 98.38,
99.19, 99.31, and 99.75 %, respectively. For D_III, the NPT,

DP, BDB and KC approach obtain average accuracy of 97.02,
98.24, 98.12, and 99.53 %, respectively.

The pruning technique comparison in Fig. 6 suggests
that using pruning technique will get better performance
than not using pruning technique. The reason is the
MLP will contains plenty of near-zero weights and
biases if just assign a large hidden neuron number,
and thus exists overfitting for validation sets. After
employed pruning technique, the unnecessary neuron
number will be removed, and thus overfitting will be
avoided. The comparison also demonstrates KC method
is superior to DP and BDB methods.

The best proposed approach

From above, we will know the best proposed approach is
BFRFE+KC-MLP+ARCBBO^. In this section, we report
in Table 4 the classification results of each run and each fold
over the largest dataset D_III. Here we can see in the first run,
for example, our algorithm successes in predicting 50 in-
stances in Fold 1, and all 51 instances for other four folds.
Hence, our algorithm achieves an accuracy of 99.61 % for the
first run. Summarizing all 10 runs, the average accuracy of our
algorithm is 99.53 %.

Classifier comparison

In the fourth experiment, we compared the best proposed clas-
sifier BKC-MLP+ARCBBO^, with native Bayesian classifier
(NBC) [35] and support vector machine (SVM) [35]. All
methods used FRFE and ran 10 times of K-fold SCV. Table
5 shows the comparison results.

The classifier comparison in Table 5 shows that the
proposed KC-MLP+ARCBBO gives better classification
performance than both NBC and SVM. This indicates

Table 4 Classification
results over D_III Run F1 F2 F3 F4 F5 All

1 50 (98.04 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 254 (99.61 %)

2 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 50 (98.04 %) 51 (100.00 %) 254 (99.61 %)

3 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 50 (98.04 %) 51 (100.00 %) 254 (99.61 %)

4 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 50 (98.04 %) 50 (98.04 %) 253 (99.22 %)

5 51 (100.00 %) 50 (98.04 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 254 (99.61 %)

6 51 (100.00 %) 50 (98.04 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 254 (99.61 %)

7 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 50 (98.04 %) 254 (99.61 %)

8 50 (98.04 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 254 (99.61 %)

9 50 (98.04 %) 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 50 (98.04 %) 253 (99.22 %)

10 51 (100.00 %) 51 (100.00 %) 51 (100.00 %) 50 (98.04 %) 50 (98.04 %) 253 (99.22 %)

(F fold)

Fig. 6 Pruning technique comparison (NPT no pruning technique)
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that MLP may have a potential to excel NBC and SVM,
only if the users can carefully tune its hidden neuron
number and training algorithm.

Comparison to state-of-the-art approaches

In the fifth experiment, we compared FRFE + KC-
MLP + ARCBBO, with 11 approaches including
DWT + PCA + KNN [20], DWT + PCA + SCG-ANN
[21], RT + PCA + LS-SVM [22], DWT + PCA + SVM
[23], DWT + SE + SWP + PNN [24], PCNN + DWT +
PCA + BPNN [25], SWT + PCA + HPA-ANN [26],
WE +HMI +GEPSVM+RBF [27], WPTE +GEPSVM
[29], SWT + PCA + GEPSVM [31], WPTE + FSVM
[33]. Table 6 showed the comparison results together
with the feature number. Here we only report the results
over D_III, since the other two datasets are too small.
The abbreviations can be found in Table 7.

Table 6 shows that the proposed FRFE+KC-MLP+
ARCBBO achieved the highest average accuracy of
99.53 %, better than 11 state-of-the-art approaches, such
as DWT+PCA+KNN [20] with an average accuracy of
96.79 %, DWT+PCA+SCG-ANN [21] with an average
accuracy of 98.82 %, RT+PCA+LS-SVM [22] with an

average accuracy of 99.39 %, DWT+PCA+SVM [23]
with an average accuracy of 94.29 %, WE+SWP+PNN
[24] with an average accuracy of 98.86 %, PCNN+
DWT+PCA+BPNN [25] with an average accuracy of
98.24 %, SWT+PCA+HPA-ANN [26] with an average
accuracy of 99.45 %, WE+HMI+GEPSVM+RBF [27]
with an average accuracy of 98.63 %, WPTE +
GEPSVM [29] with an average accuracy of 99.33 %,
SWT+PCA+GEPSVM [31] with an average accuracy
of 99.02 %, and WPTE+FSVM [33] with an average
accuracy of 99.49 %. The improvements may be small
in degree, but it was obtained by 10 repetitions of K-
fold SCV. Hence, this improvement of our method is
reliable.

Conclusions and future researches

This paper proposed a new PBDS of BFRFE+KC-MLP+
ARCBBO^. The experiments validated its effectiveness as
achieved an average accuracy of 99.53 %. Our contributions
lie in three points. We compared three different pruning tech-
niques for MLP and showed KC is the most effective.
Besides, we introduced the ARCBBO and proved it give bet-
ter performance than BBO. Finally, the proposed PBDS is
superior to 11 state-of-the-art PBDS methods.

In the future, we will include images obtained by
other modalities, such as MRSI [58]. Further, other ad-
vanced pruning techniques will be tested. Deep learning
[59] will be considered after we obtain enough brain
images. Internet of things [60] will be another potential
research field to embed this PBDS.
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Table 6 Classification comparison over D_III

Existing approaches Feature
Number

Average
Accuracy

DWT+PCA+KNN [20] 7 96.79 %

DWT+PCA+SCG-ANN [21] 19 98.82 %

RT+PCA+LS-SVM [22] 9 99.39 %

DWT+PCA+SVM [23] 19 94.29 %

WE+SWP+PNN [24] 3 98.86 %

PCNN+DWT+PCA+BPNN [25] 7 98.24 %

SWT+PCA+HPA-ANN [26] 7 99.45 %

WE+HMI+GEPSVM [27] 14 98.63 %

WPTE+GEPSVM [29] 16 99.33 %

SWT+PCA+GEPSVM [31] 7 99.02 %

WPTE+FSVM [33] 16 99.49 %

FRFE+KC-MLP+ARCBBO (Proposed) 16 r

(Bold means the best)

Table 5 Classifier comparison (FRFE were used for all)

Classifier D_I D_II D_III

NBC [35] 97.12 % 95.94 % 95.69 %

SVM [35] 100.00 % 99.69 % 98.98 %

KC-MLP+ARCBBO (Proposed) 100.00 % 99.75 % 99.53 %
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