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Abstract Resistance to antiretroviral drugs has been a major
obstacle for long-lasting treatment of HIV-infected patients.
The development of models to predict drug resistance is rec-
ognized as useful for helping the decision of the best therapy
for each HIV+ individual. The aim of this study was to devel-
op classifiers for predicting resistance to the HIV protease
inhibitor lopinavir using a probabilistic neural network
(PNN). The data were provided by the Molecular Virology
Laboratory of the Health Sciences Center, Federal University
of Rio de Janeiro (CCS-UFRJ/Brazil). Using bootstrap and
stepwise techniques, ten features were selected by logistic
regression (LR) to be used as inputs to the network. Bootstrap
and cross-validation were used to define the smoothing pa-
rameter of the PNN networks. Four balanced models were
designed and evaluated using a separate test set. The accura-
cies of the classifiers with the test set ranged from 0.89 to 0.94,
and the area under the receiver operating characteristic (ROC)
curve (AUC) ranged from 0.96 to 0.97. The sensitivity ranged
from 0.94 to 1.00, and the specificity was between 0.88 and
0.92. Four classifiers showed performances very close to three
existing expert-based interpretation systems, the HIVdb, the
Rega and the ANRS algorithms, and to a k-Nearest Neighbor.
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Introduction

The human immunodeficiency virus (HIV) is a retrovirus
from the Retroviridae family and is responsible for the ac-
quired immunodeficiency deficiency syndrome (AIDS),
which was first documented in 1981 [1]. The control of this
infection is achieved using antiretroviral drugs, which help
reduce the mortality and morbidity as well as promote in-
creased patient lifespans [2]. However, several patients show
or develop resistance to some of the available drugs, which is
a major limiting factor of HIV therapy effectiveness.

Different statistical techniques and machine learning algo-
rithms have been developed to predict HIV resistance. Such
studies have used statistical modeling [3–5], neural networks
[6–8], support vector machines [9] and decision trees [10].

Most of these studies used data provided by genotyping, a
test that identifies genetic mutations associated with resistance
to antiretroviral drugs. Although it is not considered the gold
standard test, genotyping is faster and cheaper than phenotyp-
ing and provides a direct quantitative measure of the suscep-
tibility of HIV strains to drugs [11].

Several authors recognize that different classifiers perform
poorly with imbalanced data sets [12, 13]. The imbalanced
problem is characterized when there are greater instances of
some classes than others. Developing classifiers using imbal-
anced data may result in solutions with a good overall perfor-
mance due to the tendency of overfitting for the majority class
[14].

In this study, we present a classifier for predicting resis-
tance to lopinavir, an HIV protease inhibitor, using genotypic
information. Due to the high number of resistant mutations,
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we used logistic regression (LR) to select the features and a
probabilistic neural network (PNN) to design the classifiers by
using balanced data in relation to the classes of resistance. In
addition, a comparison of the performance was conducted
between the PNN models and three well-known HIV-1
genotyping interpretation systems: HIV db, Rega, and ANRS.

Methods

Genotype dataset

The data were made available from the Molecular Virology
Laboratory, Health Science Center, Federal University of Rio
de Janeiro (UFRJ /CCS / Brazil), a member of the Brazilian
Network for HIV-1 Genotyping (RENAGENO), responsible
to perform and analyze genotyping tests for all HIV-infected
patients within the public system. The Brazilian HIV data are
accessible to the RENAGENO laboratory members and gen-
eral data are publicly available at www2.aids.gov.br/ final/
dados/dados_aids.asp.1 For this study, 625 amino acid
sequences of the protease enzyme of the pol gene of HIV-1
subtype B from infected patients were analyzed.

Modeling

Outcome variable

The outcome was a binary variable that indicated whether the
patient was resistant to lopinavir. For patients who were sus-
ceptible or had an intermediate resistance to this drug in the
last regimen of the therapy, the variable was coded as 0 (non-
resistant), whereas those who developed resistance to
lopinavir were coded as 1 (resistant). Patient classification
was obtained using the HIV Genotyping Test—Brazilian In-
terpretation Algorithm (version 05:12) [15], which uses a set
of predefined rules to identify if there is a particular drug
resistance.

Explanatory variables

The explanatory variables were obtained from a set of posi-
tions in the HIV-1 protease gene (PR) known to influence drug
resistance. The initial positions included here were those ob-
tained from an updated list of mutations associated with resis-
tance to antiretroviral drugs provided by the International An-
tiviral Society (IAS-USA) [16]. The PR positions with the
corresponding amino acid code for the original sequence are:
L (amino acid) 10 (position), K20, L24, V32, L33, M46, I47,
I50, F53, I54, L63, A71, G73, L76, V82, I84 and L90.

Training and test sets

The set of 625 available amino acid sequences was divided
into a training set of 500 sequences, and a test set of 125
sequences. In the training group, 400 patients had no resis-
tance to lopinavir, whereas 100 were resistant. In the test
group, 30 patients were resistant, and 95 showed no resis-
tance. The training set was used for feature selection and to
obtain an optimal smoothing parameter of the PNN. The test
set was only used to evaluate the performance of the final
models.

Feature selection

The selection of input variables is an important step to en-
hance the classification ability of the models and to reduce
the training and test computing time. Because no feature se-
lection method designed for the PNN was found in the litera-
ture, we proposed using the bootstrap method and LR to select
the amino acid mutation positions to be the inputs for the PNN
model. Bootstrapping is a resampling technique with a re-
placement proposed by Efron [17]. Each resample has the
same sample size as the original data.

From the training set, a total of 1000 bootstrap samples of
equal size (n=100) were obtained from the 100 patients with
therapeutic failure. Each one of these bootstrap samples was
combined with 100 patients randomly selected from the 400
non-resistant individuals, generating a balanced set used for
model estimation.

One LR model was designed for each bootstrap sample.
The variables of each of the 1000 models were selected by
the stepwise method, using the Akaike information criterion
(AIC) [18]. For this method, a sequence of regression models
is obtained by adding or removing variables at each step. Non-
significant variables are excluded, and the procedure is repeat-
ed until no other variable improves the model [19]. The AIC
penalizes models with many variables, and lower values of
AIC are preferred. The final chosen variables used as input
to the PNN were those selected in 50 % of the LR models.

PNN modeling

A PNN is an artificial neural network (ANN) used in different
classification problems [20–24]. This particular ANN pro-
posed by Specht [25] has a faster training than the multilayer
perceptron network. It generates accurate predicted target
probability scores, and it is relatively insensitive to outliers.

A PNNuses Bayesian decision to classify the input vectors.
The optimal decision rule that minimizes the average cost of
misclassification is called the Bayes optimal decision rule
[26]. The architecture of a classic PNN is shown in Fig. 1.

The input layer has as many neurons as the number of
explanatory variables and only distributes the input to the

1 For further information on the Brazilian HIV data banks, contact the
co-author Rodrigo Brindeiro (robrinde@biologia.ufrj.br).
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neurons in the pattern layer. The pattern layer contains one
neuron for each case in the training data set. The neurons of
the pattern layer are divided into i groups, one for each class.
Each neuron receives the input vector and estimates its prob-
ability density function (PDF) using the Parzen windowmeth-
od [27]. In this study, the Gaussian function was used as the
Parzen window. The ith kernel node in the jth group is defined
as a Gaussian basis function:

pi; j xð Þ ¼ 1

2πσ2ð Þd2
exp −

x−xi; j
��2���

2σ2

0
@

1
A ð1Þ

where xi,j is the vector of sample stored in the pattern unit of
class i or j (the center of the kernel), d is the number of input
variables and σ is a smoothing (spread) parameter.

The summation layer sums the output from pattern units
associated with a given class. This layer has as many process-
ing units as the number of classes to be recognized. Each of
these units estimates a class-conditional PDF using a mixture
of Gaussian kernels according to equation 2:

f i; j xð Þ ¼
X
i¼1

N j

αi; jpi; j xð Þ; 1≤ j≤n ð2Þ

where αi,j satisfies:

X
i¼1

N j

αi; j ¼ 1; 1≤ j≤n ð3Þ

The output layer makes the decision based on the maximum
probability of Bayes’ rule. A competitive transfer function on
output neurons selects the node with the highest output and
assigns a 1 (positive identification) to that class and a 0 (neg-
ative identification) to non-targeted classes.

After the feature selection step, we use a combination of
bootstrap and cross-validation to choose the smoothing pa-
rameter of the PNN. Following a similar procedure as previ-
ously described for feature selection, 100 balanced subsets
with size 200 were obtained, and for each subset, a PNN
model was implemented. The smoothing parameter should
be chosen to obtain the highest accuracy of the classifier.
Therefore, we varied the parameter from 0.1 to 1 in steps
of 0.1, and for each smoothing parameter, a 10-fold cross
validation to evaluate the model was applied.

The data were partitioned into 10 equal sub-samples. For
each smoothing value, a PNN was trained with 90 % of the
data and was evaluated with the remaining sub-sample. The
area under the receiver operating characteristic (ROC) curve
(AUC) was the accuracy criterion. Ten computed AUCs from
the folds were averaged to produce a single estimation for that
particular value of the smoothing constant, and the smoothing
parameter was selected as the value that provided the best
average AUC. This procedure was repeated for each one of
the 100 balanced subsets. The final smoothing parameter was
defined as the average of the smoothing parameters associated
with the best AUCs of each subset.

The variables selected by LR and the estimated smoothing
parameter were employed to develop four PNN models over
four balanced test sets, which were later used in the validation
step. The four balanced data sets were obtained by dividing
the 400 nonresistant samples into four sub-samples of size 100
and combining each one with the available 100 resistant
samples from the training set.

Evaluation of the PNN models

The performance of the four final models was evaluated using
ROC curve analysis, AUC, accuracy, sensitivity, and specific-
ity. The models were applied to the test set with 125 samples,
which was not used at any other stage of the analysis.

Fig. 2 Frequency of variables
selected in the 1000 bootstrap
samples in logistic regression

Fig. 1 Basic architecture of a probabilistic neural network
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An ROC curve characterizes the performance of a binary
classificationmodel across all possible cut-offs and depicts the
tradeoff between sensitivity and the false-positive rate. The
AUC represents the expected performance as a single scalar.

Accuracy (Acc) is defined as the proportion of correct
classification by the model over the total sample. This
measure is given by the following formula:

Acc ¼ TP þ TNð Þ
.

TP þ FP þ TN þ FNð Þ ð4Þ

where TP, FP, TN, and FN are true positives, false positives,
true negatives and false negatives, respectively.

Sensitivity (Se) measures the proportion of true positives
compared to the total positive class, and specificity (Sp) com-
prises the proportion of true negatives in relation to the total
negative class.

Se ¼ TP
.

TP þ FNð Þ ð5Þ

Sp ¼ TN
.

TN þ FPð Þ ð6Þ

Classification algorithms for comparison

The classifiers were compared to three rule-based genotypic
interpretation systems, HIVdb (version 7.0) [28], Rega (ver-
sion 9.1.0) [29] and ANRS (Agence Nationale de Recherches
sur le SID) (version 2013.09) [30].

In addition to the PNN, the k-Nearest Neighbors (k-NN), a
non-probabilistic algorithm, was implemented to provide a
comparison of diagnostic performance. The k-NN algorithm
classifies each test case by a majority vote of its neighbors,
with the case being assigned to the class most common
amongst its k nearest neighbors as measured by Euclidean
distance. The dataset used was the same applied in the PNN,
and the input variables were those selected by LR.

Software

PNN classifiers were implemented using MATLAB® soft-
ware package (MATLAB version R2009b with neural net-
works’ toolbox) [31]. Statistical analysis and LR were per-
formed using the open source R software version 3.0.1 [32].

Results

We initially selected the 16 positions of lopinavir resistance
provided by the IAS-USA as the input for the variable selec-
tion approach using bootstrap and stepwise LR. The percent-
ages of selection of each input variable in 1000 bootstrap
samples are shown in Fig. 2. The final selected features, those
that were selected in at least 50 % of the models, were the ten
following mutation positions: A71, I54, I84, K20, L10, L24,
L33, L90, M46, and V82. The PNN smoothing parameter was
set to 0.63, which is the average of 100 smoothing parameters
with the best AUCs of each model as described previously.

The four PNN classifiers developed using the same 100
resistant samples combined with random samples of the same
size from the 400 non-resistant patients were evaluated with
the test set. Because the test set emulates a real situation, with
resistant and non-resistant patients arriving at random and
without knowledge of whether it was balanced or not, we
had in this test set 30 resistant and 95 nonresistant patients.
Table 1 shows the performance of the PNN classifiers. The
mean AUC equals 0.96, accuracy equals 0.91, and sensitivity
and specificity equal 0.98 and 0.89, respectively. The ROC
curves for the four classifiers are shown in Fig. 3.

The k-NN algorithm resulted in classifiers with a mean
AUC equal to 0.93, an accuracy equal to 0.91 and a sensitivity

Fig. 3 ROC curve for the PNN classifiers. The black points are the
threshold of 0.5 used to predict class

Table 1 Test set evaluation
results with 95 % confidence
interval (CI) of PNN classifiers

AUC Acc Se Sp

Classifier 1 0.96 (0.92–0.99) 0.89 (0.83–0.94) 0.94 (0.81–0.99) 0.88 (0.79–0.94)

Classifier 2 0.96 (0.93–0.99) 0.92 (0.86–0.96) 1.00 (0.85–1.00) 0.89 (0.81–0.95)

Classifier 3 0.96 (0.93–0.99) 0.91 (0.85–0.96) 1.00 (0.85–1.00) 0.88 (0.79–0.94)

Classifier 4 0.97 (0.94–0.99) 0.94 (0.88–0.97) 0.97 (0.85–1.00) 0.92 (0.85–0.97)

Mean 0.96 (0.95–0.97) 0.91 (0.89–0.94) 0.98 (0.94–1.00) 0.89 (0.85–0.92)

Acc Accuracy, Se Sensitivity, Sp Specificity
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and specificity equal to 0.98 and 0.88, respectively. Table 2
summarizes the performance of k-NN classifiers.

HIVdb, Rega and ANRS algorithms classified the data at
three levels of resistance: susceptible, intermediate resistance
and high level of resistance. To compare the ability of these
algorithms to our models, the outputs of the algorithms were
classified according to the following criteria: susceptible or
intermediate resistance were classified as non-resistant, and
samples classified as a high resistance were classified as resis-
tant. Table 3 summarizes the performance of these three
algorithms.

Discussion

In the present study, we used an approach combining boot-
strap and LR stepwise variable selection followed by the pre-
diction of resistance to the antiretroviral lopinavir with a PNN
neural network. Only those variables that appeared in 50 % of
logistic regression models were used in final models. If the
cutoff point was increased to 60 %, only position 33 (50.1 %)
did not appear in PNN models and an increase to 70 % would
also exclude position 71 (64.2 %). Using a cutoff equals to
70 % the classifiers had a lower overall performance, with
mean AUC equal to 0.65, accuracy of 0.46 and sensitivity
and specificity equal to 0.99 and 0.27, respectively. For the
test data, the PNN classifier showed predictive performances
greater or comparable to three well-known interpretation
systems.

In this study, feature selection andmodel development used
balanced data sets. Most classification procedures assume bal-
anced training data sets in its learning stage [14]. When these
methods are trained on highly imbalanced data sets, they often
tend to overpredict the presence of the majority class [33]. For
example, if the data have a large number of negative cases, it is

possible that the classifier shows a higher specificity than sen-
sitivity, which results in an overestimated accuracy.

The available data set had fewer instances of resistance
class compared to susceptible or non-resistance class. We ad-
dressed this problem by using random undersampling of the
majority class. Accuracy alone is not a good measure of the
performance of a classifier because it is strongly biased in
favor of the majority class. Moreover, this measure considers
different classification errors as equally important. It would be
more attractive if we used a performance measure that disas-
sociates the errors that occur in each class. In addition to
global performance metrics such as AUC or Acc, other pa-
rameters should be considered to evaluate classifiers, such as
sensitivity and specificity. The absence of these parameters
may impair a proper evaluation of the model as well as a
misinterpretations of the results.

Several studies report only accuracy, which reduces the
interpretation of their results. In a recent study, Pasomsub
et al. [8], with a feed-forward artificial neural network showed
that developed classifier had an AUC equal to 0.92 (95 % IC:
0.88–0.95) for lopinavir. However, they did not mention other
indices, such as sensitivity and specificity, and there is no
indication if their data set was balanced or not.

In a study developed by Rhee et al. [34], a feed-forward
network was used in the development of models, using a com-
plete set of 70 positions in HIV-protease and a set of selected
positions by the list of IAS. For lopinavir, the accuracy was
0.76 for the full set of positions and 0.73 for the list of IAS,
which was lower than those found in our study.

The four classifiers showed very similar performances,
with accuracies ranging from 0.89 to 0.94 and an average
AUC equal to 0.96. When applying the variables selected by
the approach proposed in this present study, the k-Nearest
Neighbor exhibited results similar to PNN models, demon-
strating that this feature selection method could be applied to

Table 3 Test set evaluation
results with 95 % confidence
interval (CI) of HIVdb, Rega and
ANRS algorithms

AUC Acc Se Sp

HIVdb 0.91 (0.84–0.97) 0.93 (0.87–0.97) 0.86 (0.70–0.95) 0.96 (0.89–0.99)

Rega 0.74 (0.66–0.83) 0.86 (0.78–0.91) 0.49 (0.31–0.66) 1.00 (0.94–1.00)

ANRS 0.94 (0.89–1.00) 0.97 (0.92–0.99) 0.89 (0.73–0.97) 1.00 (0.94–1.00)

Acc Accuracy, Se Sensitivity, Sp Specificity

Table 2 Test set evaluation
results with 95 % confidence
interval (CI) of k-NN classifiers

AUC Acc Se Sp

Classifier 1 0.91 (0.87–0.96) 0.90 (0.83–0.94) 0.94 (0.81–0.99) 0.88 (0.79–0.94)

Classifier 2 0.94 (0.90–0.97) 0.91 (0.85–0.96) 1.00 (0.85–1.00) 0.88 (0.79–0.94)

Classifier 3 0.94 (0.91–0.98) 0.92 (0.86–0.96) 1.00 (0.85–1.00) 0.89 (0.81–0.95)

Classifier 4 0.93 (0.89–0.97) 0.91 (0.85–0.96) 0.97 (0.85–1.00) 0.89 (0.81–0.95)

Mean 0.93 (0.91–0.95) 0.91 (0.85–0.95) 0.98 (0.94–1.00) 0.88 (0.85–0.91)

Acc Accuracy, Se Sensitivity, Sp Specificity

J Med Syst (2016) 40: 69 Page 5 of 7 69



probabilistic and non-probabilistic algorithms. In all cases,
they were at least comparable or superior to some metrics to
HIVdb, Rega, and ANRS algorithms, three well-known rule-
based genotypic interpretation systems used for many clini-
cians to predict resistance to specific antiretrovirals. Com-
pared with these prediction algorithms, our approach requires
fewer features—10 positions as input to the PNN model to
classify lopinavir resistance in contrast to 17 positions pro-
posed by IAS. Additionally, feature selection can be revised
and PNNs re-trained without difficulties when new data are
made available or new resistance positions are reported.

The limitations of this approach for predicting HIV resis-
tance deserve consideration. First, this approach can only pre-
dict drug resistance that is included in the training set, which
in our case was lopinavir. Although this is a limitation, the
method can be trained with available data for other drugs, but
here, we did not have enough samples to properly develop
models for other drugs. Second, the choice of features and
smoothing parameter of the PNN neural network requires
some computational effort. However, once this stage is ac-
complished, the prediction speed is very high.

With specificity and sensitivity of 0.98 and 0.89, respec-
tively, the PNN classification developed here may serve as a
useful tool to support decision making regarding the predic-
tion of resistance of HIV+ patients, thus assisting physicians
in their treatment of HIV+ patients. Additional applications of
this approach using other antiretroviral drugs in therapeutic
practice are needed to better evaluate the impact and the use-
fulness of the proposed PNN model.
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