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Abstract Classification of different mechanisms of angle clo-
sure glaucoma (ACG) is important for medical diagnosis.
Error-correcting output code (ECOC) is an effective approach
for multiclass classification. In this study, we propose a new
ensemble learningmethod based on ECOCwith application to
classification of four ACGmechanisms. The dichotomizers in
ECOC are first optimized individually to increase their accu-
racy and diversity (or interdependence) which is beneficial to
the ECOC framework. Specifically, the best feature set is de-
termined for each possible dichotomizer and a wrapper ap-
proach is applied to evaluate the classification accuracy of
each dichotomizer on the training dataset using cross-valida-

tion. The separability of the ECOC codes is maximized by
selecting a set of competitive dichotomizers according to a
new criterion, in which a regularization term is introduced in
consideration of the binary classification performance of each
selected dichotomizer. The proposed method is experimental-
ly applied for classifying four ACG mechanisms. The eye
images of 152 glaucoma patients are collected by using ante-
rior segment optical coherence tomography (AS-OCT) and
then segmented, from which 84 features are extracted. The
weighted average classification accuracy of the proposed
method is 87.65 % based on the results of leave-one-out
cross-validation (LOOCV), which is much better than that of
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the other existing ECOC methods. The proposed method
achieves accurate classification of four ACG mechanisms
which is promising to be applied in diagnosis of glaucoma.

Keywords Feature selection .Multiclass classification .

Dichotomizers . Glaucoma . Ensemble learning .

Error-correcting-output-coding (ECOC)

Introduction

Angle closure glaucoma (ACG) is a prevalent eye disease in
Asia, which is a major cause of blindness [1]. There are main-
ly four mechanisms underlying ACG, namely, pupil block
(PB), plateau iris configuration (PL), thick peripheral iris roll
(PIR) and exaggerated lens vault (LV). Specific treatments are
required for different ACG mechanisms. So classification of
these four mechanisms is clinically important in order to pro-
vide better treatment for ACG patients [2]. Anterior segment
optical coherence tomography (AS-OCT), is capable of pro-
viding high resolution images of anterior chamber of eyes and
it has been used extensively for glaucoma detection [1–3].
Anterior chamber (AC) and AC angle parameters provided
by AS-OCTwere used to evaluate different ACGmechanisms
[2, 4]. Wirawan et al. selected ten discriminative features from
84 parameters which were measured from segmented AS-
OCT images of the patients, and used AdaBoost classifier
for classification of these four different mechanisms [5].

While there are many existing methods for glaucoma de-
tection, differentiating glaucomatous eyes from normal ones
using features extracted from the fundus images [6], optic
nerve head stereo photographs [7], or OCT [8] in combination
with various classifiers, few studies have been done for clas-
sification of different mechanisms of ACG in spite of its clin-
ical importance. So, our study is motivated by developing a
new multiclass classification method with high accuracy in
recognition of different ACGmechanisms. Traditionally, there
are two categories of approaches to address the multiclass
classification problems. One is to develop a single model for
all the classes. Some classifiers such as k-Nearest Neighbor-
hood (kNN), decision tree, Naive Bayes, and linear discrimi-
native analysis (LDA) are naturally designed to deal with
multiclass classification.

In contrast, some more advanced classifiers such as support
vector machine (SVM), and AdaBoost are binary classifiers.
Hence, it is required to design a set of different binary classi-
fiers (dichotomizers) and combine them to deal with
multiclass classification tasks. On the other hand, ensemble
learning by combining multiple dichotomizers is more advan-
tageous than traditional single classifier in that it has superior
generalization ability and is suitable for learning nonlinear
classification boundary. Intuitively, to differentiate c classes,
c dichotomizers are trained, and each of which discriminates

one specific class from all the remaining classes. For a test
sample, the classifier with largest probability output will be
taken as the predicted class label. This is the well-known one-
versus-all (OVA) strategy [9, 10]. An alternative to this is one-
versus-one (OVO), where c.(c-1)/2 dichotomizers are trained
to separate each pair of classes.

To solve the multiclass problems using binary classifiers,
Dietterich et al. provided a unified framework based on a set
of error-correcting output codes (ECOC), which was further
improved by [11, 12]. This framework is well known for its
nonlinear classification capability. A code matrix with n col-
umns was designed to decompose the multiclass problems
into n binary ones. Then the outputs of these N dichotomizers
were combined to determine the class label of the test sample
[13]. OVA and OVO can be seen as special cases of the ECOC
framework. Many research works have been explored to im-
prove the classification performance of ECOC [14–18], espe-
cially using data-driven approaches [19–21]. By observing the
data distribution in the original feature space, dichotomizers
are trained for easily separated pairs of class clusters. Howev-
er, this observation of data distribution relies on a common
feature space.

In this study, we propose a wrapper approach to learn the
ECOC code matrix, in which the best feature set for each
dichotomizer and best combination of dichotomizers for
ECOC are both selected via cross-validation on the training
dataset. This method is better than the other ECOC based
methods in two aspects: 1) each dichotomizer has its own
optimal feature set; 2) a new criterion is proposed that the best
combination of dichotomizers is selected in consideration of
not only of the separability of the codewords in ECOC frame-
work but also the classification ability of the selected
dichotomizers.

This paper is organized as follows. The ECOC framework
is reviewed in BECOC framework^ section, followed by the
proposed method in BMethod for multiclass classification^
section. Experimental results of multiclass classification on
glaucoma dataset are shown in BExperimental results on clas-
sification of different glaucoma mechanisms^ section. Con-
clusion is made in the final section.

ECOC framework

There are two major processes in ECOC framework: coding
and decoding. The key of coding process lies in the design of a
code matrix М ∈ {−1, 0, 1}c×n, with c rows and n columns,
where c and n denote the numbers of classes and
dichotomizers, respectively. The ith row of М provides the
codeword Ci for the i

th class (i=1, 2,…,c). Meanwhile, each
column of М represents the partition of classes by each
dichotomizer. Classes coded by 1 and −1 are treated as posi-
tives and negatives, respectively, while those coded by 0 are
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omitted in training the dichotomizers. For the four class clas-
sification problem, the OVA and OVO strategy are represent-
ed by two code matrixes as shown in Table 1a and b,
respectively.

In the decoding process, the outputs of these n trained
dichotomizers for the test sample are given as a vector
V={v1, v2, …,vn}, and compared with the codeword of each
class to find the nearest one to determine the class label of the
test sample. There are many decoding strategies to evaluate
the distance between the vector V and each codeword Ci [13].
For example, in Loss-based decoding, the distance is formu-
lated as

dH V;Cið Þ ¼ 1

2

X n

j¼1
L V jð Þ⋅Ci jð Þð Þ ð1Þ

where L(.) denotes the loss function which is dependent on the
type of dichotomizer.

Most research is focused on the coding process to design an
optimal code matrix. Allwein et al. proposed a dense random
code matrix by maximizing the distances between the
codewords of different classes, which is further extended as
sparse random code matrix [21]. Pujol et al. proposed discrim-
inative ECOC (DECOC) to learn the code matrix based on a
hierarchical partition of the multiple classes, and used (c-1)
dichotomizers in the ECOC code matrix [17]. In most of the
existing works, the feature space is usually fixed to facilitate
learning the data distribution and designing a problem-
dependent code matrix. However, the common feature space
is optimal for all the dichotomizers as a whole. So the
dichotomizers may not be optimized specifically. The classi-
fication performance may not be the best, although the code
matrix is designed well in terms of class separability. In this
study, all the dichotomizers are first optimized with their own
specific feature set, and then the ECOC code matrix is learned
by selecting the best combination of dichotomizers. The de-
tails are shown in the next section.

Method for multiclass classification

In the proposed method, feature selection for each
dichotomizer and dichotomizer selection in ECOC code ma-
trix are performed in tandem to learn the codematrix as shown
in Fig. 1. The proposed method is detailed as follows.

Step 1: Feature set optimization for each dichotomizer

Based on combinational analysis, we can calculate that there
are totally N different dichotomizers using Eq. (2),

N ¼ 1

2
3c−2cþ1 þ 1
� � ð2Þ

where c is the number of classes. For example, there are 25
dichotomizers for a four-class classification problem such as
ACG diagnosis. By using the state-of-the-art feature selection
method, such as minimum redundancy and maximum rele-
vancy (mRMR) [22–24], the best feature set, which is closely
dependent on the target class with minimum inter-redundancy,
is identified for each dichotomizer. Wirawan et al. has shown
that mRMR is suitable and effective in selecting informative
and discriminative features for ACG classification [5]. In or-
der to find the optimal feature set, a filter-wrapper approach is
used [22, 23]. Features are first ranked according to the criteria
of mRMR, and the highly ranked features are retained, then
sequential forward selection (SFS) (or sequential backward
selection (SBS), floating search methods) is performed to se-
lect the best feature set for each dichotomizer using cross-

Fig. 1 Block diagram of the proposed method

Table 1 The ECOC code matrix in (a) OVA strategy and (b) OVO
strategy

(a)

Class1 1 −1 −1 −1
Class2 −1 1 −1 −1
Class3 −1 −1 1 −1
Class4 −1 −1 −1 1

(b)

Class1 1 1 1 0 0 0

Class2 −1 0 0 1 1 0

Class3 0 −1 0 −1 0 1

Class4 0 0 −1 0 −1 −1
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validation on the training dataset.
However, since the number of dichotomizers N grows ex-

ponentially with the number of classes c in Eq. (2), it may be
time-consuming to perform a wrapper approach to select the
best feature set for each dichotomizer. For simplicity, filter
approach is preferred for fast feature selection whenN is large.
Feature selection not only improves the classification perfor-
mance (i.e., accuracy) of each dichotomizer, but also de-
creases the dependency among the dichotomizers by selecting
different optimal feature sets for different dichotomizers,
which is beneficial to the error-correcting ability of ECOC.

Step 2: Maximization of the separability of codewords
in ECOC framework in consideration of the performance
of each dichotomizer

To improve the classification performance of ECOC frame-
work, the separability of ECOC codes is maximized, which is
defined as

ds ¼ min 1≤ i≤c
i < k ≤c

1

2

X n

j¼1
L Ci jð Þ⋅Ck jð Þð Þ

� �
ð3Þ

Table 2 The algorithm of the proposed method

Fig. 2 Illustrative samples ofAS-
OCT images of glaucoma patients
with different ACG mechanisms
a PIR; b LV; c PB; d PL.
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where Ci and Ck denote the codewords of the i
th and kth clas-

ses, respectively [12]. In [21], the separability is modified as

d
0
s ¼ min 1≤ i≤c

i < k ≤c

1

2
Ci jð Þ⋅Ck jð Þj j

X n

j¼1
L Ci jð Þ⋅Ck jð Þð Þ

� �

ð4Þ
to ignore the contributions from codes with value of 0. This
definition is more reasonable. However, in all the existing
ECOC methods, only the code information of the
dichotomizers is considered. So some dichotomizers with un-
satisfactory ability of binary classification may also be select-
ed into the ECOC framework, which may deteriorate the final
classification performance. In the proposed method, the sepa-
rability is reformulated as

d″s ¼ d
0
s þ λa ¼ min 1≤ i≤c

i < k≤c

1

2
Ci jð Þ⋅Ck jð Þj j

X n

j¼1
L Ci jð Þ⋅Ck jð Þð Þ

� �
þ λa

ð5Þ
where ā is the average binary classification accuracy of the
selected dichotomizers, and λ is the coefficient weighting the
relative importance of ā compared with ds

’. There are two key
parameters to determine: the weighting coefficient λ and the
code length n. Cross-validation is applied on the training
dataset to find the optimal parameters λ* and n*, and also
the optimal set of dichotomizers. Finally, the trained and se-
lected dichotomizers are used as base learners in ECOC
framework. The algorithm of the proposed method is shown
in Table 2.

Experimental results on classification of different
glaucoma mechanisms

Data preparation and experiment results

A dataset of 152 ACG samples provided by National Univer-
sity Hospital Singapore (NUHS) collected over 2 years is used
for classification of four different ACG mechanisms [5, 24,
25]. The dataset is small due to the limited number of ACG
patients are recruited using Ministry of Education (MoE)
AcRF Tire 1 Funding, Singapore. AS-OCT images of glauco-
ma patients with different ACG mechanisms are shown in

Fig. 2. PIR is characterized by the thick and folded iris, while
PB is characterized by the convex forward iris profile. Eyes
with PL and LVmechanisms have the largest and smallest AC
volumes, respectively [1]. Customized software (Anterior
Segment Analysis Program-ASAP, National University
Hospital, Singapore) was used to measure anterior chamber
(AC) characteristics. ASAP software used the level set method
for the segmentation of AC area [1, 5] of AS-OCT image as
shown in Fig. 3. The quantifiable parameters of the anterior
chamber (AC) measured by ASAP software includes anterior
chamber depth (ACD), anterior chamber volume (ACV), an-
terior chamber width (ACW), angle recess area (ARA), angle
opening distance (AOD), post closure area (PCA), angle
opening distance (AOD), trabecular-iris space area (TISA),
lens vault (LV) distance, iris area (IA), iris thickness (IT), iris
concavity, etc., as illustrated in Fig. 4. The samples are labeled
by medical experts in NUHS (C. C. Sng, M. C. Aquino and P.
T. K. Chew) and the basic information of the glaucoma dataset
used in this study is shown in Table 3.

Since, each mechanism has several characteristics, from
medical point of view, 84 features are extracted, which are
all clinically important parameters measured from the seg-
mented AS-OCT image. Some of the important features are
identified based on our previous studies using the same dataset
[5, 24, 25] are given as follows: AC_Area (Anterior chamber
area); AC_Volume (Anterior chamber volume); ACD (Ante-
rior chamber depth); ACW (Anterior chamber width);

Fig. 4 The parameters measured from the AS-OCT image of the AC
segment of the eyes (not all of the 84 parameters are shown here). For
example, ACDL1500 means anterior chamber depth of the left hand side
measured at 1500 μm from the scleral spur

Fig. 3 An example of AS-OCT
image a and its corresponding
segmentation result in b by using
ASAP software
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Anterior_lens_curvature (Curvature of the anterior lens sur-
face); ILC_L (Iridolenticular contact in the left side); ILC_R
(Iridolenticular contact in the right side); Iris_area_IL (Iris
area contacts with Iridolenticular); Iris_area_L500 (The scler-
al spur is used as the centre of a circle with radius of 500 μm.
The area of iris region inside this circle on left side is
Iris_area_L500). Iris_Chord_Length_L (The distance from
the tip of the iris to the periphery); Iris_Chord_Length_R
(The distance from the tip of the iris to the periphery on right
side); Iris_end_concavity_L (Concavity of Iris area at the end

in left side); Iris_thickness_L1000 (The intersection point on
the anterior surface of the iris is identified when the scleral
spur (SS) is used as the centre of a circle with radius of
1000 μm. Iris Thickness is the shortest distance from this
point of intersection to the posterior surface of the iris on left
side; Iris_thickness_L_DMR (Thickness of the iris region in
the d i l a to r musc le reg ion (DMR) on le f t s ide ;
Iris_thickness_L_Max (Maximum thickness of Iris length);
Iris_thickness_L_SMR (Iris thickness in the sphincter muscle
region on left side); Iris_thickness_PL (Iris thickness contacts
with plateau); Iris_thickness_R_DMR (Thickness of the iris
region in the dilator muscle region on right side);
Iris_thickness_R_SMR (Iris thickness in the sphincter muscle
region on right side); Lens vault (The perpendicular distance
between the horizontal line joining the two scleral spurs and
the anterior pole of the crystalline lens, represents the anterior
portion of the lens); Pupil_distance (Distance between the
centers of the pupils).

The experimental investigation of our proposed method
was conducted and implemented using Matlab 8.0 R2012b

Table 4 The Ranking of all the Dichotomizers according to their classification accuracy on the training dataset

Dichotomizer Class 1 Class 2 Class 3 Class 4 No. of selected
features

Classification
Accuracy (%)

Selected by
OVO

Selected
by OVA

Selected by
Sparse Random

Selected by the
proposed method

D1 0 +1 −1 0 17 95.79 √ √
D2 0 +1 0 −1 15 93.10 √
D3 −1 +1 0 −1 8 91.67 √
D4 −1 −1 −1 +1 6 91.45 √ √
D5 +1 0 −1 0 6 90.77 √ √
D6 +1 −1 0 0 7 90.27 √ √ √
D7 0 +1 −1 −1 9 90.08 √ √
D8 0 −1 −1 +1 5 90.08 √
D9 −1 −1 0 +1 9 89.82 √
D10 −1 +1 −1 0 12 89.66 √
D11 0 −1 +1 −1 14 88.55 √
D12 −1 +1 −1 −1 10 88.16 √ √
D13 +1 0 −1 −1 10 88.12 √
D14 +1 −1 −1 0 9 87.93 √
D15 −1 −1 +1 0 9 87.93

D16 +1 −1 −1 −1 5 86.84 √
D17 −1 −1 +1 −1 16 86.20 √
D18 0 0 +1 −1 6 85.00 √
D19 −1 0 −1 +1 4 84.16

D20 +1 +1 −1 −1 14 83.55

D21 −1 0 +1 −1 5 83.17

D22 +1 −1 +1 −1 16 80.92

D23 +1 0 0 −1 4 80.70 √
D24 +1 −1 0 −1 6 80.56

D25 +1 −1 −1 +1 6 79.61

Table 3 The basic information of the Glaucoma dataset used in this
study

Number of
features

Number of
samples

84 Class 1(PIR) Class 2 (L) Class 3 (PB) Class 4 (PL)

21 51 44 36

Total: 152
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(The Mathworks Inc., Natick, MA, USA) and Microsoft Vi-
sual Studio (C++). All the 84 features are normalized to have
zero mean and unity variance. Wirawan et al. has shown that
Adaboost performs better than SVM in application of ACG
classification, and the performance of Adaboost combined
with OVA strategy is also better than traditional multiclass
classifiers in terms of classification accuracy, such as classifi-
cation tree, and Naive Bayes [5]. WEKA (Waikato Environ-
ment for Knowledge Analysis) data mining tool [26] was used
for comparing the proposed method with the traditional
multiclass classifiers based on its default parameters as same
as reported in [5] which used the same dataset for their study.
Thus Adaboost is the choice of binary classifier in this exper-
iment. Besides, for fair comparison with the results in [5], we
also used mRMR for feature selection. In this four-class clas-
sification problem, there are totally 25 possible dichotomizers,
which are easily obtained by exhaustive search. In the first
step of the proposed method, all the 84 features are ranked
according to the mRMR criteria for each dichotomizer. Each
feature is incrementally included into a ranking list according
to the following equations,

maxf j∈F−Fm−1 I f j; y
� �

−
1

m−1

X
f j∈Fm−1

I f j; f i
� �� �

ð6Þ

or

maxf j∈F−Fm−1 I f j; y
� �. 1

m−1

X
f j∈Fm−1

I f j; f i
� �� �� �

ð7Þ

where F is the whole feature set, and Fm-1 is the set of (m-1)
features that are already selected, by maximizing the mutual
information I(fj,y) between the jth feature and the class label y
and minimizing the mutual information I(fj, fi) between the jth
feature and the feature fi in the set Fm-1 [23]. To further in-
crease the classification ability of each dichotomizer, a wrap-
per approach is used to select the best feature set which leads
to the least classification error. The dichotomizers are ranked
according to their classification accuracy in descending order
as shown in Table 4. In the Step 2, for λ(p-1) ∊ [0, 600] with a
step of 30 and nq ∊ [1, 9] with a step of 1 (p =0, 1, 2,…, 20; q
=1, 2,…9), the best set of dichotomizers Bp,q is determined by
maximizing ds

^ in Eq.(5) where L(z) =1/ez. The separability
ds

^ is dominantly determined by the average classification
accuracy of the selected dichotomizer when the weighting
coefficient λ=600. According to the suggestion of [17, 20],
the code length n should be 15log(c)≈9. Here let n vary from
1 to 9.

The classification performance of these different sets of
dichotomizers {Bp,q} is evaluated on the training dataset by
leave-one-out cross-validation (LOOCV). Since we have
done our study with the available limited data sources,
leave-one-out cross-validation is used to prevent over-fitting
of training data. The best set of dichotomizers is determined to

be B13,6={D1, D3, D4, D5, D6, D7}, and the optimal values
of the parameters are λ*=360 and n*=6. The ECOC code
matrix formed by the selected set of dichotomizersB13,6 is
shown in Table 5. Loss-based decoding strategy is used in
the decoding process. The loss function of Adaboost classifier
is L(z) =1/ez. The confusion matrix obtained using LOOCVon
the glaucoma dataset is shown in Table 6. The weighted aver-
age classification accuracy is 87.65 % as shown in Table 7,
which is better than the accuracy of 84% obtained by [5] (The
dataset in [5] is slightly different from ours in that four more
patients with no mechanism of glaucoma are added; however,
this effect is negligible).

Comparison with other ECOC methods, including OVO,
OVA, sparse random ECOC

In most traditional methods, the dichotomizers are not opti-
mized specifically. Only Wang et al. and Maghsoudi et al.
used feature selection to optimize the dichotomizers in OVA
scheme [14, 15]. In this paper, we apply feature selection to
each dichotomizer for all the three ECOC methods based on
OVO, OVA [9, 20] and sparse random [21] strategies. The
classification accuracy for each class and the weighted aver-
age accuracy of these three existing popular ECOC methods
are shown in Table 7. The highest weighted average accuracy
of the three ECOC methods is 85.81 %, better than the tradi-
tional multiclass classifiers, such as classification tree
(72.22 %), random forest (76.58 %), SVM combined with
OVA strategy (78.22 %) and Naive Bayes (77.93 %).

We also randomly select 80 % of the dataset for training
and the other 20 % for testing to compare the proposed meth-
od with the other ECOC methods. This process is repeated
2000 times. The classification accuracy (mean value
± standard deviation) of the proposed method and the three
other ECOC methods mentioned above is 84.86± 3.56 %,

Table 6 Confusion
matrix obtained by using
the proposed method
(Leave-one-out cross-
validation)

Y1 Y2 Y3 Y4 ∑Y

Y1′ 9 1 1 8 19

Y2′ 5 47 4 3 59

Y3′ 3 2 35 3 43

Y4′ 4 1 4 22 31

∑Y′ 21 51 44 36 152

Table 5 The ECOC code matrix determined in the proposed method

Classes D1 D3 D4 D5 D6 D7

Class 1 (PIR) 0 −1 −1 +1 +1 0

Class 2 (L) +1 +1 −1 0 −1 +1

Class 3 (PB) - 1 0 −1 −1 0 −1
Class 4 (PL) 0 −1 +1 0 0 −1

J Med Syst (2016) 40: 78 Page 7 of 10 78



83.69±3.75 %, 79.76±3.75 %, and 81.45±3.70 %, respec-
tively. And the histograms of the classification accuracy for
the proposed method and the three ECOC methods are shown
in Fig. 5a–d, respectively, from which we can see that the
proposed method performs best. In the proposed method, all
the dichotomizers are first optimized specifically to increase
the interdependence and classification accuracy, and then the
ECOC code matrix is learned by maximizing Eq.(5) and
selecting a set of competitive dichotomizers. Not only the
code information but also the classification ability of the
dichotomizers is considered in maximizing the separability
of the codewords in the ECOC matrix. However, in most
traditional ECOC methods, the dichotomizers are not selected
in consideration of their classification performance.

In this experiment, three dichotomizer sets, namely {D1,
D2, D5, D6, D18, D23}, {D4, D12, D16, D17}, {D6, D7, D8,
D9, D10, D11, D12, D13, D14} are used in the three ECOC
methods based on OVO, OVA and Sparse random strategies,
respectively (the details of the dichotomizers are shown in
Table 3). Due to the dichotomizers with low accuracy such
as {D18, D23, D16, D17, D13, D14} are incorporated in the
code matrix of these three methods, the final performance are
deteriorated accordingly. The performance of OVO is relative-
ly better than OVA and sparse random based ECOC methods,
because only two relatively inaccurate dichotomizers {D18,
D23} are included and the others have very high classification
accuracy. In the proposed method, the dichotomizers, namely
{D1, D3, D4, D5, D6, and D7}, all with high accuracy, are

Fig. 5 The histograms of the
classification accuracy of the a
proposed method b OVO; c
sparse random; d OVA based
ECOC methods based on 2000
rounds of experiments when 80%
of the dataset randomly selected
for training and the other 20% for
testing

Table 7 Comparison of classification accuracy of the proposed method with other ECOC-based methods with dichotomizer-specific feature selection

Classes Classification accuracy of different ECOC methods with dichotomizer-specific feature selection (%)

OVO OVA Sparse Random The proposed method

Class 1 (PIR) 82.23 69.73 84.87 85.53

Class 2 (L) 86.84 84.87 82.89 89.47

Class 3 (PB) 88.16 82.24 83.55 88.82

Class 4 (PL) 83.55 82.89 77.63 84.87

Weighted average 85.81 81.55 82.11 87.65
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selected which ensures the performance is better than that of
the other traditional ECOC methods.

Conclusions

Angle closure glaucoma is a prevalent eye disease worldwide,
especially in Asia. There are four different mechanisms of
ACG, which need different clinical treatments accordingly.
Therefore, classification of these four mechanisms is impor-
tant in automatic diagnosis of glaucoma. In this paper, a new
ECOC based ensemble learning method is proposed for
multiclass classification, with application to classification of
four mechanisms of ACG. In the proposed method, for each
possible dichotomizer, its best feature set is determined and
classification accuracy is obtained by using cross-validation
on the training glaucoma dataset. The dichotomizers are se-
lected based on the maximization of both the separability of
the codewords in the ECOCmatrix and the classification abil-
ity of the dichotomizers. The selected dichotomizers are in-
cluded into the ECOC framework. The proposed method has
been experimentally applied on a glaucoma dataset including
152 patients with four different mechanisms. The classifica-
tion accuracy is experimentally validated to be better than that
of the other three existing ECOC methods.

There are two points make the proposed method perform
better than the others: 1) the dichotomizers are optimized in-
dividually and their binary classification abilities are quanti-
fied prior to dichotomizer selection. The classification accura-
cy and diversity of the dichotomizers in the ECOC framework
are improved by using different optimal feature set for each
dichotomizer; 2) the ECOC code matrix in which the
dichotomizers are all competitive with high binary classifica-
tion performance and the codewords are all separated largely
is determined to ensure the final classification performance.
The proposed method is promising to be applied to automatic
classification of different ACGmechanisms and helps doctors
to make specific treatment for each mechanism.

Acknowledgments This work was supported byMinistry of Education
(MoE) AcRF Tire 1 Funding, Singapore, under Grant M4010981.020
RG36/11.

Compliance with ethical standards

Conflict of interest There is no conflict of interest.

References

1. Shabana, N., Aquino, M. C., See, J., Tan, A. M., Nolan, W. P.,
Hitchings, R., Young, S. M., Loon, S. C., Sng, C. C., Wong, W.,
and Chew, P. T., Quantitative evaluation of anterior chamber

parameters using anterior segment optical coherence tomography
in primary angle closure mechanisms. Clin. Exp. Ophthalmol. 40:
792–801, 2012.

2. Ritch, R., Tham, C., and Lam, D., Long-term success of argon laser
peripheral iridoplasty in the management of plateau iris syndrome.
Ophthalmology 111:104–108, 2004.

3. Tian, J., Marziliano, P., Baskaran, M., Wong, H.-T., and Aung, T.,
Automatic anterior chamber angle assessment for HD-OCT images.
IEEE Trans. Biomed. Eng. 58:3242–3249, 2011.

4. Nongpiur, M. E., He, M., Amerasinghe, N., Friedman, D. S., Tay,
W. T., Baskaran, M., Smith, S. D., Wong, T. Y., and Aung, T., Lens
vault, thickness, and position in Chinese subjects with angle clo-
sure. Ophthalmology 18:474–479, 2011.

5. Wirawan, A., Kwoh, C. K., Chew, P. T. K., Aquino,M. C. D., Seng,
C. L., See, J., Zheng, C., and Lin, W., Feature selection for
computer-aided angle closure glaucoma mechanism detection. J.
Med. Imag. Health Inform. 2(4):438–444, 2012.

6. Nayak, J., Acharya, U. R., Bhat, P. S., Shetty, A., and Lim, T. C.,
Automated diagnosis of glaucoma using digital fundus images. J.
Med. Syst. 33(5):337–346, 2009.

7. Balasubramanian, M., Zabic, S., Bowd, C., Thompson, H. W.,
Wolenski, P., Iyengar, S. S., Karki, B. B., and Zangwill, L. M., A
framework for detecting glaucomatous progression in the optic
nerve head of an eye using proper orthogonal decomposition.
IEEE Trans. Inf. Technol. Biomed. 13(5):781–793, 2009.

8. Huang, M. L., Chen, H. Y., and Huan, J. J., Glaucoma detection
using adaptive neuro-fuzzy inference system. Expert Syst. Appl.
32(2):458–468, 2007.

9. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and
Herrera, F., An overview of ensemble methods for binary classifiers
in multi-class problems: Experimental study on one-vs-one and
one-vs-all schemes. Pattern Recogn. 44:1761–1776, 2011.

10. Garcıa-Pedrajas, N., and Ortiz-Boyer, D., Improving multiclass pat-
tern recognition by the combination of two Strategies. IEEE Trans.
Pattern Anal. Mach. Intell. 28:1001–1006, 2006.

11. Dietterich, T. G., and Bakiri, G., Solving multiclass learning prob-
lems via error-correcting output codes. J. Artif. Intell. Res. 2:263–
286, 1995.

12. Allwein, E. L., Schapire, R. E., and Singer, Y., Reducing multiclass
to binary: A unifying approach for margin classifiers. J. Mach.
Learn. Res. 1:113–141, 2001.

13. Escalera, S., Pujol, O., and Radeva, P., On the decoding process in
ternary error-correcting output codes. IEEE Trans. Pattern Anal.
Mach. Intell. 32:120–134, 2010.

14. Wang, L., Zhou, N., and Chu, F., A general wrapper approach to
selection of class-dependent features. IEEE Trans. Neural Netw. 19:
1267–1278, 2008.

15. Maghsoudi, Y., Zoej, M. J. V., and Collins, M., Using class-based
feature selection for the classification of hyperspectral data. Int. J.
Remote Sens. 32:4311–4326, 2011.

16. Bagheri, M. A., Gao, Q., and Escalera, S., A genetic-based sub-
space analysis method for improving Error-Correcting Output
Coding. Pattern Recogn. 46:2830–2839, 2013.

17. Pujol, O., Radeva, P., and Vitria, J., Discriminant ECOC: A heuris-
tic method for application dependent design of error correcting
output codes. IEEE Trans. Pattern Anal. Mach. Intell. 28:1007–
1012, 2006.

18. Escalera, S., Pujol, O., and Radeva, P., Error-correcting ouput codes
library. J. Mach. Learn. Res. 11:661–664, 2010.

19. Zhou, J., Peng, H., and Suen, C. Y., Data-driven decomposition for
multi-class classification. Pattern Recogn. 41:67–76, 2008.

20. Rocha, A., and Goldenstein, S. K., Multiclass from binary:
Expanding one-versus-all, one-versus-one and ECOC-based ap-
proaches. IEEE Trans. Neural Netw. Learn. Syst. 25:289–302,
2014.

J Med Syst (2016) 40: 78 Page 9 of 10 78



21. Escalera, S., Pujol, O., and Radeva, P., Separability of ternary codes
for sparse designs of error correcting output codes. Pattern Recogn.
Lett. 30:285–297, 2009.

22. Saeys, Y., Inza, I., and Larranaga, P., A review of feature selection
techniques in bioinformatics. Bioinfomatics 23:2507–2517, 2007.

23. Peng, H., Long, F., and Ding, C., Feature selection based on mutual
information criteria of maxdependency, max-relevance, and min-
redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27:1226–
1238, 2005.

24. Issac Niwas, S., Lin, W., Bai, X., Kwoh, C. K., Sng, C. C., Aquino,
M. C., and Chew, P. T. K., Reliable feature selection for automated

angle closure glaucoma mechanism detection. J. Med. Syst. 39:21,
2015.

25. Issac Niwas, S., Lin, W., Kwoh, C. K., Kuo, C. C., Aquino, M. C.,
Sng, C. C., and Chew, P. T. K., Crossexamination for angle-closure
glaucoma feature detection. IEEE J. Biomed. Health Informatics
20:343–354, 2016.

26. Waikato Environment for Knowledge Analysis: University of
Waikato New Zealand. Available from: http://www.cs.waikato.ac.
nz/ml/weka/index.html

78 Page 10 of 10 J Med Syst (2016) 40: 78

http://www.cs.waikato.ac.nz/ml/weka/index.html
http://www.cs.waikato.ac.nz/ml/weka/index.html

	Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis
	Abstract
	Introduction
	ECOC framework
	Method for multiclass classification
	Step 1: Feature set optimization for each dichotomizer
	Step 2: Maximization of the separability of codewords in ECOC framework in consideration of the performance of each dichotomizer

	Experimental results on classification of different glaucoma mechanisms
	Data preparation and experiment results
	Comparison with other ECOC methods, including OVO, OVA, sparse random ECOC

	Conclusions
	References


