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Abstract This paper presents the analysis of multi-channel
electrogastrographic (EGG) signals using the continuous wave-
let transform based on the fast Fourier transform (CWTFT).
The EGG analysis was based on the determination of the sev-
eral signal parameters such as dominant frequency (DF), dom-
inant power (DP) and index of normogastria (NI). The use of
continuous wavelet transform (CWT) allows for better visible
localization of the frequency components in the analyzed sig-
nals, than commonly used short-time Fourier transform
(STFT). Such an analysis is possible by means of a variable
width window, which corresponds to the scale time of obser-
vation (analysis). Wavelet analysis allows using long time win-
dows when we need more precise low-frequency information,
and shorter when we need high frequency information. Since
the classic CWT transform requires considerable computing
power and time, especially while applying it to the analysis of
long signals, the authors used the CWT analysis based on the
fast Fourier transform (FFT). The CWT was obtained using
properties of the circular convolution to improve the speed of
calculation. This method allows to obtain results for relatively
long records of EGG in a fairly short time, much faster than
using the classical methods based on running spectrum analysis

(RSA). In this study authors indicate the possibility of a para-
metric analysis of EGG signals using continuous wavelet trans-
form which is the completely new solution. The results obtain-
ed with the described method are shown in the example of an
analysis of four-channel EGG recordings, performed for a non-
caloric meal.

Keywords Electrogastrography . Continuouswavelet
transform . Dominant frequency . Index of normogastria

Introduction

Electrogastrography is a research method designed for nonin-
vasive assessment of gastric slow wave propagation [1–4].
One or multichannel EGG signals are obtained from the dis-
posable electrodes, appropriately arranged on the surface of
the abdomen of the patient’s stomach [5–7]. It is assumed that
the frequency range of EGG signal is from 0.015 to 0.15 Hz
and the amplitude of it is about 100–400μV [6, 8]. The typical
EGG examination takes about 2 h and consists of three parts:
the first one - preprandial, usually no longer than 30min, it is a
stage before a meal (person under investigation should be
fasted). The second part takes about 5 to 15 min, including
time when the person accepts a standardized meal, and the
third part - postprandial, about 60–120 min, when the meal
is digested. The standard of a meal depends on the examining
center. Most frequently three types of meals are used: non-
caloric meal e.g., 400 ml water, liquid meal e.g., 250 ml of
yogurt and the caloric meal, e.g., pancake with jam prepared
according to a well-defined recipe [9, 10].

The initial analysis of EGG signals involves calculating
dominant frequency and dominant power of slow waves [2,
4, 6, 11–13]. In the case of EGG examination the frequency is
typically calculated in cycles per minute (cpm), as a medical

This article is part of the Topical Collection on Systems-Level Quality
Improvement

* Dariusz Komorowski
dariusz.komorowski@polsl.pl

1 Faculty of Biomedical Engineering, Department of Biosensors and
Biomedical Signals Processing, Silesian University of Technology,
40 Roosevelt’a street, 44-800 Zabrze, Poland

2 Institute of Electronics, Division of Biomedical Electronics, Silesian
University of Technology, 16 Akademicka street,
44-100 Gliwice, Poland

J Med Syst (2016) 40: 10
DOI 10.1007/s10916-015-0358-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-015-0358-4&domain=pdf


standard [5]. According to the DF values, the EGG rhythm is
classified to: bradygastria (0.5–2.0 cpm), normal rhythm (2.0–
4.0 cpm) or tachygastria (4.0–9.0 cpm) [4, 5]. Due to very high
level of disturbances and interferences in EGG signals while
receiving a meal, the DF values are calculated only for pre-
prandial and postprandial parts. On the basis of the rhythm
classification, the normogastria index is calculated [6]. This
index is expressed as the amount of DF values in the range of
normal rhythm to the total amount of the DF values [4, 5].

The parameters DF and MP are usually calculated by
means of the spectral analysis. The spectral analysis of EGG
is done for short segments (1 to 5 min length) of the signals.
The values of DF and MP are calculated for each segment.
The length of the segments depends on the limitations of the
used method and is a compromise between accuracy and res-
olution of calculated frequency and its time location in the
analyzed signal. Segments of 3 to 5 min length are used to

calculate spectrum of the EGG signal, using the short-time
Fourier transform (STFT), and for the nonparametric methods
(for example AR, ARMA modeling), the minimum length of
the segment is about 60 s [4, 6, 11, 12]. In the case of EGG
signal analysis, the process of calculation the spectrum of
consecutive or overlapped fragments is often referred as a
running spectrum analysis (RSA) [8, 14]. Figure 1 shows a
1-min segment of the signal before and after application of
Tukey window (left), its power spectrum (middle) with
marked both DF and MP values, and an example of RSA
analysis of one channel EGG signal (right).

The EGG signals analysis based on CWT is widely pre-
sented in the literature [15–19]. In this study, the CWT algo-
rithm based on FFT was applied to determine the dominant
frequency of the slow wave in the EGG signal. In the litera-
ture, this algorithm is referred to as CWTFT [20–22]. An
application of CWT allows to reduce limitations of classical

00:00:50 00:01:00 00:01:10 00:01:20 00:01:30 00:01:40 00:01:50
-100

-50

0

50

100

Time (hh:mm:ss)

00:00:50 00:01:00 00:01:10 00:01:20 00:01:30 00:01:40 00:01:50
-100

-50

0

50

100

Time (hh:mm:ss)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-110

-105

-100

-95

-90

-85

-80

-75

-70

Po
w

er
 S

pe
ct

ru
m

 D
en

si
ty

 (d
B)

Frequency (cpm)

DF=3.2

 E
G

G
 S

ig
na

l (
uV

)
 E

G
G

 S
ig

na
l &

 W
in

do
w

 (
uV

)

Fig. 1 An example of 60s segment of EGG signal (left), its spectrum (middle) with marked DF andMP and an example of RSA analysis of one-channel
EGG signal (right)
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Fig. 2 Morlet wavelet (blue a=1, red a=3.75) in the time domain (left) and in the frequency domain(redω0=6, blueω0=15) (right)
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methods of spectrum analysis (e.g., FFT, STFT) and facilitates
to determine instantaneous frequencies and its location in the
time domain [23–25].

The continuous wavelet transform is a powerful tool
for analyzing nonstationary time series signals in the

time-frequency domain and substantially differs from
the STFT method that allows clear localization on the
time axis of the frequency components, existing in the
analyzed signals. Such an analysis is possible using of
variable width window which corresponds to the scale
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Fig. 3 Segment of a chirp signal (left) associated with STFT transform (medium) and CWTFT (Morlet wavelet, ω0=6) transform (right)
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Fig. 4 Time-frequency analysis with CWTFT (non-analytic Morlet wavelet, ω0=6) for four-channels EGG signal
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of observation (analysis). Wavelet analysis allows using
long time windows when we need more precise low
frequency information, and shorter when we need high
frequency information. It should be noted that the wave-
let analysis does not include the area of time-frequency
(as in the case of STFT), but the area: the time-scale.
The time-scale area can be converted to the appropriate
area of pseudo-frequency - time, where the pseudo-
frequency is the characteristic central frequency of the
wavelet. Another important distinction from the STFT is that
the CWT is not limited to sinusoidal analyzing function and
do not requires, that the signal meets fairly strict criteria,
which are required in the classical Fourier analysis [22].

Method

The CWT reflects the correlation between the ana-
lyzed continuous-time signal x(t) and a function

referred to as wavelets and is defined by the follow-
ing formula

Cw a; bð Þ ¼
Z þ∞

−∞
x tð Þψa;b

*dt

¼ 1ffiffiffi
a

p
Z þ∞

−∞
x tð Þψ* t−b

a

� �
dt; ð1Þ

where: Cw(a,b) is the function of the parameters a
and b.

The a parameter is the dilation of wavelet (scale) and b
defines a translation of the wavelet and indicates the time
localization, ψ*(t) is the complex conjugate of the analyzing
mother wavelet ψ(t) [22, 26]. The coefficient 1ffiffi

a
p is an energy

normalized factor (the energy of the wavelet must be the same
for different a value of the scale). Moreover, to be classified as
a basic permissible wavelet, a wavelet function must satisfy
the following mathematical criteria [27–30]:
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Fig. 5 Instantaneous dominant frequency obtained by means of the CWTFT (non-analytic Morlet wavelet, ω0=6) analysis for four-channels EGG
signal
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The wavelet must have finite energy

E ¼
Z þ∞

−∞
ψ tð Þj j2dt < ∞ ð2Þ

The following condition must hold true

Cψ ¼
Z þ∞

−∞

ψ∧ ωð Þj j2
ω

dω < ∞; ð3Þ

where

ψ
∧

ωð Þ ¼
Z þ∞

−∞
ψ tð Þe−iωtdt ð4Þ

is the Fourier transform of the ψ(t) function and ω=2πf is
the circular frequency. This condition is defined as a con-
dition of admissibility and can be interpreted as a

requirement that |ψ(ω)|2 decay endeavored (head) to zero
faster than 1

ω. This condition means that the wavelet has no
zero frequency component, that is

ψ
∧

0ð Þ ¼ 0 ð5Þ

Otherwise, the wavelet must have the zero mean value. In
the literature the parameter Cψ is called the admissibility con-
stant. The value of Cψ depends on the chosen wavelet
[27–29].

In the case of complex wavelets, Fourier transform must
have both a real component and a value of zero for negative
frequencies [22].

As a result of CWT transform we obtain the two-
dimensional function E(a,b)=|Cw(a,b)|2 called scalogram,
which presents energy distribution of signals for used scales
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Fig. 6 Dominant frequency (pDF) obtained by means of the CWTFT (non-analytic Morlet wavelet,ω0=6) analysis for four-channels EGG signal (for
60s segments)
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a and the time position b (locations). In practice, all func-
tions that differ from |Cw(a,b)|2 only by the constant mul-
tiplicative factor are also called scalograms [22]. The
CWT can be considered as a transform that converts the
signal from the time domain to the scale-time domain.
The scale as mentioned above can be converted to a fre-
quency value (pseudo-frequency), the value of which de-
pends on the center frequency of the applied wavelets and
the scale value a

f a ¼
f c
a
; ð6Þ

where: fa is the frequency associated with the wavelet at
the specific a scale, while fc is the characteristic frequency
of mother wavelet at scale a=1, and time position b=0.
There is a very important distinction to be made here:

BThe characteristic frequency fc of the wavelet used in
the wavelet transform is representative of the whole fre-
quency makeup of the wavelet. The wavelet does not
contain a single frequency, and the signal is not
decomposed according to numerous single (sinusoidal) fre-
quencies; this is not Fourier analysis!^ [22].

It is known, if the wavelet transform coefficients are
given, it is possible to reconstruct the original signal by
the inverse wavelet transform described by the follow-
ing equation [20]

x tð Þ ¼ 1

Kψ

Z þ∞

a¼0

Z þ∞

b¼−∞
Cw a; bð Þψa;b tð Þ db

a2

� �
da

¼ 1

Kψ

Z þ∞

0
D a; tð Þda; ð7Þ
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Fig. 7 Maximum Power (pMF) obtained bymeans of the CWTFT (non-analytic Morlet wavelet,ω0=6) analysis for four-channels EGG signal (for 60s
segments)
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where Kψ is a constant factor that depends on the ap-
plied wavelet function and the details function D(a, t) is
given by the following equation

D a; tð Þ ¼
Z þ∞

b¼−∞

1

a2
Cw a; bð Þψa;b tð Þdb ð8Þ

In practical CWT applications usually discrete values
of the a scale in the range of continuous values are
used. As the result the wavelet coefficients are obtained
(called wavelet series). The choice of appropriate wave-
let function is crucial to obtain good results during sig-
nal analysis. The classic CWT transform is time con-
suming and it requires considerable computing power
to apply it to the analysis of long signals.

In recent years, the new efficient algorithms have been
developed for significant acceleration of CWT calculation.
One of them uses well-known FFT algorithms to calculate
the CWT [20, 22, 23].

If we define

ψa tð Þ ¼ 1ffiffiffi
a

p ψ
t

a

� �
ð9Þ

and

ψab tð Þ ¼ 1ffiffiffi
a

p ψ
t−b
a

� �
ð10Þ

the definition of CWT transform (1) can be rewritten in the
following form

Cw a; bð Þ ¼
Z þ∞

−∞
x tð Þψ*

ab tð Þdt ¼
Z þ∞

−∞
x tð Þψ*

a b−tð Þdt; ð11Þ

which clearly indicates that the CWT can be treated as a con-
volution of the signal and wavelets. Consequently CWT can
be expressed as an inverse Fourier transform

Cw a; bð Þ ¼ 1

2π

Z þ∞

−∞
x̂ ωð Þψ̂

*

a;b ωð Þdω; ð12Þ
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Fig. 8 Time-frequency analysis with the CWTFT (non-analytic Morlet wavelet, ω0=15) for four-channels EGG signal
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where:

ψ̂
*

a;b ωð Þ ¼ ffiffiffi
a

p
ψ̂
*
aωð Þeiωb ð13Þ

denote the Fourier transform of the analyzed wavelet at scale a
and location b and

x̂ ωð Þ ¼
Z þ∞

−∞
x tð Þe−iωtdt ð14Þ

is the Fourier transform of the analyzed signal x(t).
In the case of discrete signals (which are typical for the

signals processing problems), assuming that the input signal
x(n) includes N samples, the discrete versions of the convolu-
tion can be represented as

Wa bð Þ ¼
X N−1

n¼0
x nð Þψ*

a b−nð Þ ð15Þ

We can easily notice that in order to obtain the CWT we
have to calculate the convolution of the signal and wavelets
for each value of the location b and repeat the calculations for

each value of the scale a. In the case of two periodic sequences
(signals) we can use the property described by Eq. (15) and
apply fast algorithms for determining the discrete Fourier
transform (DFT) to calculate the circular convolution [31]

X N−1

n¼0
x nð Þψ*

a b−nð Þ ¼ 1

N

X N−1

k¼0
x̂ kð Þψ̂

*

a kð Þei2πN kb; b ¼ 0; 1; 2…N−1

ð16Þ

where the discrete Fourier transform of x(n) signal is given by
formula

x̂ kð Þ ¼
X N−1

n¼0
x nð Þe−i2πN nk ; k ¼ 0; 1; 2…N−1 ð17Þ

ψ̂a is the discrete Fourier transform of the wavelet ψa

ψ̂a kð Þ ¼
X N−1

n¼0
ψa nð Þe−i2πN nk ; k ¼ 0; 1; 2…N−1 ð18Þ

where k is an index of frequency.
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Fig. 9 Instantaneous dominant frequency obtained by means of the CWTFT (non-analytic Morlet wavelet, ω0=15) analysis for four-channels EGG
signal
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Assuming that the signal is sampled at a frequency f=fs ,
the sampling period isΔt=1/fs and in order to obtain the unit
energy for each scale a, the wavelet function is normalized by
the following formula [23]

ψ̂a aωkð Þ ¼
ffiffiffiffiffiffiffiffi
2πa
Δt

r
ψ̂ aωkð Þ; ð19Þ

where:

ωk ¼ 2πk
NΔt

ð20Þ

The CWT can be expressed as the products of the inverse
Fourier transform

Wa bð Þ ¼ 1

N

ffiffiffiffiffiffiffiffi
2πa
Δt

r X N−1

k¼0
x̂

2π
NΔt

k

� �
ψ̂
*

a
2π
NΔt

k

� �
ei

2π
N kb ð21Þ

The above described method was used for the
EGG signals analysis. The calculations were made
for various wavelets e.g.,: Morlet, Derivative of
Gausian and Paul. During initial tests, authors have
examined all available in the applied version of the
Matlab (R2013b) types of wavelets for CWTFT algo-
rithm: m-th order derivative of a Gaussian wavelet,
analytic Morlet wavelet, non-analytic Morlet wavelet,
non-analytic Morlet wavelet with zero mean, Mexican
hat wavelet. The non-analytic Morlet wavelet was
chosen because the obtained scalograms provided
similar information consistent with the commonly
known properties of EGG signals as the occurrence
of the characteristic frequencies (e.g., 3 cpm) and
typical changes in parameters after administration of
the meal [3].

In our work all the presented results were obtained
for the non-analytic Morlet wavelet with zero mean,
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Fig. 10 Dominant frequency (pDF) obtained by means of the CWTFT (non-analytic Morlet wavelet, ω0=15), analysis for four-channels EGG signal
(for 60s segments)
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specified in the Fourier transform domain by the follow-
ing formula

ψ̂ aωð Þ ¼ 1ffiffiffi
π4

p e−
aω−ω0ð Þ2

2 −e−
ω2
0
2

� �
; ð22Þ

where ω0 is the non-dimensional frequency parameter
and its value was set to 6 and 15. If ω0=6 the admis-
sibility condition is satisfied [23, 32].

The dependence of the pseudo-frequency scale on the cho-
sen wavelet is given by

f a ¼
1

aΔtλ
; ð23Þ

where λ is the Fourier wavelength (frequency Fourier factor)
for theMorlet wavelet and it is given by the following formula
[23]

λ ¼ 4πa

ω0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ω0

2
p ð24Þ

During calculations the range of the a0=ω0Δt scale (1.5
and 3.75) to 50 in steps of 0.15 were used, which correspond
to the range of the pseudo-frequency values 0.6453–
0.0040 Hz for ω0=6 and 0.638–0.0039Hz for ω0=15 , respec-
tively. The examples of the applied Morlet wavelet are shown
in the Fig. 2.

The Fig. 3. depicts the deference between STFT and
CWTFT transforms for an example of a chirp signal (from
0.005 to 0.025Hz, sampled at fs=4Hz).
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Fig. 11 Maximum power (pMP) obtained by means of the CWTFT (non-analytic Morlet wavelet,ω0=15) analysis for four-channels EGG signal (for
60s segments)
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Fig. 12 Dominant frequency (top) and MP (bottom) obtained by means of the classical method of EGG signal analysis (4-channels EGG signals, 60s
segments) (the green color indicates the meal period)

Table 1 The comparison of
normogastria indexes Signal CWT(FT) (Morlet, ω0=6 ) CWT(FT) (Morlet, ω0=15 ) Classical method

NormI Norm60 NormI Norm60 Normc

NS01A ch1 0.549 0.594 0.589 0.616 0.752

ch2 0.441 0.474 0.472 0.519 0.677

ch3 0.224 0.286 0.190 0.210 0.534

ch4 0.570 0.662 0.665 0.729 0.789

NS02A ch1 0.819 0.854 0.908 0.915 0.939

ch2 0.691 0.805 0.800 0.829 0.756

ch3 0.791 0.866 0.803 0.817 0.829

ch4 0.956 0.963 0.986 0.988 0.951

NS03A ch1 0.740 0.754 0.779 0.821 0.873

ch2 0.796 0.844 0.834 0.866 0.881

ch3 0.845 0.858 0.883 0.873 0.896

ch4 0.820 0.851 0.878 0.888 0.858

NS04A ch1 0.257 0.307 0.289 0.331 0.551

ch2 0.375 0.472 0.300 0.315 0.567

ch3 0.908 0.937 0.971 0.976 0.921

ch4 0.975 0.976 1.000 1.000 0.866
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Application to EGG

As the aim of this work is to show the application of
new algorithms for EGG signal analysis, the paper pre-
sents the results of research carried out for only four
subjects (women), volunteered to participate in the
study. Their average age was 25.75 years (range: 24–
31) and average BMI 19.83 (range: 18.6–21.1). Every
volunteer gave a written consent to participate in the
study. The research project was approved by the Bio-
ethics Committee of the Silesian Medical University.

The duration of EGG study was in the range of 120 to
170 min and it consisted of three parts: preprandial (30–
40 min), meal (5–10 min) and postprandial (90–120 min).
Before the test, all participants were in a fasting state.

The calculations of the CWT coefficients (absolute
values of elements Wab further denoted |Wab| ) were
performed for four-channels EGG signals, sampled at
the frequency 4 Hz and the resolution of 12 bits, using

the 4-channel prototype biomedical amplifier with the
input range ±1 mV and gain 5000.

In order to assess the accuracy of the obtained re-
sults, the values of normogastria index (NI) were calcu-
lated for each EGG channel using the following proce-
dure. The signal was divided into 60 s length segments
(with overlap 50 %) and the |Wab| matrices were calcu-
lated. The |Wab| matrices were reshaped in order to re-
move the components which corresponded to the
pseudo-frequency greater than 9 cpm (0.15Hz), because
the analysis of EGG signals above this frequency is not
carried out [2, 4, 5]. Then, for each segment of the
modified |Wab| matrices the maximum value which cor-
responds to the pseudo-maximum power pMP(l) was
found and its corresponding value of the dominant
pseudo-frequency pDF(l), where l is the number of 1-
min segment of the EGG signal. Finally NI index as the
ratio of the number of pDF values in the range of 2–
4 cpm to all values was calculated, for all channels of
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Fig. 13 Time-frequency analysis with the CWTFT (non-analytic Morlet wavelet, ω0=6) for four-channels EGG signal
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recorded EGG signal [2, 5, 6, 10]. Then, evaluated
normogastria indexes were compared with those calcu-
lated by means of the classical method [4, 6].

Results

The described method was applied to the analysis of over
2 h, four-channel EGG recordings, using a light non ca-
loric liquid meal (400 ml cold water). Figure 4 shows the
result of the CWT analysis using the non-analytic Morlet
wavelet for ω0=6. The scale values were converted to the
corresponding pseudo-frequency values. This figure clearly
shows that the maximum value of the energy in the signal
occurs about 3 cpm - the typical frequency of the slow
wave in the EGG signal [4, 8]. Especially in the first part
of the examination (preprandial) we can see clearly that
the frequency is almost constant or oscillates near the

3 cpm. Figure 5 shows the frequency values correspond-
ing to the maximum energy of scalogram. This process
(curve) can be treated as a continuous frequency of the
slow waves in the EGG signal. Figures 6 and 7 illustrate
respectively the pDF and pMP for the sequent of 60 s
segments of EGG signal. These values were also obtained
based on the analysis of the CWTFT coefficients. Figures 6
and 7 were presented to compare the obtained results
against the results of the classical EGG signals analysis
(Fig. 12). The Figs. 8, 9, 10, and 11 show results of
analysis using the Morlet wavelet with ω0=15.

The Fig. 12 shows the values of the DF and the MP for the
same signal derived from the classical EGG analysis for the
same EGG signals.

Normogastria indexes NormI and Norm60 (corre-
sponding to NI index) were calculated by the proposed
method while Normc was obtained by the means of
classical method. These values of normogastria indexes
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Fig. 14 Maximum power obtained by means of the CWTFT (non-analytic Morlet wavelet, ω0=6) analysis for four-channels EGG signal (for 60s
segments)

J Med Syst (2016) 40: 10 Page 13 of 15 10



for four EGG recordings are presented in Table 1 The
normogastria indexes obtained on the basis of CWTFT
were calculated by two methods: NormI was calculated
on the basis of all the instantaneous frequency (corre-
sponding to the maximum energy) and Norm60 was
based on the average value for the 60 s segments.

Figures 13, 14, and 15 show the results of the analysis for
another EGG signal, which can clearly depict an immediate
increase of power in the signal EGG after the meal and its
gradual reduction during the postprandial phase. This is the
typical phenomenon which can be often observed during the
EGG examination [13].

Conclusion

In this paper, the method of multi-channels EGG signals
analysis by means of the CWTFT was described.
Thanks to FFT applying in the CWT algorithm compu-
tation, the results for relatively long records of EGG
can be obtained in a fairly short time (much faster than
using the classical methods based on RSA analysis, e.g.,
using AR or ARMA models).

In this study, for the first time, the authors show the possi-
bility of a parametric analysis of multi-channel EGG signals,

using continuous wavelet transform. The normogastria index-
es obtained by means of the proposed method, have similar
values to the coefficients calculated by means of the classical
analysis. However, it was noticed that the largest differences
occurred in the signals for which the value of normogastria
index was below 0.6. This phenomenon requires further in-
vestigation and necessary medical verification.

We can notice that results obtained by the analysis of
the CWT are dependent on the mother wavelet function,
which significantly affects the quality of signal analysis
and results [16]. According to our tests, the Morlet
wavelet gives the best results of the EGG signal analy-
sis moreover preliminary results show the robustness of
the method and its large potential in the future analysis
of the EGG signals. Additionally, the presented method
allows to determine the instantaneous values of the
dominant frequency and maximum energy which was
not possible with the classical EGG signal analysis.

The possibility of continuous observation of the dom-
inant frequency and the dominant power (and other co-
efficients calculated on this basis) gives opportunities
for a wider application of the proposed method in the
medical diagnosis of digestive systems. From medical
point of view, the described method must be clinically
verified, which requires a sufficiently long time,

Fig. 15 Pseudo-RSA (obtained by means of the CWTFT) of four-channels EGG signal
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adequate resources and a commitment of medical
environments.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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