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Abstract Distinguishing between awake and anesthetized
states is one of the important problems in surgery. Vital signals
contain valuable information that can be used in prediction of
different levels of anesthesia. Some monitors based on electro-
encephalogram (EEG) such as the Bispectral (BIS) index have
been proposed in recent years. This study proposes a newmeth-
od for characterizing between awake and anesthetized states.
We validated our method by obtaining data from 25 patients
during the cardiac surgery that requires cardiopulmonary by-
pass. At first, some linear and non-linear features are extracted
from EEG signals. Then a method called BLLE^(Locally
Linear Embedding) is used to map high-dimensional features
in a three-dimensional output space. Finally, low dimensional
data are used as an input to a quadratic discriminant analyzer
(QDA). The experimental results indicate that an overall accu-
racy of 88.4 % can be obtained using this method for classify-
ing the EEG signal into conscious and unconscious states for all
patients. Considering the reliability of this method, we can de-
velop a new EEG monitoring system that could assist the an-
esthesiologists to estimate the depth of anesthesia accurately.
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Introduction

One of the major problems in surgery is appropriate condition
of anesthesia in patients [1]. The anesthesiologists should
keep the patients in proper levels of anesthesia during the
surgical interventions and also should prevent from giving
excessive or low doses of anesthetics to patients. Excessive
doses of anesthetics -deep anesthesia- can cause cardio-
vascular problem and prolong the awakening times, but on
the opposite, low doses of anesthetics -light anesthesia- is
harder to detect and according to the patients point of view
is frightening [2]. Nowadays clinical indices like blood pres-
sure, heart rate, sweating and limb movements are used to
assess the depth of anesthesia. However, these indices can
change from one patient to another depending on the type of
the surgery. Also, some drugs such as muscle relaxants and
vasodilators can make the analysis of those indices hard and
unreliable [3].

Many studies are focused on finding reliable non-invasive
ways to monitor the depth of anesthesia for the past several
decades [3]. Years of research has revealed that EEG signal is
the best parameter because anesthetic drugs mostly affect the
central nervous system [4]. Since EEG signal has valuable
information for determining the depth of anesthesia, it has
been used as a useful data to distinguish between awake and
anesthetized states in clinical surgeries.

During the last two decades, several methods based on
EEG signal such as frequency measures [5, 6], fractal dimen-
sion [7], recurrence quantification analysis [8] and entropy [9]
have been proposed to evaluate the level of consciousness in
anesthesia. Entropy monitoring is obtained from processing
raw EEG signals using the entropy algorithm. The signal en-
tropy decreases when the patient falls asleep and raises again
when the patient wakes up [9]. Bispectral index (BIS; Aspect
Medical Systems, Newton, MA, USA) is one of the most
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common EEG monitors used in hospitals [5]. For BIS com-
putation, numbers of variables are derived from both EEG
time domain (e.g. burst suppression analysis) and frequency
domain (e.g. power spectrum and bispectrum) and these var-
iables are synthesized into an index to show the level of con-
sciousness. The BISmonitor displays a dimensionless number
between 0 to 100 in which 100 illustrates normal cortical
electrical activity (awake state) and 0 indicates cortical elec-
trical silence (burst suppression state). Using BIS monitor can
decrease the consumption of anesthetic agents so it can help to
prevent the patients from excessive expenses [10].

In this study, 14 features including statistical, frequency
and entropy measures are extracted from EEG signal. The
input features named as follows: power in different bands
(delta, theta, alpha, beta and gamma), total power, two power
fractions, variance, skewness, kurtosis, spindle score, permu-
tation entropy and embedded entropy. These features are
straightforward theoretically and can be computed efficiently.

Features extracted from EEG signal define a high-
dimensional data set which is not appropriate for classification
approach. We hypothesized that dimensionality reduction
methods may better distinguish between awareness and un-
consciousness in patients. Recent studies also have shown that
dimensionality reductionmethods such as Isomap and Locally
Linear Embedding (LLE) algorithms can be used to assess the
depth of anesthesia or sleep states [11, 12].

In this research, first, we extracted the 14 linear and non-
linear mentioned features from the EEG signals. Then, the
extracted features are used as the input to the LLE algorithm.
By dimensionality reduction to three dimensions, we can vi-
sualize that our algorithm could classify EEG signals into
awake and unconsciousness states. Finally, we have used a
quadratic discriminant analysis (QDA) classifier to distinguish
between the two anesthetized states.

Materials and methods

Subjects and data acquisition

We studied 25 patients (15 men and 10 women, age 22–75 yr.,
weight 47–120 kg, American Society of Anesthesiologists
(ASA) physical status III) scheduled for cardiac surgery requir-
ing cardiopulmonary bypass (CPB). All patients were given
written informed consent and the protocol used in this study
was approved by the institutional review board and ethics com-
mittee, Department of Anesthesiology, Faculty of Medicine,
Shahid Beheshti University of Medical sciences, Tehran, Iran.

The EEG signal from frontal lobe of cortex was recorded
by BIS monitoring device (Aspect Medical Systems) with
sampling rate of 256 Hz and within the frequency range of
0.2 to 70 Hz. This device also recorded depth of anesthesia
with BIS Index at sampling rate of 0.1 per second.

Patient hemodynamic signals and parameters were record-
ed with vital sign monitor (AlborzB9 monitor, Saadat Co.,
Tehran, Iran) continuously via an RS232 interface into a PC
for later analysis. Sampling rate of ECG signal was 400 Hz.

Anesthetic protocol

Generally, we can divide stages of anesthesia into three sec-
tions: drug induction, maintenance and recovery from anes-
thesia. Data record of recovery section was not possible be-
cause patients were transferred to the post-anesthesia care unit
at the end of the surgery.

Before patients were entered the operation room, they were
injected with Morphine (0.1 mg/kg) and Promethazine
(0.5 mg/kg). Anesthesia was induced by Thiopental sodium
(5 mg/kg), Fentanyl (5 μg/kg), Lidocaine (1.5 mg/kg) and
Cisatracurium (0.1 mg/kg). The patients were reached to a
state of unconsciousness after an average of 30 s. Loss of
consciousness (LOC) was assessed by loss of response to
verbal command of the anesthetist.

The second stage of anesthesia was maintenance. In cardiac
surgery, the three sections of maintenance are before the
Heart-Lung pump usage, during Heart-Lung bypass and after
disconnecting the pump. First, Isoflurane was given at 1MAC
with 100 % oxygen and N2O to the patients. Also, induction
of Morphine (0.2 mg/kg) and Cisatracurium (100 μg/kg/h)
were continued until bypass phase. In bypass phase, anesthe-
sia continued by induction of drugs like Propofol (50–150 μg/
kg/min), Atracurium and Morphine by using infusion pump
and undergoing mild hypothermia (31–33 °C). After bypass
phase, Isoflurane was given at 1 MAC with oxygen (100 %)
and N2O to the patient. After tracheal extubation, patients
were taken to the post-anesthesia care unit.

The EEG and ECG recordings were started before induc-
tion of anesthesia and continued till patients were taken to the
post-anesthesia care unit.

Feature extraction

EEG features

In this study, we extract 14 features from EEG signal. It can be
done by dividing the signal into non-overlapping windows
and calculating statistical and frequency based features for
each window. Hence each window becomes a high-
dimensional data point. The window length is 10-s non-over-
lapping epochs. These 14 features are as follows:

The power in different frequency bands: These features
include total power in the delta (up to 4 Hz), theta (4–
7.5 Hz), alpha (7.5-12 Hz), beta (12-26 Hz) and gamma
ranges (above 26 Hz).
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Total power: This feature is extracted by summing the
power in all five frequency bands in the EEG signal.
The power fractions: We can obtain the low power frac-
tion by summing the power in the delta and theta ranges
and dividing by total power. Similarly, the high power
fraction also can be obtained by summing the power in
the beta and gamma ranges and dividing it by total power.
Statistical measures: These features consist of variance,
skewness and kurtosis. The variance indicates the disper-
sion of the data and it is always non-negative. Skewness
is the amount of the asymmetry around its mean, for
example, positive skewness indicates that more data
points lie above the mean than below it. Kurtosis is a
measure of the Bpeakedness^ [13], high kurtosis means
that the signal has large deviations from its mean.
Spindle score: The spindle detector finds those segments
of the EEG signal where the signal changes from positive
to negative and vice versa five times in a row. Spindle
waveforms during anesthesia is about 10 Hz [14].
Therefore, episodic 10 Hz activity and episodes of burst
suppression usually happen during anesthesia. The
MATLAB code we used for this purpose can be found
in McKay et al. [14].
Permutation entropy: The permutation entropy (PE)
quantifies the value of regularity in the EEG signal. It
can be calculated by mapping the time series into sym-
bolic sequences in order to quantify the probability of the
different symbols [15]. In other words, it is an indicator of
the Bflatness^ of the signal. The largest and smallest
values of PE are one and zero. PE is conceptually simple,
computationally efficient and it resists against artifact. It
has also found that the PE is a goodmeasure of anesthetic
depth. The MATLAB code for this function can be found
in Olofsen et al. [15].
Embedded entropy: It calculates the probability that the
closely related sequences in a data set remain closely
related, in a segment. It is a proper method to predict a
dynamical system. Embedded entropy works very good
in anesthesia especially at high doses of anesthetics [16].

ECG features

The seven features extracted from ECG data are as follows:
total power, statistical measures (variance, skewness and
kurtosis), spindle score, permutation entropy and embedded
entropy.

ECG and ECG-EEG features

The features extracted from EEG-ECG signals are the combi-
nation of each signal features. Therefore there are 21 features
extracted from the EEG-ECG signals.

Dimensionality reduction method with Locally Linear
Embedding (LLE)

In the last section, we extracted some features from EEG and
ECG signals in high-dimensional space which the number of
dimensions is equal to the number of features. We hypothe-
sized that dimensionality reduction methods may better dis-
tinguish between awareness and unconsciousness in patients.
Locally Linear Embedding (LLE) is a dimensionality reduc-
tion method that was introduced by Roweis and Saul [17].
This method visualizes high-dimensional inputs into a low-
dimensional space, and it can often reveal relationships and
patterns that are covered by the complexity of the original data
set. It is used to distinguish between normal and pre-seizure
EEG measurements [18], to characterize between sleep stages
[10] and computation of left ventricular volume change from
Echocardiography images [19].

The algorithm

N data samples of X data set with dimensionality D is trans-
formed into a new dataset Y including of N points with di-
mensionality d (where d<D) with LLE algorithm. It should be
noted that the geometry of the data and the local configura-
tions of nearest neighbors is retained as much as possible.

x1; x2; :::; xn∈RD →
f
y1; y2; :::; yn∈R

d ð1Þ

The algorithm can be divided into three different steps
(Fig. 1). First, the K nearest neighbors for each data sample
is determined as measured by Euclidean distance.

Second, every data point from its nearest neighbors is re-
constructed. This can be explained in minimizing the cost
function (2):

E wð Þ ¼
XN

i¼1

x!i−
Xk

j¼1

wij x
!

j

�����

�����

2

ð2Þ

Where xj is one of the nearest neighbor points, xi denotes
the current data point and wij is the corresponding reconstruc-
tion weight between xi and xj. To discover the weights, the
E(w) in Equation (2) is minimized regarding to sparseness
constraint and an invariance constraint (It should be noted that
that wij=0 if xj is not in the neighborhood of xi). The sparse-
ness constraint indicates that any data point xi is rebuilt solely
from its neighbors. The invariance constraint is fulfilled if sum
of each row of the weight matrix is equal one (∑

j
wij ¼ 1 ).

Regarding to these constraints, the LLE obtains the least
squares solution to w.

Finally, each output yiwith low dimension is mapped by an
input xiwith high dimension. This can be possible by selecting
the d dimensional coordinates of each output yi to minimize
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the following cost function:

ϕ yð Þ ¼
XN

i¼1

y!i−
Xk

j¼1

wij y
!

j

�����

�����

2

ð3Þ

This function, similar to the one in equation (2), is founded
on locally linear reconstruction errors. There are just two dif-
ferences here that wij are fixed and output yi are optimized. It
should be noted that original inputs xi are not involved in this
step. Accordingly, geometric information inwij establishes the
embedding entirely. Consequently, the plan is to discover out-
puts yi with low dimension, equally that high dimensional
inputs xi are reconstructed by wij weights. By rewriting equa-
tion (3) as the quadratic form:

ϕ yð Þ ¼
X

i

y!i−
X

j

wij y
!

j

�����

�����
2

¼
X
ij

M ij y!i: y
!

j

� �
¼ yTMy

ð4Þ

The dimension of matrix M is N×N and is equal to:

Mij ¼ δij−wij−wji þ
X
k

wkiwkj ¼ I−Wð ÞT I−Wð Þ ð5Þ

The embedding cost function (4) can be optimized by solv-
ing eigenvalue problem of cost matrix M [20].

More description and examples for the algorithm can be
found in Saul et al. [20, 21]. Also, aMATLAB code for LLE is
available on the authors' website [22].

Classification

Statistical techniques and neural networks are used for classi-
fication widely in biomedical applications [23]. One of the
statistical classifiers is quadratic discriminant analyzer
(QDA). Discriminant analysis captures the relationship be-
tween multiple independent variables and a categorical depen-
dent variable in the usual multivariate way, by forming a com-
posite of the independent variables. QDA is a supervised clas-
sification; first it should be trained with some observations and
then tested with other observations in order to calculate the
accuracy. It is a simple method and its computational time is
very low [24]. Numbers of pattern recognition problems and
EEG processing researches such as motor imagery based
Brain-Computer interface and P300 Speller have used this
classifier [25]. The QDA classifier is implemented by using
MATLAB software version 7.1.

Leave-one-out cross-validation

Leave-one-out cross-validation is an approach for assessing
how the results of a statistical analysis will generalize to an
independent data set. This technique involves using all obser-
vations from one patient as the test data, and the remaining
observations from other patients as the training data. This is
repeated in such a way that observations from all patients are
used once as the test data.

Statistical analysis

The evaluation of the proposed method was determined by
computing the classification accuracy. The definition of this
parameter is as follows:

Classification accuracy: Number of correctly detected an-
esthetic levels as a fraction of the total number of applied
anesthetic levels.

Results

Our method applied to different data sets

In this section, the results of applying our algorithm to classi-
fying between awake and anesthetized states are shown for all
data sets (EEG, ECG and EEG-ECG). We used a 10-s non-
overlapping window for different vital signals.

Based on the Loss of consciousness (LOC) time, drug de-
livery protocol and anesthesiologist’s assessment, the patient
is considered to be in one of two different levels of anesthesia,
namely, awake and general anesthesia; then the corresponding
EEG and ECG signals are selected.

Fig. 1 Diagram of the LLE algorithm. The three main steps are: (1)
define the neighborhood for each point, (2) solve for the reconstruction
weights, and (3) learn embedding which preserves the reconstruction
weights. Image obtained from [20]
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Our method applied to EEG data set

In this study, at first, we extract 14 features from EEG signal
discussed in section 2.3.1. It can be done by dividing the
signal into non-overlapping windows and calculating statisti-
cal and frequency based features for each window. Hence each
window becomes a high-dimensional data point. After de-
scribing the EEG data set by these measures, now we apply
the LLE algorithm. In other word, the features extracted from
each 10-s EEG segment are applied into a LLE algorithm to
visualize that our algorithm could classify EEG signals into
awake and unconsciousness states. Therefore, input dimen-
sion to LLE method is 14 and the output dimension is 3.

Figure 2 demonstrates an example of using LLE on fea-
tures extracted from EEG signal. In this figure, the 3D result
for 12 nearest neighbors (k = 12) is displayed. Every point in
this figure represents a 10-s window of EEG data and the color
and symbol represent the two anesthetized states. Red circles

are used to show awake (conscious) state and blue stars are
used to show unconscious state. In this example, we see a
general attitude of increasing anesthetized depth as we move
to the center of the space.

Our method applied to ECG data set

At first, we extract 7 features from ECG signal discussed in
section 2.3.2. Then, we applied LLE algorithm to these fea-
tures. In other word, we use these features as the High-
dimensional input to the LLE algorithm. Hence, the number
of input dimension for LLE was 7 and the output number was
3. The 3D result for 6 nearest neighbors (k = 6) is displayed in
Fig. 3. Every point in this figure represents a 10-s window of
ECG data and the color and symbol represent the two anes-
thetized states. Here we see a good separation between the
Conscious points (red circles) and Unconscious points (blue
stars).

Fig. 2 An example of using our
method on EEG signal

Fig. 3 An example of using our
method on ECG signal
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Our method applied to both EEG and ECG data sets

In this section, we use both EEG and ECG signals as input to
the LLE algorithm. The features extracted for EEG and ECG
signal were discussed in section 2.3.3. We use these features
as the High-dimensional input to the LLE algorithm. Input
dimension is 21(14 for EEG and 7 for ECG) and output di-
mension is 3. The 3D result for 20 nearest neighbors (k = 20) is
displayed in Fig. 4. Every point in this figure represents a 10-s
window of EEG-ECG data and the color and symbol represent
the two anesthetized states. As we can see, Conscious points
(red circles) are scattered in the space whereas Unconscious
points (blue stars) have remained close together.

Classification accuracy

Table 1 shows the classification accuracy achieved among the
patients with our method between EEG, ECG and EEG-ECG
in different states during cardiac surgery for all patients
(n = 25). The average classification accuracy of 88.4 % across
the subjects with a standard deviation of 3.6 % in discriminat-
ing the awake from anesthesia state is obtained with our meth-
od applied on EEG signal.

It is also found from the experimental results that our meth-
od applied on ECG signal give an overall classification

accuracy of 83.4 % between the patients with a standard de-
viation of 4.5 % in detecting two anesthetized states.

Finally, our method applied on the combination of EEG
and ECG signal achieves 76.6 % overall classification accu-
racy among the patients with a standard deviation of 6.7 % in
detecting two anesthetized states.

In order to compare our method with BIS index, we differ-
entiate awake and unconscious states via BIS index (BIS num-
ber 80–100 is considered as Awake and BIS number below 80
is considered as Unconscious). It is found from the results that
BIS index give an overall classification accuracy of 84.2 %
between the patients with a standard deviation of 3.9 % in
detecting two anesthetized states.

Discussion

In this work, a new method based on LLE algorithm is pro-
posed to classifying between awareness and unconsciousness
(or in other words, depth of anesthesia) in clinical applicants.
We evaluated the proposed method before and during anes-
thesia in 25 patients (15 women and 10 men, ages were in the
range of 16 to 81). EEG signal were taken from patients and
anesthesiologist’s assessment was the reference (golden stan-
dard) for classifying between awareness and unconsciousness
state.

Variety of features applied on EEG signal to extract all in-
formation in this signal. Each feature shows a dimension. LLE
as a dimensionality reduction method is used to reduce high-
dimensional input data into a low-dimensional output space.
The dimensionality of the feature data with LLE method is
reduced to achieve a three-dimensional embedding
representing this manifold. Themanifold demonstrates the con-
tinuum of neurophysiological alternations during anesthesia.

Fig. 4 An example of using our
method on both EEG and ECG
signal

Table 1 Classification accuracy using EEG, ECG and EEG-ECG sig-
nals during cardiac surgery for all patients (n = 25)

Method Signal Classification accuracy (%)

Our Method EEG 88.4 ± 3.6

Our Method ECG 83.4 ± 4.5

Our Method EEG-ECG 76.6 ± 6.7

BIS index EEG 84.2 ± 3.9
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Our methodwas applied on EEG, ECG and combination of
EEG and ECG signals. The number of features for mentioned
signals was 14, 7 and 21 respectively and the output dimen-
sion for all signals was 3. Classification accuracy for EEG,
ECG and EEG-ECG signals were 88.4 %, 83.4 % and 76.6 %
respectively. Due to above results, we can say that EEG signal
in solitary results in determining the depth of anesthesia best.
But EEG signal cannot be used in some surgeries such as head
and neck surgery because of the high noise. Therefore, at
some points, ECG signal or combination of EEG and ECG
signal can be used to determine the anesthetized states.

If we compare our method via BIS index, we will find that
our method has better results than those of the BIS index. Also
BIS value computation is so complex and needs more time
[26]. In addition, the removal of artifacts (low frequency blinks,
eye movement, baseline drift and nonlinear distortion of the
amplitude) in BIS is too complicated and time consuming
[27]. Moreover, researchers in recent years proved that BIS
index has several problems: it causes paradoxical outcomes
during burst suppression pattern [28], it is not responsive to
some anesthetic agents [29], it is sensitive to artifact [27] so it
cannot be used in head surgeries, it cannot regain its baseline
value after recovery [30] and also has large time delays [31].

In order to effectively characterize the transition from
awake to anesthesia using EEG, a suitable set of features is
necessary. The results showed that the nonlinear combination
of features can be derived that can be shown by three new
combinational features to explain most of the variance. It is
because EEG changes during induction of anesthesia are ex-
tremely nonlinear and require to be anticipated with a nonlin-
ear method such as LLE algorithm.

In conclusion, a new method based on EEG features ex-
traction and dimensionality reduction is proposed to distin-
guish between awake and anesthetized states. The method is
validated with data recorded from 25 patients during the car-
diac surgery requiring CPB. Anesthesiologist’s assessment
was used as a reference for separation between two anesthe-
tized states. We can say that our method could classify aware-
ness and unconsciousness in a good manner. We also ac-
knowledge that this paper is largely a proof-of-principle; and
we have used a small data set as an example to compare our
method with BIS index. The real clinical significance during
course of surgery or increase/decrease of drug concentration
over time will only be determined with future larger trials of
the two methods of analysis.
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