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Abstract Web-delivered trials are an important component
in eHealth services. These trials, mostly behavior-based,
generate big heterogeneous data that are longitudinal, high
dimensional with missing values. Unsupervised learning
methods have been widely applied in this area, however,
validating the optimal number of clusters has been challeng-
ing. Built upon our multiple imputation (MI) based fuzzy
clustering, MIfuzzy, we proposed a new multiple imputation
based validation (MIV) framework and corresponding MIV
algorithms for clustering big longitudinal eHealth data with
missing values, more generally for fuzzy-logic based clus-
tering methods. Specifically, we detect the optimal number
of clusters by auto-searching and -synthesizing a suite of
MI-based validation methods and indices, including conven-
tional (bootstrap or cross-validation based) and emerging
(modularity-based) validation indices for general clustering
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methods as well as the specific one (Xie and Beni) for
fuzzy clustering. The MIV performance was demonstrated
on a big longitudinal dataset from a real web-delivered trial
and using simulation. The results indicate MI-based Xie
and Beni index for fuzzy-clustering are more appropriate
for detecting the optimal number of clusters for such com-
plex data. The MIV concept and algorithms could be easily
adapted to different types of clustering that could process
big incomplete longitudinal trial data in eHealth services.
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Introduction

In eHealth services, web-delivered trials or interventions are
in increasing demand due to their cost-effective potential
in accessing a large population [1]. These trials commonly
generate big, complex, heterogenous and high-dimensional
longitudinal data with missing values. These data have the
typical five “V” properties of big data [2]. Specifically, the
Volume of such data is substantially large in terms of the
number of participants and attributes, with which traditional
clinical trials are incomparable; its Variety refers to different
web-delivered components; its Velocity is undoubtly supe-
rior to traditional offline trials, because the data are recorded
real-time; its Veracity is obvious because of its unstructured
nature and messiness; and its Value would be substantial as
long as its efficacy is clarified.

Our line of research focuses on multiple imputation
based fuzzy clustering (MIfuzzy), as it fits better to longitu-
dinal behavioral trial data than other methods based on our
previous studies [3–5]. There is a paucity of literature in val-
idating the clustering results from big longitudinal eHealth
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trial data with missing values and our line of research
[3–6] attempts to fill this gap. Probabilistic clustering (e.g.,
Gaussian Mixture models [7]) and Hidden Markov Model-
based Bayesian clustering [8], Neural networks models [9,
10] (e.g, Kohonen’s Self Organizing Map, SOM), Hierarchi-
cal clustering [11], Partition- based clustering (e.g, K-means
or Fuzzy C Means) are commonly used for clustering and
demonstrated efficiently for specific data structure in other
fields. However, these methods have at least one of these
following disadvantages and are less appealing to big behav-
ioral trial data which are typically high dimensional, het-
erogeneous, non-normal, longitudinal with missing values:
Assumption of underlying statistical distributions (Gaus-
sian) or prior distributions (Bayesian approach); (slow)
convergence to a local maximum or no convergence at all
especially for multi-modal distributions and large propor-
tions of missing values with high-dimensional data and
many clusters; unclear validation indices or procedures;
inability to handle missing values or incorporate informa-
tion about the shape and size of clusters; computational
inefficiency; and their unknown utility in behavioral trial
studies. With a pre-specified number of clusters, MI-Fuzzy
was demonstrated to perform better than these methods
in terms of its clustering accuracy and inconsistency rates
using real trial data [3–5].

As aforementioned, missing data are common in longitu-
dinal trial studies [3, 12, 13]. The performance of MI-Fuzzy
was evaluated under these three mechanisms: Missing Com-
pletely at Random, Missing at Random (MAR) and Missing
not at Random (NMAR). The preliminary results indi-
cate that MIfuzzy is invariant to the three mechanisms and
accounts for the clustering uncertainty in comparison to
non- or single-imputed fuzzy clustering [14].

Built upon our multiple imputation (MI) based fuzzy
clustering, MIfuzzy [4, 6, 15], we proposed MI-based val-
idation framework (MIV) and corresponding MIV algo-
rithms for clustering such big longitudinal web-delivered
trial data with missing values. Briefly, MIfuzzy is a new tra-
jectory pattern recognition method with a full integration
and enhancement of multiple imputation theory for miss-
ing data [3, 16–23] and fuzzy logic theories [24–26]. Here,
we focus on cluster validation and extend traditional valida-
tion of complete data to MI-based validation of incomplete
big longitudinal data, especially for fuzzy-logic based clus-
tering [27–29]. Unlike simple imputation such as mean,
regression, and hot deck that cause bias and lose statisti-
cal precision, multiple-imputation accounts for imputation
uncertainty [30–32].

To build the MIV, we will consider two clustering stabil-
ity testing methods, cross-validation and bootstrapping; to
adapt to fuzzy clustering, we will use Xie and Beni (XB),
a widely-accepted fuzzy clustering validation index [33–
35], and another newly emerging index, modularity [36, 37].

All four validation methods will be integrated with MI to
demonstrate our proposed MIV framework.

Clustering stability has been used in recent years to
help select the number of clusters [38–40]. It measures the
robustness against the randomness of clustering results. The
core idea is based on the intuition that a good clustering will
produce a stable result that does not vary from one sample
to another. The clustering stability method can be used in
both distance based and non-distance based clustering meth-
ods, such as model based clustering [41–43] and spectrum
clustering [44–46]. Bootstrap and cross-validation are two
common clustering stability testing methods. Bootstrap is
a statistical technique to assign measures of accuracy, such
as bias, variance and confidence intervals, to sample esti-
mates [47–49]. Bootstrap is used when the sampling size
is small or impossible to draw repeated samples from the
population of interest. In such cases, bootstrap can be used
to approximate the sampling distribution of a statistic [50–
52]. Cross-validation can be used in clustering algorithms to
estimate its predictive strength [53–56]. In cross-validation,
the data is split to two or more partitions. Some partitions
are used for training the model parameters, and the others,
namely the validation (testing) set, are used to measure the
performance of the model.

Two types of cross-validation can be distinguished,
exhaustive and non-exhaustive: The first one includes leave-
p-out and leave-one-out cross-valuation; the latter does not
compute all ways of splitting the original data. The non-
exhaustive cross-validation contains k-fold cross-validation,
holdout and repeated random sub-sampling validation [57,
58]. The holdout method is the simplest among cross-
validation methods, with which the data set is only separated
into one training and one testing set. Although computation-
ally efficient, the evaluation may be significantly different
depending on how the division of the dataset is made
between the training and testing sets. The k-fold cross val-
idation improves and generalizes the holdout method by
dividing a dataset into k subsets, where the variance of
the resulting estimate is reduced as k is increased. A vari-
ant of this method is called repeated random sub-sampling
validation, also known as Monte Carlo cross-validation to
randomly divide the data into a test and training set k dif-
ferent times. Due to randomness, some data may never
be selected while others may be selected more than once,
resulting in potential overlapped validation subsets. The k-
fold cross validation was used in this work to ensure that
all data points are used for both training and validation, and
each data point is used for validation exactly once. Modu-
larity can measure the structure of networks or graphs [36,
37, 59], and can be used to cluster data by transforming the
data points into a graph with their similarities [60]. Thus,
modularity can be used to determine the number of clus-
ters in data analyses. Most importantly, for fuzzy clustering,
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Table 1 Notations

Symbol Description

O Observations

ψ Clustering method

X, Y Independent sampling from observations

�(X, k) Results of clustering data X into k clusters

D (ψ1, ψ2) clustering distance

V ∗
ij (X

∗
1 , X∗

2 , k) clustering similarity

M Number of imputations

r Missing rate

d Dimensions

N Number of observations

Nbi Number of burn-in iteration

K Maximal number of clusters

B number of bootstrapping

U number of permutation

s Clustering stability

MI-S MI-based stability

MI-SBS MI-based stability using bootstrapping

MI-SCV MI-based stability using cross-validation

MI-XB MI-based Xie and Beni index

MI-Q MI-based modularity index

Xie and Beni [33], this widely accepted validation fuzzy
clustering index was incorporated into this MI validation
framework.

Here, we propose MIV algorithms to auto-search, com-
pare, synthesize and detect the optimal number of clus-
ters for incomplete big longitudinal data based on MI-
based clustering stability tests (MI-cross-validation and
MI-bootstrapping), MI-XB, and MI-modularity. The rest
of the paper is organized as follows: Section “Multiple-im
putation-based validation framework (MIV) for incomplete
big web trial data in eHealth” presents MIV theoretical
framework and algorithms; Section “Numerical analyses
and simulation” performs numerical analyses using real and
simulated incomplete big longitudinal data and simulation;
and Section “Conclusion” concludes the paper. Table 1 lists
notations used in this paper.

Multiple-imputation-based validation framework
(MIV) for incomplete big web trial data in eHealth

Our MI-based validation framework (MIV) is designed to
detect the optimal number of clusters from incomplete big
longitudinal data in eHealth, using a suite of MI-based
methods and indices, such as MI-based clustering stability
(MI-S), MI-based XB index (MI-XB) and MI-based Modu-
larity (MI-Q). The procedure of the proposed MIV platform
is described in Fig. 1. Briefly, the MIV is an auto- iterative
validation procedure where the MI-based index is calcu-
lated for a set of cluster numbers on each imputed dataset,
incorporating the idea of the multiple imputation theory to
minimize the “uncertainty” in selecting the optimal number
of clusters for incomplete data sets.

MI-based clustering stability for incomplete big web
trial data in eHealth

For incomplete big longitudinal web trial data, rather than
single imputation, we incorporate Multiple Imputations
(MI) to impute missing values to reduce imputation uncer-
tainty [30–32]. In the imputation step, Markov chain Monte
Carlo (MCMC) was used to estimate the missing values.
The expectation-maximization (EM) algorithm was first
applied to find the maximum likelihood estimates of the
parameters for the distribution of incomplete big web trial
data, then Markov chains were constructed such that the
pseudo random samples were drawn from the limiting, or
stationary distribution of the data to stabilize to a stationary
distribution [17]. Specifically, denote g as different miss-
ing patterns, the maximized observed data log likelihood is
expressed as,

log L(θ |Yobs) =
∑G

g=1
log Lg(θ |Yobs), (1)

in which

log Lg(θ |Yobs) = −ng

2
log

∣∣�g

∣∣

−1

2

∑

ig

(yig − μg)
′�g

−1(yig − μg),

(2)

Fig. 1 The proposed MIV
platform for big web trial data in
eHealth
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where ng is the number of observations in the g-th group,
yig is a vector of observed values corresponding to observed
variables, μg is the corresponding mean vector, and �g is
the associated covariance matrix. The EM algorithm was
also used to find the posterior mode where the observed
data posterior density is used instead of the observed data
likelihood as it is guaranteed to be non-decreasing at each
iteration. The logarithm of the observed data posterior
density is calculated by

log P(θ |Yobs) = L(θ |Yobs) + log π(θ), (3)

in which

log π(θ) = −m + p + 2

2
log |�| − 1

2
tr�−1M0,

M0 = �−1 + τ(μ − μ0)(μ − μ0)
T , (4)

where (τ, m, μ0, �) are the parameters for the normal
inverted -Wishart prior. When the prior information about
the is unknown, we apply the Bayes’ theorem with the prior,

π(θ) ∝ |�|−
(

p+1
2

)

, (5)

which is the limiting form of the normal inverted-Wishart
density as τ → 0, m → −1 and �−1 → 0. The prior dis-
tribution of μ0 is assumed to be uniform and μ0 → 0. This
noninformative prior is also called jeffreys prior in [17].

Next, MCMC was used to impute the missing values
by making pseudorandom draws from the probability dis-
tributions with parameters obtained by the EM algorithm.
Information about known parameters can be expressed in
the form of a posterior probability distribution by Bayesian
inference,

p(θ |y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (6)

The entire joint posterior distribution of the known vari-
ables can be simulated and the posterior parameters of
interest can be estimated.

Similar to the EM algorithm, the imputation algorithm
has two steps, 1) I-step: make pseudorandom draws from
the probability distribution for the missing values,

Y
(t+1)
mis ∼ P(Ymis |Yobs, θ

(t)), (7)

and 2) P-step: update the parameters,

θ(t+1) ∼ P(θ |Yobs, Y
(t+1)
mis ). (8)

If the parameter is multivariate normal, the I-step
involves the independent simulation of random normal vec-
tors for each row in the incomplete big dataset.

Assuming a normal distribution of the incomplete big
data and Jeffreys prior, the parameter θ is updated at the
P-step by

�(t+1)|Y ∼ W−1(N − 1, (N − 1)S),

μ(t+1)|(�(t+1),Y) ∼ N

(
y,

1

n
�(t+1)

)
, (9)

where n is the number of observations, Y is completed
data generated by previous I-step, y is the mean vector, and
(N − 1)S = Y′Y = ∑

i

yiy
T
i .

To obtain multiply imputed datasets, Multiple Markov
Chains were constructed, where the I- and P-steps were
performed iteratively until the stationary distributions were
reached. The initial portion of these Markov chain samples,
called burn-in, were discarded, where the default was set
as 200 according to literature [17, 61]. After the burn-in
periods, the Markov Chains continue, as shown in Fig. 2,
until additional I-steps were performed to obtain a complete
dataset from the stationary distribution for each Markov
chain, marked as Xi , i.e., the i-th imputation data.

A fuzzy clustering method ψ is applied to each imputed
dataset Xi, i = 1, 2, ...,M , where M is the number of impu-
tations, �i,k = ψ(Xi, k), i = 1, 2, ...,M, k = 1, 2, ..., K ,
where ψ is a fuzzy clustering method that clusters the data
X into k latent groups. K is the maximum number of clus-
ters. For each k, M clustering outputs were obtained, and
each case has M cluster memberships. We count how many
times a case belongs to a cluster and the maximum count
determines his final cluster membership. For the j-th case
xj , 1 ≤ j ≤ N , cu, (u = 1, 2, ..., k) is the frequency the
case belongs to the u-th cluster, thus

∑k
u=1 cu = M . The

M imputed datasets

Bootstrapping Cross-validation

B independent
samples

1,2,...,k K

MI-S ( )BS k MI-S ( )CV k

1,2,...,k K

U permutation
data

* * *

1 2( , , )ijV X X k
1 2( , ), ( , )D X k X k

Fig. 2 Illustrative procedure of MI-based stability algorithm
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final cluster membership of xj , denoted by vj is decided by
vj = arg max

u
cu.

If we have N Cases On = {x1, x2, ..., xn}, and each
case has p features, �(X, k), k = 1, 2, ... is the clustering
method that can cluster the data X into k clusters, as defined
above. Note that when k = 1, �(Xn, 1) ≡ 1 for any data X.

Definition 1 The clustering distance between any two clus-
tering method ψ1(x) and ψ2(x) is defined as [62],

D(ψ1, ψ2) =
Pr(I (ψ1(X) = ψ1(Y )) + I (ψ2(X) = ψ2(Y )) = 1), (10)

where I (·) is an indicator function and X, Y are indepen-
dently sampled from O.

Based on this definition, the clustering distance mea-
sures the disagreement between two clusters. It equals to
the sum of Pr

(
ψ1(x

0) = ψ1(y
0), ψ2(x

0) 	= ψ2(y
0)

)
and

Pr
(
ψ1(x

0) 	= ψ1(y
0), ψ2(x

0) = ψ2(y
0)

)
.

Definition 2 The clustering stability of �(·, k) is defined
as,

sk = 1 − E(D(ψ1(X, k), ψ2(Y, k))), (11)

where E(·) is the expectation function, k, X and Y are the
same as in Definition 1.

We proposed two MI-based bootstrap and cross-
validation methods to assess the clustering stability. The
procedure of MI-based stability validation is shown in
Fig. 2. Briefly, multiple samples are generated by bootstrap-
ping or permutation, then the stabilities are calculated for a
range of number of clusters. Finally, the optimal number of
clusters is identified at the largest stability value.

MI-based bootstrapping for incomplete big web trial data
in eHealth

The MI-based clustering stability using bootstrap method
for k clusters is expressed as

MI-SBS(k) = 1

MB

M∑

m=1

B∑

b=1

D(�(Xmb1, k), �(Xmb2, k)),

(12)

where D(�(Xmb1, k), �(Xmb2, k)) is the clustering dis-
tance for clustering methods �(Xmb1, k), �(Xmb2, k), k =
1, 2, ..., K , which are based on the B independent bootstrap
sampling pairs (Xmb1, Xmb2) , b = 1, 2, ..., B where each
sample has N cases.

The maximum number of clusters K is set to be K =√
N/2 in our numerical examples [4, 15]. However, this

value may not fit all kinds of datasets. If k̂ = K , we
need to increase the maximum number of clusters K and
auto-search the location of the maximum stability value.

MI-based cross-validation for incomplete big web trial
data in eHealth

The MI-based clustering stability using cross-validation for
k clusters is expressed by,

MI-SCV (k) = 1

MU

M∑

m=1

U∑

u=1

∑

i<j

V ∗
ij

(
X∗

1, X∗
2, k

)
, (13)

where V ∗
ij (·) is clustering similarity, which is equal to

I
(
I

(
ψ∗

1 (x∗
i ) = ψ∗

1 (x∗
j )

)
+ I

(
ψ∗

2 (x∗
i ) = ψ∗

2 (x∗
j )

)
= 1

)
,

U is the number of permutations, ψ∗
1 (x∗

i ) = �
(
X∗

1, k
)

and ψ∗
2 (x∗

i ) = �
(
X∗

2, k
)

are two clustering methods,
X∗ = {

x∗
1 , x∗

2 , ..., x∗
n

}
is a permutation on the m-th imputed

dataset, X∗
1 = {

x∗
1 , x∗

2 , ..., x∗
c

}
, X∗

2 = {
x∗
c+1, x

∗
c+2, ..., x

∗
2c

}

and X∗
3 = {

x∗
2c+1, x

∗
2c+2, ..., x

∗
n−c

}
are the splits of X∗.

Overall, the higher MI-SBS and MI-SCV , the better the
clustering stability.

MI-based Xie and Beni (MI-XB) index for incomplete
big web trial data in eHealth

The XB index has been used in fuzzy clustering valida-
tion since it was proposed in 1991 [33]. It is defined as
the quotient between the means of the quadratic error and
the minimum of the minimal squared distance between the
points and cluster centroids. The XB index can be calculated
by,

XB =
∑N

i=1
∑c

j=1f0
m
∥∥xi − vj

∥∥2

N · mini,k‖xi − vk‖2
, (14)

in which xi, i = 1, 2, ..., N are the cases, N is the num-
ber of cases, c is the number of clusters, vk, k = 1, 2, ..., c

are the cluster centroids and m is fuzziness. A smaller XB
index value indicates a partition that all clusters are compact
and separate to each other, which means a “better clustering.
Thus, we find the optimal number of clusters by minimizing
the XB indices over a set of number of cluster. The MI-based
XB index is represented as,

MI-XB(k) = 1

M

M∑

m=1

XBq,k, (15)

in which XBq,k is the XB index for clustering q-th imputed
dataset for k clusters, and M is the number of imputations.
The smaller the MI-XB, the better the clustering. The XB
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indices are calculated for a set of number of clusters and the
optimal number of clusters is identified with the minimal
XB value.

MI-based modularity for incomplete big web trial data
in eHealth

In recent years, network-based validation approach has been
used for clustering data, where the data vectors are treated
as “nodes” in the graph and the similarities between two
data vectors are defined as the “edges” between them. Sup-
pose N vector nodes ni , i = 1, 2, ..., N represent the N

cases, the Gaussian radial basis function kernel (RBF) is
used to calculate the similarities between these nodes. The
similarity between nodes ni and nj , 1 ≤ i, j ≤ N is
defined as,

Algorithm 1 The proposed MIV algorithm

Require: Incomplete dataset:X; Number of Imputation: M;
Maximal number of clusters: K

Ensure: MI-based validation: MIV
1: Expectation Maximization (EM):
2: log log
3: Posterior: log log
4: for i from 1 to M do
5: for t from 1 to do
6: I-step:

7: P-step:
8: end for
9: Imputed by an additional I-step
10: for k from 1 to K do
11: Clustering data to k clusters:
12: IDX MIfuzzy MI

13: end for
14: end for
15: Calculate MI-based validity indices by Eqs. (12), (13),

(15) and (19).

W(ni , nj ) = exp
(
γ
∥∥ni − nj

∥∥2
)

. (16)

Note if i = j the similarity between ni and nj is 1, which
means that there is a self-loop in the graph. Here, the simi-
larity means how a vector is similar to its neighbors not to
itself, thus

W(ni , nj ) =
{

exp
(
γ
∥∥ni − nj

∥∥2
)
, if i 	= j

0, otherwise
(17)

Modularity has been widely used in finding communi-
ties in network mining. The modularity Q for a weighted
network is calculated by,

Q = 1

2e

∑

i,j

[
Wij − didj

2e

]
δ
(
vi, vj

)
, (18)

in which di and dj are nodes strength, di = ∑
j

Wij and dj =
∑
i

Wij , e is the total strength of the network, e = 1
2

∑
i

di .

vi and vj are the cluster membership of the i-th and j-th
nodes; δ

(
vi, vj

) = 1 only when vi = vj and δ
(
vi, vj

) = 0,
otherwise.

The MI-based Modularity (MI-Q) is calculated by,

MI-Q(k) = 1

M

∑

q

Qq,k. (19)

Note that if k̂ = K , we need to increase K and compare
MI-Q to find the optimal number of clusters. The higher
MI-Q, the better the clustering. The entirely procedure of
the proposed MIV framework is shown in Algorithm 1.

In the proposed MIV algorithm, each imputed dataset is
analyzed and the results of all imputed data are combined to
obtain the validation for the incomplete data. The compu-
tation complexity of the MIV algorithm is O(rNdMK), in
which r is missing rate, N is the number of cases, d is the

number of clusters
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Fig. 3 MI-based validation indices for a big web-delivered trial dataset (QuitPrimo)
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Fig. 4 The identified big longitudinal trajectory clusters of QuitPrimo
data

dimensions, M is the number of imputation, and K is the
maximal number of clusters.

Numerical analyses and simulation

Our MI based Validation (MIV) algorithms were first eval-
uated using the big data from a longitudinal web-delivered
trial for smoking cessation (called QuitPrimo, see details
in [63, 64]). Briefly, QuitPrimo study aims to evaluate an
integrated informatics solution to increase access to web-
delivered smoking cessation support. The trail includes
1320 cases with missing rate less than 8.4 %. The three
intervention web trail components are 1) My Mail, 2) Online
Community, and 3) Our Advice. As aforementioned, this
big web trial data set is unstructured and formatted simply as

time, e.g., each smoker has data like “27APR10:15:43:00”.
However, the primary values of big data come not from its
raw form, but from its processing and analysis. Four clusters
were identified using six monthly measures for each inter-
vention component and web duration (total 19 attributes) in
[63, 64].

Ten imputations (M = 10) are used according to
[23]. Applying our MIV algorithm introduced in Section
“Multiple-imputation-based validation framework (MIV)
for incomplete big web trial data in eHealth,” we auto-com-
pute, search, and synthesize, the results for MI-based clus-
tering stability, i.e., MI-Bootstrap and MI-Cross Validation,
(MI-SBS and MI-SCV ), as well as MI-XB and MI-Q.

Figure 3a displays the MI clustering stability indices,
MI-SBS and MI-SCV , obtained by bootstrapping and cross-
validation, respectively. The MI-SBS shows the stability
achieves the highest at 3 clusters, while the MI-SCV indi-
cates the 5 clusters. The minimal value of MI-XB in Fig. 3b
clearly points to 4 clusters which is the correct optimal num-
ber of clusters. Figure 3c also indicates 2 clusters based
on MI-based modularity (MI-Q). These results demonstrate
that the stabilities and network-based validation methods
may not be suitable for big longitudinal web trial data
analyses.

Figure 4 shows the four identified behavioral trajectory
patterns of this big web-delivered trial. The x-axis shows
the time slots for the three web intervention components,
My Advice, Our Advice, and Our Community; the y-axis
displays individual IDs, and z-axis are the counts of each
component. The colored trajectory layers represent the aver-
age engagement level for each cluster. In QuitPrimo data,
r = 0.084, N = 1320, d = 18, M = 10, and K = 10,
the running time of the proposed MIV algorithm is about 1
minute on our lab PC (i7-4770 double 3.4GHz CPU with
16G RAM).

Our simulation uses the joint zero-inflated Poisson (ZIP)
and autoregressive (AR) model to simulate the QuitPrimo
data [65]. We first train the joint model using the QuitPrimo
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Fig. 5 MI-based validation indices for simulated big web-delivered trial dataset



146 Page 8 of 9 J Med Syst (2016) 40: 146

data, to obtain the parameters which were used to simu-
late a bigger longitudinal web trial data with 10,000 cases
and 54 dimensions (9 variables with 6 repeated meatures
each). Then we evaluated our proposed MIV algorithms
on the simulated data. Figure 5 again demonstrates that
MI-XB (Fig. 5b) correctly identifies the 4 trajectory patterns
while MI-SBS and MI-SCV (Fig. 5a) and MI-Q (Fig. 5c)
did not. Our preliminary evaluation results [14] indicate that
MIfuzzy is most robust to missing rates less than 20 %,
although one empirical observational study showed that it
could be robust to the missing rate up to 40 % where other
included variables with missing values may be more or as
informative as the variables without missingness for the
subjects [14].

Conclusion

In eHealth services, big data from web-delivered longitu-
dinal trials are complex. Determining the optimal number
of clusters in such data is especially challenging. This
paper, built upon our MIfuzzy clustering designed a MI-
based validation (MIV) framework and algorithms for big
data processing, particularly for fuzzy clustering of big
incomplete longitudinal web-delieved trial data. Although
we included two conventional methods for testing cluster-
ing stability, bootstrap and cross-validation, they did not
seem to add incremental value for detecting the optimal
number of clusters. Although they seem to be useful for
complete datasets. One major reason could be that the mul-
tiple imputation component in MIfuzzy already accounts for
the imputation uncertainty to ensure the clustering stabil-
ity using several complete imputed datasets. This concept
is similar to the bootstrap and cross validation for stability
tests, therefore this overlap decreases the incremental value
of these conventional methods which are typically used
for complete data sets. Another reason might be that the
two methods were not specifically designed for or directly
related to the fuzzy clustering which is widely accepted
for biomedical data where clusters overlap or touch. Also
the modularity validation index is widely accepted for
network-based data, but appears not feasible for the struc-
ture of these big incomplete longitudinal web-delivered trial
data in eHealth services. Consistently, we found multiple-
imputation based XB index, specifically designed for fuzzy
clustering, could facilitate detecting the optimal number of
clusters for big incomplete longitudinal trial data, either
from web-delivered or traditional clinical trials [4, 6, 15].
Different from the MI approach used for statistical analyses,
MI based clustering only uses the imputation step, thus has
no connection with the possible inconsistent analytical mod-
els for statistical inference. As our research indicates, it will

especially contribute more to non-model-based clustering
approaches, and could potentially improve clustering accu-
racy and computational efficiency for model-based cluster-
ing approaches. In future, embedding MIV algorithms into
eHealth system could warrant the validity of identifying
at-risk or abnormal patterns of patients, events, diagnoses
or services using various unsupervised learning methods,
and reduce the uncertainty in implementing pattern-derived
adaptive trials or services.
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