PATIENT FACING SYSTEMS

A Secure and Robust User Authenticated Key Agreement Scheme for Hierarchical Multi-medical Server Environment in TMIS

Ashok Kumar Das1 · Vanga Odelu² · Adrijit Goswami²

Received: 26 March 2015 / Accepted: 13 July 2015 / Published online: 6 August 2015 © Springer Science+Business Media New York 2015

Abstract The telecare medicine information system (TMIS) helps the patients to gain the health monitoring facility at home and access medical services over the Internet of mobile networks. Recently, Amin and Biswas presented a smart card based user authentication and key agreement security protocol usable for TMIS system using the cryptographic one-way hash function and biohashing function, and claimed that their scheme is secure against all possible attacks. Though their scheme is efficient due to usage of one-way hash function, we show that their scheme has several security pitfalls and design flaws, such as (1) it fails to protect privileged-insider attack, (2) it fails to protect strong replay attack, (3) it fails to protect strong man-in-the-middle attack, (4) it has design flaw in user registration phase, (5) it has design flaw in login phase, (6) it has design flaw in password change phase, (7) it lacks of supporting biometric update phase, and (8) it has flaws in

This article is part of the Topical Collection on *Patient Facing Systems*

- Ashok Kumar Das [i](mailto:)itkgp.akdas@gmail.com; ashok.das@iiit.ac.in

Vanga Odelu [o](mailto:)delu.vanga@gmail.com; odelu.phd@maths.iitkgp.ernet.in

Adrijit Goswami goswami@maths.iitkgp.ernet.in

- ¹ Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad 500 032, India
- ² Department of Mathematics, Indian Institute of Technology, Kharagpur 721 302, India

formal security analysis. In order to withstand these security pitfalls and design flaws, we aim to propose a secure and robust user authenticated key agreement scheme for the hierarchical multi-server environment suitable in TMIS using the cryptographic one-way hash function and fuzzy extractor. Through the rigorous security analysis including the formal security analysis using the widely-accepted Burrows-Abadi-Needham (BAN) logic, the formal security analysis under the random oracle model and the informal security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The simulation results show that our scheme is also secure. Our scheme is more efficient in computation and communication as compared to Amin-Biswas's scheme and other related schemes. In addition, our scheme supports extra functionality features as compared to other related schemes. As a result, our scheme is very appropriate for practical applications in TMIS.

Keywords Telecare medicine information systems · Authentication · Key agreement · Multi-medical servers · Fuzzy extractor · Biometrics · User anonymity · AVISPA

Introduction

A telecare medical information system (TMIS) allows the patients to send health related information or use portals for health monitoring and healthcare-related services over the Internet or mobile networks [\[14\]](#page-22-0). For example, if a patient travels to a hospital, it is desirable that the expense of the patients such as travel cost and the hospitalization time is much. Thus, to reduce significantly these factors,

the patients can easily apply TMIS in order to access the healthcare delivery services.

There are several applications of TMIS including distant nursing, e-healthcare, and home monitoring facility [\[20,](#page-22-1) [21,](#page-22-2) [25,](#page-22-3) [28,](#page-22-4) [32,](#page-22-5) [46\]](#page-23-0). In TIMS, we have two parties: one is user from public and other is medical server, which is responsible to ensure the availability of healthcare services to the registered users via the Internet [\[32\]](#page-22-5). The medical server has the database of keeping records of information of its registered users including the user name, telephone number, age, address, the electronic medical record, and disclosure of any of these may endanger user's privacy. Since the telecare servers keep the electronic medical records of all registered users in the hospitals, TMIS is very useful for the physicians to make more comprehensive decision via the cooperation of some physicians in different places. However, TMIS usually works in the open environments. The security issue then becomes a crucial concern in TMIS.

In recent years, several user authentication schemes have been proposed in the literature [\[20,](#page-22-1) [22,](#page-22-6) [23,](#page-22-7) [26,](#page-22-8) [29,](#page-22-9) [30,](#page-22-10) [36,](#page-22-11) [39,](#page-23-1) [40,](#page-23-2) [43–](#page-23-3)[45,](#page-23-4) [47,](#page-23-5) [52,](#page-23-6) [57\]](#page-23-7). In 2010, Yang and Yang [\[58\]](#page-23-8) proposed a biometric password-based multi-server authentication scheme with smart card. However, their scheme does not resist insider attack, and has a high computational cost as it requires to perform exponential operations [\[42\]](#page-23-9). Sood et al. [\[53\]](#page-23-10) then proposed a dynamic identity-based multiserver authentication scheme. Li et al. [\[34\]](#page-22-12) pointed out that Sood et al.'s scheme fails to resist stolen verifier attack as well as stolen smart card attack. In addition, they proposed an improved smart-card based authentication scheme for multi-server architecture and it requires the involvement of a control server in order to achieve mutual authentication. Later, Wang and Ma [\[56\]](#page-23-11) presented a smart-card based authentication scheme for multi-server environment. However, their scheme is vulnerable to privileged insider attack, server spoofing attack, impersonation attack and off-line password guessing attack [\[42\]](#page-23-9). Chuang and Chen [\[9\]](#page-22-13) proposed an efficient multi-server authenticated key agreement scheme based on a user's password and biometrics. Mishra et al. [\[42\]](#page-23-9) showed that their scheme does not resist stolen smart card attack which causes the user's impersonation attack and server spoofing attack. Mishra et al. also showed that their scheme fails to protect denial-of-service attack.

Recently, Amin and Biswas [\[1\]](#page-22-14) presented a biometricbased authentication scheme in TMIS based on multimedical server architecture. Though their scheme is efficient, in this paper we point out that their scheme has numerous security flaws as well as design flaws. In order to withstand those flaws found in Amin-Biswas's scheme, we aim to propose a novel and robust user authentication and key agreement scheme for the hierarchical multi-medical server architecture, which is very suitable for TMIS and secure against possible known attacks.

Threat Model

We use the Dolev-Yao threat model [\[19\]](#page-22-15) in which any two communicating parties communicate over an insecure channel. An adversary (attacker or intruder) can eavesdrop the transmitted messages over a public insecure channel and he/she has the ability to modify, delete or change the contents of the transmitted messages. We adopt the similar threat model in our scheme in which the communicating channels are insecure and the endpoint nodes (users, medical servers, physician servers in multi-medical server environment in TMIS) cannot in general be trustworthy. If a user's smart card is stolen or lost, an attacker can extract all the sensitive information stored in its memory by monitoring the power consumption of the smart card [\[31,](#page-22-16) [37\]](#page-22-17) even if the smart card is tamper resistant.

Our contributions

Our contributions towards this paper are listed below:

- We analyze the recently proposed Amin-Biswas's scheme [\[1\]](#page-22-14) and show that their scheme has several security loopholes as well as design flaws, such as it fails to protect privileged-insider attack, it fails to protect strong replay attack, it fails to protect strong man-inthe-middle attack, it has design flaw in user registration phase, it has design flaw in login phase, it has design flaw in password change phase, it lacks of supporting biometric update phase, and it has flaws in formal security analysis.
- We then propose a secure and robust user authenticated key agreement scheme for the hierarchical multi-server environment suitable in TMIS using the cryptographic one-way hash function and fuzzy extractor.
- Through the rigorous security analysis including the formal security analysis using the widely-accepted Burrows-Abadi-Needham (BAN) logic, the formal security analysis under the random oracle model and the informal security analysis, we show that our scheme is secure against possible known attacks.
- We simulate our scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool and the simulation results clearly show that our scheme is secure.
- Our scheme is more efficient in computation and communication as compared to Amin-Biswas's scheme and other existing related schemes.
- Our scheme also supports extra functionality features as compared to Amin-Biswas's scheme and other existing related schemes.

Organization of the Paper

The remainder of this paper is organized as follows. In Section ["Useful Mathematical Preliminaries"](#page-2-0), we discuss some basic mathematical preliminaries, which are essential for describing and analyzing Amin-Biswas's scheme as well as our proposed scheme. In Section ["Review of Amin-Biswas's Scheme"](#page-2-1), we briefly review different phases of their scheme, which are useful for Section ["Cryptanalysis of Amin-Biswas's Scheme"](#page-5-0). In Section ["The Proposed Scheme"](#page-8-0), we describe the various phases of our proposed scheme. In Section ["Security](#page-12-0) [Analysis of the Proposed Scheme"](#page-12-0), we show that our scheme is secure against different known attacks through the rigorous formal and informal security analysis. We simulate our scheme for the formal security verification using the widely-accepted and used AVISPA tool in Section ["Simulation for Formal Security Verification](#page-16-0) [using AVISPA Tool"](#page-16-0). We compare functionality features and performance of our scheme with Amin-Biswas's scheme and other related existing schemes in Section ["Performance Comparison with Other Related Schemes"](#page-20-0). Finally, we conclude the paper in the next section.

Useful Mathematical Preliminaries

In this section, we briefly describe some mathematical preliminaries, which are essential for describing and analyzing Amin-Biswas's scheme [\[1\]](#page-22-14) as well as our proposed scheme.

Collision-resistant One-way Hash Function

We define formally a one-way collision-resistant cryptographic hash function as follows [\[15,](#page-22-18) [51,](#page-23-12) [54\]](#page-23-13).

Definition 1 (One-way collision resistant hash function) A collision-resistant one-way hash function $h : P \rightarrow$ *Q*, where $P = \{0, 1\}^*$ and $Q = \{0, 1\}^n$ is a deterministic algorithm that takes an arbitrary length binary string $x \in P$ as input and produces a binary string of fixed-length *n*, $y \in Q$ as output. Let $Adv_{\mathcal{A}}^{HASH}(t)$ denote an adversary (attacker) A's advantage in finding a collision. Then,

$$
Adv_{\mathcal{A}}^{HASH}(t) = Pr[(x, x') \Leftarrow_R \mathcal{A} : x \neq x'
$$

and $h(x) = h(x')]$,

where $Pr[E]$ denotes the probability of a random event E , and $(x, x') \leftarrow_R A$ denotes the pair (x, x') is selected randomly by A . In this case, A is allowed to be probabilistic and the probability in the advantage is computed over the random choices made by A with the execution time t . $h(·)$ is then called collision-resistant, if $Adv_{\mathcal{A}}^{HASH}(t) \leq \epsilon$, for any sufficiently small $\epsilon > 0$.

Key Data Extraction Process from Biometric Template

We briefly describe the extraction process of key data from a given biometric of a user using a fuzzy extractor method. Note that the output of a conventional one-way hash function $h(.)$ is very sensitive and it may also return completely different outputs even if there is a little variation in inputs. The biometric information is prone to various noises during data acquisition, and as a result, the reproduction of actual biometric is hard in common practice. In order to avoid such problem, a fuzzy extractor method $[5, 18, 24]$ $[5, 18, 24]$ $[5, 18, 24]$ $[5, 18, 24]$ $[5, 18, 24]$ is prefered, which has the ability to extract a uniformly random string b_i and a public information par_i from the biometrics *Bi* with the error tolerance threshold *t*. In the reproduction process, the fuzzy extractor recovers the original biometric key data b_i for a noisy biometric B' using par_i and t . Let $M = \{0, 1\}^v$ be a finite *v*-dimensional metric space of biometric data points, $d : \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{Z}^+$ a distance function, which can be used to calculate the distance between two points based on the metric chosen and *l* is the number of bits of the output string b_i , where \mathbb{Z}^+ denotes the set of all positive integers.

Definition 2 The fuzzy extractor is a tuple (M, l, t) defined by the following two algorithms, called *Gen* and *Rep*:

- **Gen:** This is a probabilistic algorithm, which takes a biometrics $B_i \in \mathcal{M}$ as input and outputs a secret key data $b_i \in \{0, 1\}^l$ and a public reproduction parameter par_i , where $(b_i, par_i) = Gen(B_i)$.
- **Rep:** This deterministic algorithm takes a noisy biometrics $B'_i \in \mathcal{M}$ and a public parameter *par_i* related to B_i , and then it recovers the biometric key data b_i . In other words, $b_i = \text{Rep}(B'_i, \text{par}_i)$ provided that the condition $d(B_i, B'_i) \leq t$ is satisfied.

For more detailed description of the fuzzy extractor and the extraction procedure, one can refer to [\[5,](#page-22-19) [18\]](#page-22-20).

Review of Amin-Biswas's Scheme

Amin and Biswas [\[1\]](#page-22-14) proposed a hierarchical architecture for accessing multi-medical server system for the telecare medicine information system (TMIS), which is shown in Fig. [1.](#page-3-0) This architecture is similar to that in [\[8,](#page-22-22) [17\]](#page-22-23) presented for hierarchical wireless sensor networks. In this architecture, they considered four types of network entities, which are discussed below:

Fig. 1 Architecture for accessing multi-medical server system in Amin-Biswas's scheme (Source: [\[1\]](#page-22-14))

- U_i (i^{th} user/patient): There are several users present in this architecture, which can access medical services from the physician servers with the help of the medical servers.
- *MRS* (medical registration server): There is only one *MRS* present in the system. *MRS* is responsible for providing registration to the new patients (users) U_i as well as the medical servers (MS_i) , $j = 1, 2, \ldots, m$.
- MS_i (jth medical server): There are several medical servers in the system.
- PS_k (k^{th} physician server): There are also several physician servers in the system.

A *P Sk* provides services on demand to the authorized registered users/patients U_i through a medical server MS_i . The users/patients Ui then can access PS_k through MS_i for solving personal medical related problems in TMIS. As specified in [\[1\]](#page-22-14), PS_k may be different servers such as Cardiologist, Perinatologist, Gastroenterologist, Anesthesiologist, Hematologist, Nephrologist, Neurologist. In Amin-Biswas's scheme, there are five phases, which are described in brief in the following subsections. The notations listed in Table [1](#page-4-0) are used for describing various phases of their scheme.

Medical Server Registration Phase

In this phase, if a medical server MS_i wants to join in the network for providing the medical services to the remote users U_i , MS_i needs to choose an identity ID_{MS_i} and send it to the *MRS*. After receiving ID_{MS_i} , the *MRS* computes the secret key $X_j = h(ID_{MS_j} || X_c)$, where X_c is the secret key of the MRS , and sends it back to MS_j via a secure channel. At the end of this phase, MS_i keeps ID_{MS_i} and X_i .

User Registration Phase

A user *Ui* needs to register to the *MRS* with the following steps:

- Step 1. *Ui* first chooses hos/her identity *IDi*, password PW_i and imprints his/her personal biometrics B_i at the sensor of a specific device. U_i then computes PWD_i = $h(ID_i||PW_i)$ and sends the message $\langle ID_i, PWD_i, B_i \rangle$ to the *MRS* via a secure channel.
- Step 2. The *MRS* computes $F_i = H(B_i)$ using the biohashing function $H(\cdot)$ [\[27,](#page-22-24) [35\]](#page-22-25), REG_i = $h(ID_i||PWD_i), A_j = h(ID_i||X_j) \oplus REG_i,$ and

Table 1 Notations used in this

P_i = $h(ID_{MS_i}|| X_i||F_i) ⊕ h(REG_i||F_i), 1 < j ≤$ *m*. The *MRS* then issues a smart card containing the information $\{ \{ (ID_{MS_i}, A_j, P_j) | 1 \le j \le m \},\}$ $REG_i, h(\cdot), H(\cdot)$ and sends it to U_i via a secure channel.

Remark 1 In Amin-Biswas's scheme, after the end of the user registration phase, the smart card does not store $F_i = H(B_i)$. Also, the smart card contains the table having the tuples $\langle ID_{MS_j}, A_j, P_j \rangle$, $1 \le j \le m$. Thus, the smart card does not store the tuple $\langle ID_{MS_1}, A_1, P_1 \rangle$ corresponding to the first medical server *MS*1. Furthermore, it is assumed that U_i can choose very low entropy $\langle ID_i, PW_i \rangle$ which are guessable individually in polynomial time.

Login Phase

In this phase, the following steps are executed:

Step 1. A user *Ui* inserts his/her smart card into the card reader of a specific device, and then imprints biometric template B_i at the sensor to the specific device. The smart card computes $F_i^* = H(B_i)$. It is claimed in Amin-Biswas's scheme that the computed F_i^* is matched with the stored F_i in the smart card. However, it is seen from Remark 1 that there is no F_i stored in the smart card, and as a result, the biometric verification is not valid in Amin-Biswas's scheme. After that U_i inputs $\langle ID_i, PW_i \rangle$.

- Step 2. The smart card computes $REG_i^* = h(ID_i || PW_i)$. If $REG_i^* = REG_i$, the provided $\langle ID_i, PW_i \rangle$ are valid. Otherwise, the smart card stops the session.
- Step 3. Based on a medical server's identity, say ID_{MS_i} , the smart card generates a random nonce R_c and then computes $C_i = A_j \oplus REG_i$, $D_i = h(C_j || R_c)$, $E_i =$ $P_i \oplus h(REG_i||F_i), G_i = ID_i \oplus E_i$ and $L_i =$ $E_i \oplus R_c$. The smart card then sends the message $\langle ID_{MS_j}, ID_k, F_i, D_i, G_i, L_i \rangle$ to a medical server MS_j via a public channel, where ID_k is the identity of a physician server PS_k from which U_i wants to access the medical services.

The login phase of Amin-Biswas's scheme is summarized in Table [2.](#page-5-1)

Authentication and Key Agreement Phase

In this phase, the mutual authentication and session key agreement between a user U_i and a physician server PS_k are achieved. The following steps are involved in this phase:

- Step 1. After receiving the login message from *Ui*, *MSj* computes $E_i^* = h(ID_{MS_j} || X_j || F_i), ID_i^* = G_i \oplus E_i^*$, $R_c^* = L_i \oplus E_i^*$, $C_i^* = h(ID_i^* || X_j)$ and $D_i^* = h(C_i^* || R_c^*)$. After that MS_j checks the condition $D_i^* = D_i$. If it matches, MS_i believes the authenticity of U_i ; otherwise, MS_i terminates the session.
- Step 2. MS_i generates a random nonce R_{ms} , and computes $N_j = h(ID_k||X_k||F_i), O_j = ID_i \oplus N_j, S_j =$ $h(ID_i||X_k) \oplus R_{ms}, RAN_j = R_c^* \oplus R_{ms}, Q_j =$ $h(ID_i||X_k||N_j||R_{ms})$. *MS_i* then sends the message $\langle ID_k, O_j, S_j, Q_j, RAN_j, F_i \rangle$ to the accessed physician server PS_k via a public channel.

Table 2 Login phase of Amin-Biswas's scheme

U_i /Smart card	MS ₁
Insert the smart card and	
input ID_i , PW_i , and B_i .	
Compute $f_i^* = H(B_i)$ and check if $F_i^* = F_i$.	
Note that this condition always fails as F_i is	
not stored in the smart card.	
Compute $REG_i^* = h(ID_i PW_i)$, and check if	
$REG_i^* = REG_i$. If it is not valid, abort the session.	
Generate R_c and compute $C_i = A_j \oplus REG_i$,	
$D_i = h(C_i R_c), E_i = P_i \oplus h(REG_i F_i),$	
$G_i = ID_i \oplus E_i$ and $L_i = E_i \oplus R_c$.	
$\langle ID_{MS_i}, ID_k, F_i, D_i, G_i, L_i \rangle$	
(via a public channel)	

- Step 3. After receiving the message in Step 2, *P Sk* computes $N'_j = h(ID_k||X_k||F_i)$, $ID'_i = O_j \oplus N'_j$, $R'_{ms} = h(ID'_{i}||X_{k}) \oplus S_{j}, R'_{c} = RAN_{j} \oplus R'_{ms}, Q'_{j} =$ $h(ID'_{i}||X_{k}||N'_{j}||R'_{ms})$. If the condition $Q'_{j} = Q_{j}$ is satisfied, PS_k believes the authenticity of MS_i and U_i ; otherwise, PS_k stops the session.
- Step 4. PS_k further generates a random nonce R_k and computes a session key $SK = h(ID'_i||ID_k||R'_c||R_k)$ shared with the user U_i , $T_k = h(h(ID'_i||X_k)||SK)$, $RAN_k = R'_c \oplus R_k$, $V_k = h(ID'_i||X_k) \oplus R_k$, and sends the message $\langle T_k, RAN_k, V_k \rangle$ to U_i via a public channel.
- Step 5. After receiving the message in Step 4, *Ui* com p utes $R_k^* = RAN_k \oplus R_c$, $W_k = V_k \oplus R_k^*$, $SK^* =$ $h(ID_i||ID_k||R_c||R_k^*)$ and $T_k^* = h(W_k||SK^*)$. Finally, U_i compares T_k^* with the received T_k . If they match, U_i believes the authenticity of PS_k and also, the session key $SK^*(= SK)$ between U_i and PS_k is verified.

This phase of Amin-Biswas's scheme is summarized in Table [3.](#page-6-0)

Password Change Phase

In this phase, if a user *Ui* wants to change his/her old password PW_i by a desired new password PW_i^{new} , the following steps need to be executed:

- Step 1. *Ui* first inserts his/her smart card in a specific card reader, and imprints personal biometrics B_i . After the biometric verification, U_i also inputs $\langle ID_i, PW_i \rangle$. The smart card also verifies PW_i . If it is valid, next steps are executed; otherwise, the smart card stops the phase.
- Step 2. U_i inputs the new password PW_i^{new} . The smart card then computes $PWD_i^{new} = h(ID_i || PW_i^{new})$, $REG_i^{new} = h(ID_i || PWD_i^{new}),$ $A_j^{new} = A_j \oplus REG_i \oplus$ $REG_i^{new}, P_j^{new} = P_j \oplus h(REG_i || F_i) \oplus h(REG_i^{new} || F_i).$ The smart card then replaces $\langle \mathcal{R} \mathcal{E} \mathcal{G}_i, \mathcal{A}_j, \mathcal{P}_j \rangle$ with $\langle \textit{REG}_i^{new}, \textit{A}_j^{new}, \textit{B}_j^{new} \rangle, 1 < j \leq m$, respectively.

Cryptanalysis of Amin-Biswas's Scheme

In this section, we show that Amin-Biswas's scheme is vulnerable to several known attacks. In addition, we also demonstrate that their scheme has several design flaws.

Fails to Protect Privileged-insider Attack

During the user registration phase, a user U_i sends the registration request message $\langle ID_i, PWD_i, B_i \rangle$ securely to the *MRS*, where $PWD_i = h(ID_i || PW_i)$. Then an insider user

Table 3 Authentication and session key agreement phase of Amin-Biswas's scheme

U_i /Smart card	MS_i	\overline{PS}_k
	Compute $E_i^* = h(ID_{MS_i} X_i F_i),$ $ID_i^* = G_i \oplus E_i^*, R_c^* = L_i \oplus E_i^*, C_i^* =$ $h(ID^*_i X_i)$ and $D^*_i = h(C^*_i R^*_c)$. Check if $D_i^* = D_i$. If it does not match, ter- minate the session. Generate R_{ms} , and compute $N_j =$ $h(ID_k X_k F_i), O_i = ID_i \oplus N_i, S_i =$ $h(ID_i X_k) \oplus R_{ms}, RAN_j = R_c^* \oplus R_{ms},$ $Q_i = h(ID_i X_k N_i R_{ms}).$	
	$\langle ID_k, O_j, S_j, Q_j, RAN_j, F_i \rangle$ (via a public channel)	Compute $N'_i = h(ID_k X_k F_i), ID'_i =$ $O_j \oplus N'_i$, $R'_{ms} = h(ID'_i X_k) \oplus$ $S_j, R_c' = RAN_j \oplus R_{ms}', Q_j' =$ $h(ID_i' X_k N_i' R'_{ms}).$ Check if $Q'_i = Q_j$. If it is not valid, stop the session. Generate R_k and compute session key $SK = h(ID'_i ID_k R'_c R_k), T_k =$ $h(h(ID_i' X_k) SK)$, $RAN_k = R'_i \oplus$ $R_k, V_k = h(ID'_k X_k) \oplus R_k.$
	$\langle T_k, RAN_k, V_k \rangle$	
Compute $R_k^* = RAN_k \oplus R_c$, $W_k = V_k \oplus$ R_k^* , $SK^* = h(ID_i ID_k R_c R_k^*)$ and $T_k^* = h(W_k SK^*).$ Check if $T_k^* = T_k$. If it is valid, U_i believes the authenticity of PS_k . Store SK^* as session key shared with		(via a public channel to U_i) Store SK as session key shared with U_i .

being an attacker directly knows the identity ID_i and the personal biometrics *Bi*. Furthermore, knowing the identity *IDi* and *PWDi*, the insider attacker can mount the offline password guessing attack in order to know the password PW_i of U_i using the following steps as in [\[12\]](#page-22-26):

- Step 1. Pick a guessed password PW_i^* from a relatively small dictionary as it is assumed in Amin-Biswas's scheme that PW_i is a low-entropy password.
- Step 2. Compute $PWD_i^* = h(ID_i || PW_i^*).$
- Step 3. Check if $PWD_i^* = PWD_i$. If there is a match, the insider attacker is successful in finding the correct password PW_i of the user U_i and terminates the procedure. Otherwise, the insider attacker discards this guessed password and guesses another password, and continues from Step 1.

Hence, it is clear that Amin-Biswas's scheme is completely insecure against privileged-insider attack, where an insider user of the *MRS* being an attacker knows all the user's credentials *IDi*, *P Wi* and *Bi*. In practice, it is expected that a user U_i keeps the same B_i and PW_i for different application due to easy-to-remember policy. In fact, *P Wi* and *Bi*

must not be revealed even to the *MRS* though the *MRS* is considered as a trustworthy node in the network [\[41\]](#page-23-14).

Fails to Protect Strong Replay Attack

Suppose an adversary A intercepts the login message $\langle ID_{MS_j}, ID_k, F_i, D_i, G_i, L_i \rangle$, which is sent to a medical server MS_i by a user U_i , during the login phase of Amin-Biswas's scheme. After that A sends the same intercepted message $\langle ID'_{MS_j}, ID'_k, F'_i, D'_i, G'_i, L'_i \rangle =$ $\langle ID_{MS_j}, ID_k, F_i, D_i, G_i, L_i \rangle$ to the MS_j . However, this message is not detected as a replay message by the *MRS* due to the following reason. After receiving the login message, MS_j computes $E_i^* = h(ID_{MS_j} || X_j || F_i)$, $ID_i^* =$ $G_i \oplus E_i^*, R_c^* = L_i \oplus E_i^*, C_i^* = h(ID_i^*||X_j)$ and $D_i^* =$ $h(C_i^* || R_c^*).$ When MS_j checks the condition $D_i^* = D_i$, this condition is always satisfied. As a result, MS_j believes the authenticity of U_i and proceeds further to send the message $\langle ID_k, O_j, S_j, Q_j, RAN_j, F_i \rangle$ to a physician server PS_k . This happens, because there is no mechanism used in Amin-Biswas's scheme that the previous random nonce R_c is old or not. Thus, Amin-Biswas's scheme fails to protect strong replay attack.

Fails to Protect Strong Man-in-the-middle Attack

During the authentication and key agreement phase of Amin-Biswas's scheme, after receiving the login message $\langle ID_{MS_j}, ID_k, F_i, D_i, G_i, L_i \rangle$ from a user U_i , MS_j generates a random nonce R_{ms} , and computes N_i = *h*(*ID_k*|| X_k || F_i), $O_j = ID_i \oplus N_j$, $S_j = h(ID_i||X_k) \oplus$ $R_{ms}, RAN_j = R_c^* \oplus R_{ms}, Q_j = h(ID_i||X_k||N_j||R_{ms}).$ MS_j then sends the message $\langle ID_k, O_j, S_j, Q_j, RAN_j, F_i \rangle$ to the accessed physician server PS_k via a public channel. Suppose an adversary A intercepts the message $\langle ID_k, O_j, S_j, Q_j, RAN_j, F_i \rangle$, and generates a fake random nonce R_a and computes $RAN'_j = RAN_j \oplus R_a$, which is $R_c^* \oplus R_{ms} \oplus R_a$. A then sends the modified message $\langle ID_k, O_j, S_j, Q_j, RAN'_j, F_i \rangle$ to PS_k via a public channel. After receiving this modified message, *P Sk* proceeds to compute $N'_j = h(ID_k||X_k||F_i), ID'_i = O_j \oplus N'_j,$ $R'_{ms} = h(ID'_i||X_k) \oplus S_j, R'_c = RAN_j \oplus R'_{ms} \neq R_c,$ $Q'_j = h(ID'_i||X_k||N'_j||R'_m)$. Then, the condition $Q'_j = Q_j$ is satisfied as this condition does not involve *Rc*. Thus, PS_k believes the authenticity of MS_i and U_i , and proceeds to generate a random nonce R_k and computes a session key $SK = h(ID'_i||ID_k||R'_c||R_k)$ shared with the user U_i , which is not equal to $h(ID_i||ID_k||R_c||R_k)$, $T_k =$ $h(h(ID'_{i}||X_{k})||SK), RAN_{k} = R'_{c} \oplus R_{k} \neq R_{c} \oplus R_{k}, V_{k} =$ $h(ID'_{i}||X_{k}) \oplus R_{k}$, and sends the message $\langle T_{k}, RAN_{k}, V_{k} \rangle$ to U_i via a public channel. At the user U_i 's side, this message is then rejected. Thus, it is clear that Amin-Biswas's scheme gives the adversary A a fair chance to modify *RAN*^{*j*} to *RAN*^{*j*} so that the condition $Q'_j = Q_j$ does not fail. Hence, Amin-Biswas's scheme also fails to protect strong man-in-the-middle attack.

Design Flaw in User Registration Phase

In Amin-Biswas's scheme, after the end of the user registration phase, the smart card does not store $F_i = H(B_i)$ for the purpose of biometric verification in the login phase. Also, the smart card contains the table having the tuples $\langle ID_{MS_j}, A_j, P_j \rangle$, $1 < j \leq m$. Thus, the smart card does not store the tuple $\langle ID_{MS_1}, A_1, P_1 \rangle$ corresponding to the first medical server MS_1 . This means that a user U_i can not access the medical services of the physician servers through the medical server MS_1 .

Design Flaw in Login Phase

In Amin-Biswas's scheme, the biometric verification always fails as the condition $F_i^* = F_i$ will never meet, and $F_i =$ $H(B_i)$ is not stored in the smart card's memory during the user registration phase as specified in Remark 1. Further, the smart card continues to compute $E_i = P_j \oplus h(REG_i||F_i)$, $G_i = ID_i \oplus E_i$ and $L_i = E_i \oplus R_c$, which contain the value of *Fi*. Therefore, without the actual value of *Fi* computation of E_i , G_i and L_i are incorrect and as a result, the login request message $\langle ID_{MS_j}, ID_k, F_i, D_i, G_i, L_i \rangle$ is totally incorrect. This is a very serious design flaw found in Amin-Biswas's scheme. In addition, during the password verification, the smart card computes $REG_i^* = h(ID_i || PW_i)$ and then checks the condition $REG_i^* = REG_i$. Note that $REG_i = h(ID_i || PWD_i) = h(ID_i || h(ID_i || PW_i)$. As a result, the password verification will also always fail in Amin-Biswas's scheme. It is thus clear that Amin-Biswas's scheme fails to verify both password as well as biometric verification during the login phase.

Design Flaw in Password Change Phase

In Amin-Biswas's scheme, the password change phase has the inherent flaw as found in the login phase (discussed in Section ["Design Flaw in Login Phase"](#page-7-0)). In this phase, the biometric verification is not possible because the smart card does not store $F_i = H(B_i)$. Further, the password verification will also always fail in Amin-Biswas's scheme. In addition, P_j must be replaced by P_j^{new} , but not by B_j^{new} in the smart card's memory. As a consequence, the subsequent password change phases will be incorrect and subsequent authentication for the same user U_i by PS_k will always fail.

In the following, we show the offline password guessing attack in this phase. We assume that the smart card of the user *Ui* is lost or stolen and it is with an insider attacker (user) of the *MRS*. Note that the updated smart card contains the information $\{ \{ (ID_{MS_j}, A_j^{new}, B_j^{new}) | 1 \le j \}$ $j \leq m$, $REG_i^{new}, h(\cdot), H(\cdot)$, where $RE\ddot{G}_i^{new}$ = $h(ID_i || PWD_i^{new}) = h(ID_i || h(ID_i || PW_i^{new})$. Further, we assume that the insider attacker of the *MRS* has the registration request message $\langle ID_i, PWD_i, B_i \rangle$ earlier. Thus, the insider attacker knows the identity ID_i of the user *Ui*. The offline password guessing attack in Amin-Biswas's scheme works as follows. Note that this attack is similar to that presented in [\[12\]](#page-22-26).

- Step 1. Extract the information stored in the lost/stolen smart card of the user U_i using the power analysis attack [\[38\]](#page-23-15) as described in our threat model. Thus, the insider attacker knows $REG_i^{new} = h(ID_i || PWD_i^{new})$ $= h(ID_i||h(ID_i||PW_i^{new}).$
- Step 2. Pick a guessed password PW_i^* .
- Step 3. Compute $PWD_i^* = h(ID_i || PW_i^*)$ and $REG_i^* =$ $h(ID_i || PWD_i^*) = h(ID_i || h(ID_i || PW_i^*)$.
- Step 4. Check if $REG_i^* = REG_i^{new}$. If there is a match, the insider attacker is successful in finding the correct new updated password PW_i^{new} of the user U_i and terminates the procedure. Otherwise, the insider attacker discards this guessed password and guesses another new password, and continues from Step 2.

Since in Amin-Biswas's scheme, the password is assumed to be low-entropy, it is very clear from the above attack that the insider user being an attacker can successfully obtain the new changed password even if the old password of the user U_i is changed through the password change phase.

Lacks of Supporting Biometric Update Phase

In a biometrics-based authentication scheme, one of the most desirable properties is that a legal user must be allowed to change his/her old password as well as biometrics [\[12,](#page-22-26) [41\]](#page-23-14). However, it is noted that Amin-Biswas's scheme fails to support biometric update phase.

Flaws in Formal Security Analysis

Amin and Biswas used the *Reveal* oracle for their formal security analysis. It is an oracle, which unconditionally outputs the input string *m* from the corresponding hash value $y = h(m)$. In the first algorithm, they have used the *Reveal* oracle on the input $REG_i = h(ID_i||PWD_i)$ $= h(ID_i||h(ID_i||PW_i))$ in order to retrieve ID_i , PW_i and B_i as $(ID'_i||PW'_i||B'_i) \leftarrow \text{Reveal}(REG_i)$. However, since *REGi* does not involve *Bi*, the *Reveal* oracle never returns the biometrics B_i' . Hence, B_i' can not be used in the rest of the algorithm. As a result, the formal security analysis is incorrect in Amin-Biswas's scheme.

The Proposed Scheme

In this section, we describe the various phases of our scheme, which are (i) medical server registration phase, (ii) user registration phase, (iii) login phase, (iv) authentication and session key agreement phase, (v) password and biometric update phase, and (vi) dynamic medical server addition phase. Our scheme is an improvement over Amin-Biswas's scheme, which withstands all the security pitfalls and design flaws found in their scheme, which are already discussed in the previous section. We use the notations provided in Table [1](#page-4-0) for describing our scheme. We also use the same architecture provided in Fig. [1](#page-3-0) for describing our improved scheme.

We apply the fuzzy extractor algorithms in order to strengthen the biometric verification procedure in our scheme. Further, we make use of both the time-stamp and random nonce to protect strongly the replay and man-inthe-middle attacks. For this reason, we assume that all the network entities, such as the MRS , medical servers MS_i $(1 \le j \le m + m')$, physician servers PS_k $(1 \le k \le p)$ and user devices (smart cards) are synchronized with their clocks. The various phases of our scheme are discussed in the following subsections.

Medical Server Registration Phase

Suppose *m* number of medical servers MS_i , $(1 \leq j \leq k)$ *m)* are to be deployed initially in the network. We further assume that m' number of additional medical servers MS_i , $(m + 1 \le j \le m + m')$ may be added later in the network, where $m' \ll m$. For example, initially $m = 100$ medical servers may be deployed and later we may add $m' = 10$ additional medical servers after initial deployment in the network, if required, based on the demand of the medical services when more users want to access the services.

For this purpose, a medical server MS_i , $(1 \le j \le m)$, which wants to provide the medical services to the remote users (patients), needs to select a unique identity ID_{MS} and send it to the MRS . After receiving ID_{MS_i} , the MRS computes the secret key $X_i = h(ID_{MS_i} || X_c)$, where X_c is the 1024-bit secret key of the *MRS* for security reasons, and sends it back to MS_i via a secure channel. Thus, each MS_j keeps (ID_{MS_j}, X_j) . For m' additional medical servers MS_l , $(m + 1 \le l \le m + m')$, the *MRS* itself chooses a unique identity ID_{MS} and also compute the secret key $X_l = h(ID_{MS_l}||X_c)$. Note that these computed (ID_{MS_l}, X_l) are kept to the *MRS* and will be used later during the user registration phase and dynamic medical server addition phase.

User Registration Phase

In this phase, a legal user *Ui* needs to register with the *MRS* for accessing the medical services from a particular physician server PS_k under a medical server MS_i in the network. This phase has the following steps:

- **Step R1:** As in [\[13\]](#page-22-27), U_i first inputs his/her desired identity ID_i , password PW_i , and then imprints the personal biometrics B_i at the sensor of a specific device. U_i generates a 1024-bit random number *K*, which is kept secret to U_i only. U_i then applies the fuzzy extractor generation function $Gen(\cdot)$ on the input B_i in order to produce the biometric data key $σ_i$ and the public parameter $τ_i$ as $Gen(B_i) = (\sigma_i, \tau_i)$. Note that σ_i is kept secret to U_i only.
- **Step R2:** U_i computes the pseudo-random password RPW_i as $RPW_i = h(ID_i||K||PW_i)$ and sends the registration request $\langle ID_i, RPW_i \rangle$ to the *MRS* via a secure channel.
- **Step R3:** After receiving the registration request from *Ui*, the *MRS* continues to compute $A_i = h(ID_i||X_i) \oplus$ RPW_i and $P_j = h(ID_{MS_i} || X_j) \oplus RPW_i$, for $1 \leq$ $j \leq m + m'$. Then the *MRS* stores the information $\{ \{ \langle ID_{MS_j}, A_j, P_j \rangle | 1 \le j \le m + m' \},\}$ $h(\cdot)$, $Gen(\cdot)$, $Rep(\cdot)$, t in a smart card, say SC_i and sends it to the user U_i via a secure channel, where t is the error tolerance threshold used in fuzzy extractor.

Step R4: After receiving the smart card SC_i from the *MRS*, the user U_i computes $e_i = h(ID_i || \sigma_i) \oplus K$ and $f_i = h(ID_i||RPW_i||\sigma_i)$. U_i then stores e_i and f_i in the smart card SC_i . Finally, note that the smart card SC_i contains the information $\{\langle ID_{MS_j}, A_j, P_j \rangle | 1 \le j \le n\}$ $m + m'$ }, e_i , f_i , $h(·)$, $Gen(·)$, $Rep(·)$, τ_i , and t .

The summary of the user registration phase of our scheme is shown in Table [4.](#page-9-0)

Login phase

In this phase, a legal user *Ui* can access any medical server MS_i for the medical services from a physician server PS_k under that medical server MS_i at anytime from anywhere through his/her issued smart card SC_i . This phase contains the following steps:

Step L1: U_i first inserts his/her smart card SC_i into a smart card reader of a specific terminal, and then inputs his/her identity ID_i , password PW_i , and also imprints the personal biometrics B_i at the sensor.

Step L2: SC_i then computes

$$
\sigma_i^* = Rep(B_i, \tau_i),
$$

\n
$$
K^* = h(ID_i || \sigma_i^*) \oplus e_i,
$$

\n
$$
RPW_i^* = h(ID_i || K^* || PW_i),
$$

\n
$$
f_i^* = h(ID_i || RPW_i^* || \sigma_i^*).
$$

SC_i further checks the verification condition $f_i^* = f_i$. If it holds, it ensures that the user U_i passes successfully both password and biometric verification. Otherwise, this phase is terminated immediately.

Step L3: *SC_i* further proceeds to generate a random nonce R_c and the current time-stamp TS_c . Then

Table 4 User registration phase of our scheme

SCi computes

$$
M_1 = A_j \oplus RPW_i^*
$$

\n
$$
= h(ID_i||X_j) \oplus RPW_i \oplus RPW_i^*
$$

\n
$$
= h(ID_i||X_j),
$$

\n
$$
M_2 = P_j \oplus RPW_i^*
$$

\n
$$
= h(ID_{MS_j}||X_j),
$$

\n
$$
M_3 = ID_i \oplus M_2,
$$

\n
$$
M_4 = ID_i \oplus M_1 \oplus R_c,
$$

\n
$$
M_5 = h(M_1||M_3||M_4||R_c||TS_c).
$$

SC_i sends the login request message $\langle ID_{MS_i}, ID_k, M_3, \rangle$ M_4 , M_5 , TS_c) to the medical server MS_j via a public channel, where ID_k is the identity of the physician server PS_k from where U_i wants to access the medical service.

The summary of the login phase of our scheme is shown in Table [5.](#page-10-0)

Authentication and Session key Agreement Phase

In this phase, a legal user U_i authenticates an accessed physician server PS_k and PS_k also authenticates U_i for mutual authentication purpose before they can establish a symmetric common session key SK_{U_i, PS_k} between them for their future secure communication. This phase involves the following steps:

Step A1: $\langle ID_{MS_j}, ID_k, M_3, M_4, M_5, TS_c \rangle$ from U_i , MS_i verifies the validity of the received time-stamp TS_c in the message. Let the login request message be received by MS_j at time TS_c^* . MS_j then checks the condition $|TS_c^* - TS_c| \leq \Delta T$, where ΔT denotes the maximum transmission delay or preset acceptable delay threshold or expected time interval for transmission delay or

Ui MRS Input ID_i and PW_i , and imprint B_i . Compute $(\sigma_i, \tau_i) = Gen(B_i)$ Generate a 1024-bit random number *K*. Compute $RPW_i = h(ID_i || K || PW_i)$. $\langle ID_i, RPW_i \rangle$ −−−−−−−−−→ (via a secure channel) Compute $A_j = h(ID_i || X_j) \oplus RPW_i$, $P_j = h(ID_{MS_j} || X_j) \oplus RPW_i$, for $1 \le j \le m + m'$. $\langle \text{Smart Card}(\{\langle ID_{MS_j}, A_j, P_j \rangle | 1 \leq j \leq m + m' \}, h(\cdot), Gen(\cdot), Rep(\cdot), t) \rangle$ ←−− (via a secure channel) Compute $e_i = h(ID_i || \sigma_i) \oplus K$,

 $f_i = h(ID_i || RPW_i || \sigma_i).$

Store $\{e_i, f_i, \tau_i\}$ in smart card, SC_i .

Table 5 Login phase of our scheme

U_i/SC	$\ddot{}$	

Insert the smart card *SCi* and input ID_i , PW_i , and B_i . Compute $\sigma_i^* = Rep(B_i, \tau_i)$, $K^* = h(ID_i || \sigma_i^*) \oplus e_i,$ $RPW_i^* = h(ID_i || K^* || PW_i),$ $f_i^* = h(ID_i || RPW_i^* || \sigma_i^*).$ Check if $f_i^* = f_i$? If so, generate *Rc* and *T Sc*. Compute $M_1 = A_j \oplus RPW_i^*$ $M_2 = P_j \oplus RPW_i^*$ $M_3 = I D_i \oplus M_2$, $M_4 = I D_i \oplus M_1 \oplus R_c$ $M_5 = h(M_1||M_3||M_4||R_c||TS_c)$. $\langle ID_{MS_j}, ID_k, M_3, M_4, M_5, TS_c \rangle$ −−−−−−−−−−−−−−−−−−−−−−−→ (via a public channel)

expected network delay time. If this condition fails, the login request message is rejected and also the session is terminated immediately. Otherwise, MS_i executes the next step.

Step A2: MS_j continues to compute $M_6 = h(ID_{MS_j}]$ $||X_j|$ using its own identity ID_{MS_j} and the secret key X_j , where $X_j = h(ID_{MS_j} || X_c)$ and X_c is the secret key of the MRS . MS_i then computes

$$
M_7 = M_3 \oplus M_6
$$

= ID_i ,

$$
M_8 = h(M_7||X_j)
$$

= $h(ID_i||X_j)$,

$$
M_9 = M_4 \oplus M_7 \oplus M_8
$$

= R_c ,

$$
M_{10} = h(M_8||M_3||M_4||M_9||TS_c)
$$

= $h(h(ID_i||X_j)||M_3||M_4||R_c||TS_c)$.

 MS_i further checks the condition $M_{10} = M_5$. If it holds, MS_i believes the authenticity of the user U_i . Otherwise, MS_i terminates the session immediately.

In order to protect strongly the replay and man-in-themiddle attacks in our scheme, we adopt the following strategy as suggested in [\[11,](#page-22-28) [33\]](#page-22-29). If the condition $M_{10} =$ M_5 holds, MS_i stores the pair $(M_7, M_9) = (ID_i, R_c)$ in its database. Later, when MS_i receives the next login request message, say $\langle ID_{MS_j}, ID_k, M'_3, M'_4, M'_5, TS'_c \rangle$, MS_j first checks the validity of the time-stamp TS'_c . If it is valid, MS_j computes $M'_6 = h(ID_{MS_j} || X_j)$, $M'_7 =$ $M'_3 \oplus M'_6$, $M'_8 = h(M'_7||X_j)$, $M'_9 = M'_4 \oplus M'_7 \oplus M'_8$. After that MS_j compares M'_9 with the stored $M_9 = R_c$ corresponding to the user U_i 's identity $M_7 = ID_i$ in

its database. If there is a match, MS_i ensures that the received login request message $\langle ID_{MS_j}, ID_k, M'_3, M'_4, \rangle$ M'_5 , TS'_c is a replay message and discards this message. Otherwise, MS_j replaces M_9 with M'_9 in its database and treats this message as a fresh message.

Step A3: MS_i generates a random nonce R_{ms} and the current time-stamp TS_{ms} . MS_i computes M_{11} $h(ID_{MS_i}||ID_k||X_k)$, where X_k is the secret key shared between MS_i and PS_k . MS_j further computes

 $M_{12} = ID_i \oplus M_{11}$ $M_{13} = h(ID_i||X_k) \oplus R_{ms}$ $M_{14} = ID_i \oplus M_9 \oplus R_{ms}$ $= ID_i \oplus R_c \oplus R_{ms}$ $M_{15} = h(ID_i||M_{11}||M_{12}||M_{13}||M_{14}$ $||M_9||R_{ms}||TS_{ms}$.

 MS_i then sends the authentication request message $\langle ID_{MS_j}, ID_k, M_{12}, M_{13}, M_{14}, M_{15}, TS_{ms} \rangle$ to the physician server PS_k via a public channel.

Step A4: After receiving the message in Step A3, *P Sk* checks the validity of the received time-stamp TS_{ms} in the message by the condition $|TS_{ms}^* - TS_{ms}| \leq \Delta T$, where TS_{ms}^* is the time when the message is received by PS_k . If it is valid, PS_k further continues to compute

$$
M_{16} = h(ID_{MS_j}||ID_k||X_k),
$$

\n
$$
M_{17} = M_{12} \oplus M_{16}
$$

\n
$$
= ID_i,
$$

\n
$$
M_{18} = M_{13} \oplus h(M_{17}||X_k)
$$

\n
$$
= R_{ms},
$$

\n
$$
M_{19} = M_{14} \oplus M_{17} \oplus M_{18}
$$

\n
$$
= R_c,
$$

\n
$$
M_{20} = h(M_{17}||M_{16}||M_{12}||M_{13}||
$$

\n
$$
M_{14}||M_{19}||M_{18}||TS_{ms})
$$

\n
$$
= h(ID_i||h(ID_{MS_j}||ID_k||X_k)||M_{12}||
$$

\n
$$
M_{13}||M_{14}||R_c||R_{ms}||TS_{ms}).
$$

 PS_k then checks the condition $M_{20} = M_{15}$. If it does not hold, the session is terminated by *P Sk*. Otherwise, *P Sk* believes the authenticity of both MS_i as well as U_i .

Step A5: PS_k generates a random nonce R_k and the current time-stamp TS_k . PS_k also computes

$$
M_{21} = h(M_{17}||X_k)
$$

\n
$$
= h(ID_i||X_k),
$$

\n
$$
M_{22} = M_{17} \oplus M_{19} \oplus R_k
$$

\n
$$
= ID_i \oplus R_c \oplus R_k,
$$

\n
$$
M_{23} = M_{21} \oplus R_k
$$

\n
$$
= h(ID_i||X_k) \oplus R_k,
$$

\n
$$
SK_{U_i, PS_k} = h(M_{17}||ID_k||M_{19}||R_k||M_{21}||TS_k)
$$

\n
$$
= h(ID_i||ID_k||R_c||R_k||h(ID_i||X_k)||TS_k),
$$

\n
$$
M_{24} = h(SK_{U_i, PS_k}||M_{22}||M_{23}||M_{19}||R_k||TS_k).
$$

 PS_k finally sends the authentication reply message $\langle ID_k, \rangle$ M_{22} , M_{23} , M_{24} , TS_k to the user U_i via a public channel.

Step A6: After receiving the message in Step A5, the smart card SC_i of the user U_i checks the validity of the time-stamp TS_k in the received message by the condition $|TS_k^* - TS_k| \leq \Delta T$, where TS_k^* is the time when the message is received by *Ui*. If it holds, *Ui* computes

$$
M_{25} = M_{22} \oplus (ID_i \oplus R_c)
$$

= R_k ,

$$
M_{26} = M_{23} \oplus M_{25}
$$

= $h(ID_i||X_k)$,

$$
SK_{U_i, PS_k}^* = h(ID_i||ID_k||R_c||M_{25}||M_{26}||TS_k)
$$
,

$$
M_{27} = h(SK_{U_i, PS_k}^*||M_{22}||M_{23}||R_c||M_{25}||TS_k)
$$
.

SC_i then checks if $M_{27} = M_{24}$. If it matches, U_i authenticates PS_k , and both U_i and PS_k treat $SK^*_{U_i, PS_k}$ = SK_{U_i,PS_k} as the session key shared between them.

The summary of the authentication and session key agreement phase of our scheme is shown in Table [6.](#page-12-1)

Password and Biometric Update Phase

This phase is executed by a legal user U_i , if he/she wants to change his/her old password and biometrics for some security reasons. Note that this phase is not executed frequently by *Ui*. This phase has the following steps:

Step PB1: U_i first inserts his/her smart card SC_i into a smart card reader of a specific terminal, and then inputs his/her identity ID_i , old password PW_i^{old} , and also imprints the old personal biometrics B_i^{old} at the sensor. The smart card *SCi* of *Ui* computes

$$
\sigma_i^{old} = Rep(B_i^{old}, \tau_i),
$$

\n
$$
K' = h(ID_i || \sigma_i^{old}) \oplus e_i,
$$

\n
$$
RPW_i^{old} = h(ID_i || K'||PW_i^{old}),
$$

\n
$$
f_i^{old} = h(ID_i || RPW_i^{old} || \sigma_i^{old}),
$$

and checks the verification condition $f_i^{old} = f_i$. If it holds, it ensures that *Ui* passes successfully both old password and biometric verification. Otherwise, this phase is terminated immediately.

- **Step PB2:** SC_i asks the user U_i to input new password and biometrics. Let PW_i^{new} and B_i^{new} be the new password and personal biometrics entered by U_i . SC_i then applies the fuzzy extractor generation function $Gen(\cdot)$ on the input B_i^{new} in order to produce the biometric data key σ_i^{new} and the public parameter τ_i^{new} as $Gen(B_i^{new})$ = $(\sigma_i^{new}, \tau_i^{new})$, where σ_i^{new} is kept secret to U_i only.
- **Step PB3:** SC_i computes $RPW_i^{new} = h(ID_i || K'||$ PW_i), $e_i^{new} = h(ID_i || \sigma_i^{new}) \oplus K'$ and $f_i^{new} =$ $h(ID_i || RPW_i^{new} || \sigma_i^{new})$. *SC_i* further computes $\{(A_j^{new}, P_j^{new}) | 1 \le j \le m + m' \}$, where $A_j^{new} =$ $A_j \oplus RPW_i^{old} \oplus RWP_i^{new} = h(ID_i||X_j) \oplus RPW_i^{new}$
and $P_j^{new} = P_j \oplus RPW_i^{old} \oplus RWP_i^{new}$ $= h(ID'_{MS_j} || X_j) \oplus RPW_i^{new}.$
- **Step PB4:** Finally, *SC_i* replaces $\{\langle A_j, P_j \rangle | 1 \le j \le m + 1\}$ m' }, e_i , f_i , and τ_i with $\{\langle A_j^{new}, P_j^{new} \rangle | 1 \leq j \leq m + m' \},$ e_i^{new} , f_i^{new} , and τ_i^{new} , respectively, in its memory. As a result, the updated smart card SC_i now contains the information $\{ \langle ID_{MS_j}, A_j^{new}, P_j^{new} \rangle | 1 \le j \le m + m' \},\$ e_i^{new} , f_i^{new} , $h(\cdot)$, $Gen(\cdot)$, $Rep(\cdot)$, τ_i^{new} , and *t*.

It is thus clear that the new password and biometric are correctly updated in the user U_i 's smart card SC_i only after validating the old password and biometric. This phase is executed locally without the involvement of the *MRS* further by the user *Ui*.

Dynamic Medical Server Addition Phase

It is assumed in the medical server registration phase that *m* medical servers MS_j (1 $\leq j \leq m$) are deployed in the network. If later some more m' medical servers MS_i $(m + 1 \le j \le m + m')$ are deployed, it is one of the desirable requirement that the proposed scheme should support dynamic medical server addition after initial deployment. Our scheme has the ability to support this important feature and it is explained below.

Note that during our medical server registration phase, for *m'* additional medical servers MS_l , $(m + 1 < l <$ $(m+m')$, the *MRS* already selected a unique identity ID_{MS} and computed the secret key $X_l = h(ID_{MS_l}||X_c)$. Assume that a new medical server MS_l be deployed in the existing network. Then, MS_i needs to register with the MRS . In this case, *MSl* needs to simply send a request to the *MRS* and the information $\langle ID_{MS_l}, X_l \rangle$ are sent back to MS_l securely by the *MRS*. Thus, *MSl* does not choose any identity in this phase. MS_l then stores the information $\{ID_{MS_l}, X_l\}$. Further, note that during the user registration phase, a legal registered user U_i 's smart card SC_i already contains the

Table 6 Authentication and session key agreement phase of our scheme

U_i/SC_i	MS_i	$\overline{PS_k}$
	Check the validity of TS_c in the received lo-	
	gin message.	
	If valid, compute $M_7 = M_3 \oplus M_6$,	
	$M_8 = h(M_7 X_j), M_9 = M_4 \oplus M_7 \oplus$	
	$M_8, M_{10} = h(M_8 M_3 M_4 M_9 TS_c).$	
	Check if $M_{10} = M_5$. If so, MS_j believes the authenticity of the	
	user U_i . Generate R_{ms} and TS_{ms} .	
	Compute $M_{11} = h(ID_{MS_i} ID_k X_k),$	
	$M_{12} = ID_i \oplus M_{11}, M_{13} = h(ID_i X_k)$	
	$\oplus R_{ms}, M_{14} = ID_i \oplus M_9 \oplus R_{ms},$	
	$M_{15} = h(ID_i M_{11} M_{12} M_{13} M_{14}$	
	$ M_9 R_{ms} TS_{ms}).$	
	$\langle ID_{MS_1}, ID_k, M_{12}, M_{13}, M_{14}, M_{15}, TS_{ms}\rangle$	
	(via a public channel)	Check the validity of TS_{ms} in the received
		authentication request message.
		If valid, compute $M_{16} = h(ID_{MS_3})$
		$ ID_k X_k , M_{17} = M_{12} \oplus M_{16},$
		$M_{18} = M_{13} \oplus h(M_{17} X_k), M_{19} =$
		$M_{14} \oplus M_{17} \oplus M_{18}$, $M_{20} = h(M_{17})$
		$ M_{16} M_{12} M_{13} M_{14} M_{19} M_{18}$
		$ TS_{ms})$. Check if $M_{20} = M_{15}$. If so, PS_k believes
		the authenticity of both MS_j as well as U_i .
		Generate R_k and TS_k .
		Compute $M_{21} = h(M_{17} X_k)$, $M_{22} =$
		$M_{17} \oplus M_{19} \oplus R_k$, $M_{23} = M_{21} \oplus R_k$,
		$SK_{U_i, PS_k} = h(M_{17} ID_k M_{19} R_k)$
		$ M_{21} TS_k$, $M_{24} = h(SK_{U_i,PS_k})$
		$ M_{22} M_{23} M_{19} R_k TS_k$.
	$\langle ID_k, M_{22}, M_{23}, M_{24}, TS_k \rangle$	
		(via a public channel to U_i)
Check the validity of TS_k in the re-		
ceived authentication reply message from		
PS_k . If valid, compute $M_{25} = M_{22}$ $\oplus (ID_i \oplus R_c), M_{26} = M_{23} \oplus M_{25},$		
$SK_{U_i, PS_k}^* = h(ID_i ID_k R_c M_{25} $		
M_{26} TS _k), M_{27} = $h(SK_{U_i,PS_k}^*)$		
$ M_{22} M_{23} R_c M_{25} TS_k$.		
Check if $M_{27} = M_{24}$. If valid, U_i authen-		
ticates PS_k .		
Store SK_{U_i,PS_k}^* as session key shared		Store SK_{U_i, PS_k} as session key shared
with PS_L		with U_z

information regarding the new medical server MS_l , since *SC_i* has the information $\{\langle ID_{MS_j}, A_j, P_j \rangle | 1 \le j \le m + \}$ m' }, e_i , f_i , $h(\cdot)$, $Gen(\cdot)$, $Rep(\cdot)$, τ_i , and t . Thus, there is no need to update the user's smart card in this phase. Finally, the MRS needs to inform the user U_i regarding the addition of new medical server *MSl* so that *Ui* can access services of some physician servers through this medical server *MSl*.

Security Analysis of the Proposed Scheme

In this section, we show that our scheme is secure against various known attacks.

Formal Security Analysis using BAN Logic

In this section, we provide the authentication proof using the widely-accepted Burrows-Abadi-Needham (BAN) logic [\[6\]](#page-22-30). In this proof, we show that both a legal user *Ui* and a physician server *P Sk* belonging under a medical server MS_i mutually authenticate among each other.

The notations used in the BAN logic are given below: $P \equiv X$: Principal *P* believes a statement *X* or *P* is entitled to believe *X*.

 $#(X)$: Formula *X* is considered as fresh.

 $P \implies X$: Principal *P* has jurisdiction over statement *X*.

 $P \triangleleft X$: Principal *P* sees the statement *X*.

- *P* |∼ *X* : Principal *P* once said the statement *X*.
- (X, Y) : Formula *X* or *Y* is a part of formula (X, Y) .
- ${X}_{K}$: Formula *X* is encrypted under the key *K*.
- (X) _{*Y*}: Formula *X* is combined with the formula *Y*.

 $P \leftrightarrow Q : P$ and *Q* may use the shared key *K* to communicate. The key *K* is good, in that it will never be discovered by any principal except *P* and *Q*.

 $P \stackrel{X}{\rightleftharpoons} Q$: Formula *X* is secret known only to *P* and *Q*, and possibly to principals trusted by them.

Rules: We have the following four rules used in the BAN logic:

– *Rule(*1*)*. Message-meaning rule: $P|\equiv P \xleftarrow{\mathcal{K}} Q, P \triangleleft \{X\}_K$ and $\frac{P|\equiv P \xleftarrow{\mathcal{L}} Q, P \triangleleft \{X\}_Y}{P|\equiv Q|\sim X}$
 $- Rule(2). \text{ None-verification rule: } \frac{P|\equiv #(X), P|\equiv Q|\sim X}{P|\equiv Q|\equiv X}$
 $- Rule(3). \text{ Jurisdiction rule: } \frac{P|\equiv Q|\Rightarrow X, P|\equiv Q|\equiv X}{P|\equiv X}$

- *Rule*(3). Jurisdiction rule:
$$
\frac{P \equiv Q \Rightarrow X, P \equiv Q \equiv X}{P \equiv X}
$$

P|≡*X* – *Rule(*4*)*. Freshness-conjuncatenation rule: *^P*|≡#*(X) P*|≡#*(X,Y)*

Goals: According to the analytic procedures of the BAN logic, the proposed protocol must satisfy the following test goals in order to ensure the system is secure. Assume that *SK* is shared session key SK_{U_i,PS_k} between U_i and PS_k for the sake of simplicity of the proof.

- $-$ *G*₁ : *U_i* $\models U_i$ $\stackrel{SK}{\rightleftharpoons} PS_k$.
- $-$ *G*₂ : *PS*_k \mid ≡ *U_i* $\stackrel{SK}{\rightleftharpoons}$ *PS*_k.

Idealized form: The arrangement of the proposed protocol to its idealized forms are as follows:

- From the login request message (Step L3), we have $U_i \rightarrow MS_i$: $\langle ID_i \oplus h(ID_{MS_i}, X_i), ID_i \oplus M_1 \oplus$ $\left\{\frac{R_c}{R_c}, \frac{R_c}{T} \sum_{U_i} \sum_{i=1}^{M_1} M S_j\right\}$
- From the authentication request message (Step A3), we have

 $MS_i \rightarrow PS_k$: $\langle ID_i, h(ID_{MS_i}, ID_k, X_k), ID_i \oplus$ $M_{11}, h(ID_i, X_k) \oplus R_{ms}, ID_i \oplus R_c \oplus R_{ms}, U_i \stackrel{R_c}{\rightleftharpoons}$ $\left\{\frac{PS_k}{R_{ms}}, \frac{TS_{ms}}{T_{ms}}\right\}_{MS_j \leftrightarrow PS_k}$

From the authentication reply message (Step A5), we have

$$
PS_k \to U_i : \langle U_i \xleftrightarrow{SK} PS_k, ID_i \oplus R_c \oplus R_k, h(ID_i \oplus X_k) \oplus R_k, U_i \xleftrightarrow{R_k} PS_k, TS_k \rangle_{U_i \xleftrightarrow{R_c} PS_k}.
$$

Hypotheses: The following assumptions about the initial state are made to analyze the proposed protocol:

\n- \n
$$
H_1: U_i \mid \equiv \#(TS_k), MS_j \mid \equiv \#(TS_c), PS_k \mid \equiv \#(TS_{ms}).
$$
\n
\n- \n
$$
H_2: U_i \mid \equiv U_i \stackrel{M_1}{\longleftrightarrow} MS_j.
$$
\n
\n- \n
$$
H_3: MS_j \mid \equiv U_i \stackrel{M_1}{\longleftrightarrow} MS_j.
$$
\n
\n- \n
$$
H_4: MS_j \mid \equiv MS_j \stackrel{X_k}{\longleftrightarrow} PS_k.
$$
\n
\n- \n
$$
H_5: PS_k \mid \equiv MS_j \stackrel{X_k}{\longleftrightarrow} PS_k.
$$
\n
\n

$$
- H_6: PS_k \mid \equiv MS_j \implies U_i \mid \sim X.
$$

$$
- H_7: U_i \mid \equiv PS_k \implies U_i \stackrel{R_k}{\longleftrightarrow} PS_k.
$$

$$
- H_8:MS_j \mid \equiv U_i \implies U_i \stackrel{R_c}{\longleftrightarrow} PS_k.
$$

$$
- H_9: PS_k \geq U_i \Rightarrow U_i \stackrel{R_c}{\longleftrightarrow} PS_k.
$$

The idealized form of the proposed protocol is analyzed based on the BAN logic rules and the assumptions. The main proofs are stated as follows:

- From the login request message, we have S_1 : $MS_j \triangleleft \langle ID_i \oplus h(ID_{MS_j}, X_j), ID_i \oplus M_1 \oplus$ R_c , $U_i \stackrel{R_c}{\rightleftharpoons} PS_k$, TS_c _{$U_i \stackrel{M_1}{\longleftrightarrow} MS_j$}.
- From S_1 , H_1 , H_3 , $Rule(1)$, $Rule(2)$ and $Rule(4)$, we get

 S_2 : MS_i |≡ U_i |∼ R_c . MS_i shares R_c with PS_k as it is shared by the legal user U_i in the authentication request message.

- From the authentication request message, we have S_3 : PS_k \triangleleft $\langle ID_i, h(ID_{MS_j}, ID_k, X_k), ID_i \oplus$ $M_{11}, h(ID_i, X_k) \oplus R_{ms}, ID_i \oplus R_c \oplus R_{ms}, U_i \stackrel{R_c}{\rightleftharpoons}$ PS_k , R_{ms} , TS_{ms} \rangle $\underset{MS_j \longleftrightarrow PS_k}{\longrightarrow} PS_k$.
- From S_3 , H_1 , H_5 , \mathring{R} *ule*(1), \mathring{R} *ule*(2) and \mathring{R} *ule*(4), we get

$$
S_4:PS_k \mid \equiv MS_j \mid \equiv (U_i \stackrel{R_c}{\rightleftharpoons} PS_k)).
$$

– From *S*⁴ and *Rule(*3*)*, we get

 S_5 : PS_k $\equiv U_i \stackrel{R_c}{\rightleftharpoons} PS_k$. Since the session key SK is computed using the formula $SK =$ $SK_{U_i, PS_k} = h(M_{17}||ID_k||M_{19}||R_k||M_{21}||TS_k) =$ $h(ID_i||ID_k||R_c||R_k||h(ID_i||X_k)||TS_k)$, where R_k is random number generated by PS_k , we get the goal G_1 . This implies that PS_k $\equiv U_i \stackrel{SK}{\rightleftharpoons} PS_k$, which is **Goal** *G*2. From *S*5, it is clear that the random secret is shared between U_i and PS_k .

- From the authentication reply message, we have $S_6: U_i \subseteq \langle U_i \stackrel{SK}{\rightleftharpoons} PS_k, ID_i \oplus R_c \oplus R_k, h(ID_i \oplus X_k) \oplus$ R_k , $U_i \stackrel{R_k}{\rightleftharpoons} PS_k$, TS_k)_{$U_i \stackrel{R_c}{\rightleftharpoons} PS_k$.}
- From *S*₅, *S*₆, *H*₁, *H*₃, *H*₇, *Rule*(1), *Rule*(2) and *Rule(*4*)*, and since the session key *SK* is computed

as the formula using R_c and R_k , that is, SK_{U_i, PS_k} = $h(ID_i||ID_k||R_c||R_k||h(ID_i||X_k)||TS_k)$, we have the **Goal** G_1 as S_7 : U_i $\equiv U_i \stackrel{SK}{\rightleftharpoons} PS_k$.

This completes the proof.

Formal Security Analysis using Random Oracle Model

In this section, we perform the formal security analysis of our scheme under the random oracle model as in [\[7,](#page-22-31) [13,](#page-22-27) [41,](#page-23-14) [48\]](#page-23-16) for the formal security analysis. We apply the method of contradiction proof [\[10\]](#page-22-32) for our formal security analysis. Note that one can also prove the formal security in the standard model. However, in this paper, we perform the formal security analysis under the generic group model of cryptography.

In order to apply the method of contradiction proof [\[10\]](#page-22-32), we assume that the following random oracle exists for an adversary, say A :

– *Reveal* : This random oracle will unconditionally output the input string *x* from the corresponding hash value $y = h(x)$.

Theorem 1 *Under the assumption that a one-way hash function h(*·*) closely behaves like a random oracle, our scheme is secure against an adversary for deriving the identity* ID_i *of a legal user* U_i *and the secret key* X_i *of a medical server MSj .*

Proof This proof is similar to that presented in [\[7,](#page-22-31) [13,](#page-22-27) [14,](#page-22-0) [16,](#page-22-33) [41,](#page-23-14) [48\]](#page-23-16). In this proof, we plan to construct an adversary $\mathcal A$ who will have the ability to derive the identity ID_i of a legal user U_i and the secret key X_j of a medical server MS_j . For this purpose, A can use the *Reveal* oracle and run the experiment *EXP*1 for our scheme given in Algorithm 1. We define the success probability for *EXP*1 as $Succ1 = |Pr[EXP1 = 1] - 1|$. The advantage function for this experiment becomes $Adv1(et_1, q_R) = \max_{\mathcal{A}} \{ Succ1 \},\$ where the maximum is taken over all A with execution time *et*1, and the number of queries *qR* made to the *Reveal* oracle. Our scheme is said to be provably secure against A for deriving ID_i and X_j , if $Adv1$ $(et_1, q_R) \leq \epsilon_1$, for any sufficiently small $\epsilon_1 > 0$. According to the experiment provided in Algorithm 1, if A has the ability to invert the one-way cryptographic hash function *h(*·*)*, he/she can easily derive ID_i and X_j , and win the game. However, by Definition 1, it is a computationally infeasible problem to invert *h*(·), that is, $Adv_A^{HASH}(t) \leq \epsilon$, for any sufficiently small $\epsilon > 0$. Since *Adv*1 *(et*₁*, q_R)* depends on the advantage $Adv_{\mathcal{A}}^{HASH}(t)$, we have $Adv1$ $(et_1, q_R) \leq \epsilon_1$. Hence, our

scheme is secure against an adversary for deriving the identity ID_i of a legal user U_i and the secret key X_i of a medical server *MSj* . П

Algorithm 1 EXP1

- 1: Eavesdrop the login request message $\langle ID_{MS_i}, ID_k, \rangle$ M_3 , M_4 , M_5 , TS_c during the login phase.
- 2: Call *Reveal* oracle on input M_5 to retrieve the information $M_1, M_3, M_4, R_c,$ and TS_c as $(M'_1||M'_3||M'_4||R'_c||TS'_c) \leftarrow Reveal(M_5).$
- 3: if $(TS'_c = TS_c)$ and $(M'_3 = M_3)$ and $(M'_4 = M_4)$
- $4:$ Compute $ID'_i = M_4 \oplus (M_1 \oplus R'_c)$.
- Call *Reveal* oracle on input M'_1 to retrieve ID_i and $5:$ X_j as $(ID''_i||X''_j) \leftarrow Reveal(M'_1).$

6: if
$$
(ID''_i = ID'_i)
$$

- Accept ID'_i and X'_i as the correct identity and $7:$ secret key of the user U_i and the medical server MS_i , respectively.
- return 1 (Success) 8:

9: else

- $10:$ return 0 (Failure)
- $11:$ end if
- 12: else
- $13:$ return 0 (Failure)
- 14: end if

Theorem 2 *Under the assumption that a one-way hash function h(*·*) closely behaves like a random oracle, our scheme is secure against an adversary for deriving the secret key* X_k *of a physician server* PS_k *.*

Proof This proof is similar to that in Theorem 1. We construct an adversary A who will have the ability to derive successfully the secret key X_k of a physician server PS_k . For this purpose, A can use the *Reveal* oracle and run the experiment *EXP*2 provided in Algorithm 1.

We define the success probability for *EXP*2 as *Succ*2 = $|Pr[EXP2 = 1] - 1|$ and the advantage function as $Adv2(et_2, q_R) = \max_A \{ Succ2 \}$, where the maximum is taken over all $\mathcal A$ with execution time et_2 , and the number of queries *qR* made to the *Reveal* oracle. Our scheme is said to be provably secure against A for deriving X_k , if we have *Adv*2 $(e t_2, q_R) \leq \epsilon_2$, for any sufficiently small $\epsilon_2 > 0$. According to this experiment, if A has the ability to invert the one-way cryptographic hash function $h(\cdot)$, he/she can easily derive X_k , and win the game. However, by Definition 1, it is again a computationally infeasible problem to invert *h*(·), that is, $Adv_A^{HASH}(t) \leq \epsilon$, for any sufficiently small $\epsilon > 0$. Since *Adv2 (et*₂*, q_R)* depends on the advantage

 $Adv_{\mathcal{A}}^{HASH}(t)$, we have $Adv2 (et_2, q_R) \leq \epsilon_2$. As a result, our scheme is also secure against an adversary for deriving the secret key X_k of a physician server PS_k . \Box

Algorithm 2 EXP2

- 1: Eavesdrop the authentication request message $\langle ID_{MS_1},$ ID_k , M_{12} , M_{13} , M_{14} , M_{15} , TS_{ms} during the authentication and session key agreement phase.
- 2. Call *Reveal* oracle on input M_{15} to retrieve the information $(ID'_i|| M'_{11}|| M'_{12}|| M'_{13}|| M'_{14}|| M'_{9}|| R'_{ms}||$ TS'_{ms}) \leftarrow Reveal(M₁₅).
- 3: **if** $(TS'_{ms} = TS_{ms})$ and $(M'_{12} = M_{12})$ and $(M'_{13} = M_{13})$ and $(M'_{14} = M_{14})$
- Compute $ID_i'' = M_{14} \oplus (M_9' \oplus R_{ms}')$. $4:$

5: if
$$
(ID''_i = ID'_i)
$$

- Compute $x = M_{13} \oplus R'_{ms}$. 6:
- Call *Reveal* oracle on input x to retrieve the $7:$ information ID_i and X_k as $(ID_i^*||X_k^*) \leftarrow$ $Reveal(x)$.

8: **if**
$$
(ID_i^* = ID_i')
$$

- Accept X_k^* as the correct secret key X_k of the 9: physician server PS_k . return 1 (Success) $10:$
- else $11:$
- $12:$ return 0 (Failure)
- $13:$ end if

14. else

 $15:$ return 0 (Failure)

- end if $16:$
- 17: else

 $18:$ return 0 (Failure)

19: end if

Informal Security Analysis

In this section, we analyze the security of our proposed scheme informally to show that our scheme provides strong security protection on the relevant security attacks. In the following, we justify that our scheme has the ability to tolerate several known attacks.

Off-line Identity-password Guessing Attack

Suppose that an adversary A extracts all the informa- $\text{tion } \{ \langle ID_{MS_j}, A_j, P_j \rangle | 1 \leq j \leq m + m', \text{ } e_i, f_i, \tau_i \}$ stored in the smart card SC_i of a legal user U_i , where $RPW_i = h(ID_i || K || PW_i), A_j = h(ID_i || X_j) \oplus RPW_i,$ $P_i = h(ID_{MS_i}||X_i) \oplus RPW_i$, $e_i = h(ID_i||\sigma_i) \oplus K$ and $f_i = h(ID_i || RPW_i || \sigma_i)$. Clearly the identity ID_i and password *P Wi* are protected by the one-way cryptographic hash function $h(\cdot)$ under the security parameters: the random number *K* as well as secret biometric key σ_i . Thus, guessing the identity-password pair without the knowledge of the user personal biometrics B_i is computationally infeasible problem. Moreover, in our scheme the user password PW_i does not appear in the communication messages and identity ID_i is protected using the long-term secret tokens. As a result, our scheme successfully prevents the off-line identity-password guessing attack.

Privileged-insider Attack

In the registration phase of our scheme, a user U_i sends the registration request message $\langle ID_i, RPW_i \rangle$ securely to the *MRS*, where $RPW_i = h(ID_i||K||PW_i)$. The password PW_i in the request message is protected by the one-way hash function $h(\cdot)$ under the security parameter *K*. Therefore, guessing *P Wi* from the request message without the knowledge of *K* is again a computationally hard problem. Thus, our scheme resits the privileged-insider attack.

Stolen Smart Card Attack

Assume that the smartcard SC_i of a legal user U_i is lost/stolen. An attacker A can then try to login to a server MS_i using the lost/stolen smartcard SC_i by guessing the valid user credentials $\langle ID_i, PW_i, B_i \rangle$. However, guessing valid user credentials from the information stored in the smartcard SC_i is computationally infeasible due to the hardness of guessing user personal biometrics *Bi*. Hence, our scheme is secure against the stolen/lost smartcard attack.

User-server Impersonation Attack

In this attack, an adversary may try to impersonate a user or server by intercepting the communication messages between them. In our scheme, the medical server MS_i authenticates a user U_i , and U_i and physician server PS_k mutually authenticate each other in order to establish a shared session key SK_{U_i,PS_k} . Therefore, the attacker cannot compute the valid messages to authenticate at the servers MS_i or PS_k even if he/she intercepts the communication messages between them. Thus, our scheme resists the user-server impersonation attack.

Known key Secrecy

In this attack, an adversary may try to derive the previous session key using the current compromised session key. However, in our scheme, the session key SK_{U_i, PS_k} = $h(ID_i||ID_k||R_c||R_k||h(ID_i||X_k)||TS_k)$ is computed using the one-time random secrets and these are protected by the one way hash function $h(.)$. Thus, all the session keys are computed independently, and as a result, computing previous session key using the known session key is computationally infeasible problem.

Session key Agreement and Verification

In our scheme, a user U_i and a physician server PS_k mutually authenticate each other to establish the shared session key SK_{U_i, PS_k} , which is already proved using the widely-accepted BAN logic. Finally, after mutually authentication both U_i and PS_k agree on a common session $key \, SK_{U_i, PS_k} = h(ID_i || ID_k || R_c || R_k || h(ID_i || X_k) || TS_k).$ Thus, our scheme provides the session key agreement and verification property.

Session key Discloser Attack

The session key $SK_{U_i, PS_k} = h(ID_i || ID_k || R_c || R_k ||$ $h(ID_i || X_k)$ $|| TS_k)$ between a user U_i and a physician server PS_k depends on the one-time random secrets R_c and R_k , and the long-term shared secret key X_k between PS_k and MS_j . Thus, computing the session key SK_{U_i, PS_k} without these parameters is computationally hard problem. As a result, our scheme resists the session disclosure attack.

Strong Replay Attack Protection

In order to avoid the reply attack, we have used both the random nonces and time stamps. As discussed in Step *A*2 of the authentication and session key agreement phase, our scheme successfully uses the random nonces to avoid the immediate reply attack within the time interval. Thus, our scheme provides the message freshness property to avoid strong replay attack.

Strong Man-in-the-middle Attack Protection

Suppose an adversary A intercepts the message $\langle ID_{MS_i},$ ID_k , M_3 , M_4 , M_5 , TS_c during the login phase, where M_3 = $ID_i \oplus M_2$ = $ID_i \oplus h(ID_{MS_i}||X_i)$, X_i = $h(ID_{MS_i}||X_c)$, X_c is the 1024-bit secret key of the *MRS*, *M*₄ = *ID_i* ⊕ *M*₁ ⊕ *R_c* = *ID_i* ⊕ *h*(*ID_i*||*X*_{*j*}) ⊕ *R_c*, *M*₅ = $h(M_1||M_3||M_4||R_c||TS_c)$ and $M_1 = h(ID_i||X_i)$. Further, assume that A generates a new random nonce R'_c and changes M_4 to $M'_4 = M_4 \oplus R'_c = ID_i \oplus h(ID_i || X_j) \oplus (R_c \oplus$ R'_c). However, A can not modify M_5 because it involves computation of $M_1 = h(ID_i||X_i)$, which needs the secret key X_c of the *MRS*, ID_i as well as R_c . Since X_i (subsequently, X_c) is protected by the one-way cryptographic hash function $h(\cdot)$, it is computationally infeasible problem for A to modify M_5 . As a result, A does not have any ability to modify this message and send to MS_i . In a similar manner, A does not have also the ability modify other

messages $\langle ID_{MS_j}, ID_k, M_{12}, M_{13}, M_{14}, M_{15}, TS_{ms} \rangle$ and $\langle ID_k, M_{22}, M_{23}, M_{24}, TS_k \rangle$ during the authentication and key agreement phase. Thus, our scheme protects strongly the man-in-the-middle attack.

No Encryption/decryption

As in Amin-Biswas's scheme [\[1\]](#page-22-14), our scheme does not use any cryptographic symmetric-key cryptosystem. Our scheme is free from usage of symmetric-key encryption/decryption and uses only cryptographic hash function $h(\cdot)$ for authentication and session key agreement purpose. Thus, our scheme is efficient in computation.

Fast Error Detection

In our scheme, the user credentials verification is done locally by the smart card of a legal user *Ui* without contacting the medical server MS_j . Moreover, the password and biometric updates also take place locally. The adversary can not generate the valid message to create the denial of service to the valid registered user without the valid user credentials. Therefore, our scheme avoids extra computation and communication costs, and also the denial of service attack by immediately detecting the invalid user credentials.

No Verification Table

As in Amin-Biswas's scheme [\[1\]](#page-22-14), our scheme does not require any password-verifier table. Thus, an attacker has no ability to get the secret information of the entities.

Simulation for Formal Security Verification using AVISPA Tool

In this section, we simulate our scheme for the formal security verification using the most widely-accepted and used tool, called AVISPA (Automated Validation of Internet Security Protocols and Applications) [\[2\]](#page-22-34) to show that our scheme is secure against the replay and man-in-the-middle attacks.

AVISPA is a push-button tool for the automated validation of Internet security-sensitive protocols and applications, which basically provides a modular and expressive formal language for specifying protocols and their security properties, and integrates different back-ends that implement a variety of state-of-the-art automatic analysis techniques [\[2\]](#page-22-34). We use the widely-accepted AVISPA tool for our formal security verification [\[12](#page-22-26)[–14,](#page-22-0) [41,](#page-23-14) [49,](#page-23-17) [50\]](#page-23-18). AVISPA implements four back-ends: On-the-fly Model-Checker (OFMC), Constraint Logic based Attack Searcher (CL-AtSe), SAT-based Model-Checker (SATMC)

role useri (Ui, MRS, MSj, PSk : agent,
SKuimrs: symmetric_key,
% H is one-way hash function
H: hash_func,
SND, RCV: channel(dy))
% Player: the initiator, the user Ui
played_by Ui
$def =$
local State: nat,
RPWi, PWi, Bi, K, IDi, IDmsj,
IDk, Aj, Pj, TSc, TSms: text,
TSk, Rc, Rms, Rk, M1, M2, M3,
M4, M5, Xc, Xk: text,
Gen, Rep : hash_func
const user_msj_tsc, user_msj_rc,
msj_psk_tsms, msj_psk_rms,
psk_user_tsk, psk_user_rk,
$s1, s2, s3, s4 : protocol_id$
init State := 0
transition
% User registration phase
1. State = $0 \land RCV(start)$ = \triangleright
State':= $1 \wedge$ RPWi':= H(IDi.K.PWi)
% Send the registration request message to MRS securely
A SND({IDi.RPWi'}_SKuimrs)
\land secret($\{Xc\}$, s1, MRS)
\wedge secret({PWi, Bi, K}, s2, Ui)
\wedge secret($\{Xk\}$, s3, $\{MSj, PSk\}$)
\land secret({IDi}, s4, {Ui,MSj,PSk})
% Receive the smart card from MRS securely
2. State = $1 \wedge RCV(\{IDmsj.xor(H(ID.H(IDmsj.Xc)),$
H(IDi.K.PWi)).xor(H(IDmsj.H(IDmsj.Xc)),
$H(ID. K.PWi). H.Gen. Rep$ $SKuims) =$
% Login phase
State' := $2 \land TSc'$:= new()
$\land \text{Rc'} := new()$
\wedge M1' := H(IDi.H(IDmsj.Xc))
\wedge M3' := xor(IDi, xor(IDmsj.H(IDmsj.Xc)))
\land M4' := xor(IDi, xor(H(IDi.H(IDmsj.Xc)),Rc'))
\wedge M5' := H(M1'.M3'.M4'.Rc'.TSc')
% Send the login request message to MSj
A SND(IDmsj.IDk.M3'.M4'.M5'.TSc')
% Ui has freshly generated the value TSc for MSj
A witness(Ui, MSj, user_msj_tsc, TSc')
% Ui has freshly generated the value Rc for MS
A witness(Ui, MSj, user_msj_rc, Rc')
%Authentication and session key agreement phase
% Receive the authentication reply message from PSk
3. State = $2 \land RCV(IDk.xor(ID,xor(Re',Rk'))$.
xor(H(IDi.Xk),Rk').
H(H(IDi.IDk.Rc'.Rk'.H(IDi.Xk).TSk').
xor(IDi,xor(Rc',Rk')).
xor(H(IDi.Xk),Rk').Rc'.Rk'.TSk').TSk') = >
% Ui's acceptance of the value TSk generated for Ui by PSk
State' := $3 \land$ request(PSk, Ui, psk_user_tsk, TSk')
% Ui's acceptance of the value Rk generated for Ui by PSk
A request(PSk, Ui, psk_user_rk, Rk')
end role

Fig. 2 Role specification in HLPSL for the user *Ui*

and Tree Automata based on Automatic Approximations for the Analysis of Security Protocols (TA4SP). A static analysis is performed to check the executability of the protocol, and then the protocol and the intruder actions are compiled into an intermediate format (If), which is the starting point for the four automated protocol analysis techniques. The detailed descriptions of these back-ends are given in [\[2\]](#page-22-34). In AVISPA, the designed protocols need to be specified in HLPSL language [\[55\]](#page-23-19). HLPSL is based on roles: the basic roles represent each participant role, and composition roles represent the scenarios of basic roles. Each role is independent from the others, which gets some initial information by parameters, and then communicates with the other roles by channels. The intruder is always denoted by *i* in HLPSL and the intruder is always modeled using the Dolev-Yao model [\[19\]](#page-22-15) (also described in the threat model used in this paper) with the possibility for the intruder to assume a legitimate role in a protocol run. The role system defines the number of sessions, and the number of principals and the basic roles. The output format (OF) is produced by using one of the four back-ends. When the analysis of a protocol has been successful (by finding an attack or not), the output describes precisely what is the result, and under what conditions it has been obtained. The detailed formats of the OF can be found in [\[55\]](#page-23-19).

Specifying the Protocol

In our HLPSL implementation, we have four basic roles for the user U_i , the *MRS*, the medical server MS_i and the physician server PS_k . The specification in HLPSL language for the role of the initiator, the user U_i is given in Fig. [2.](#page-17-0) In this implementation, *Ui* first receives the start signal, changes its state value from 0 to 1, and then sends the user registration request message $\langle ID_i, RPW_i \rangle$ securely to the *MRS* with the *SND()* operation. *Ui* then receives a smart card with the necessary information securely from the *MRS* by the *RCV ()* operation.

Fig. 3 Role specification in HLPSL for the *MRS*

role medical_serverj (Ui, MRS, MSj, PSk : agent,				
% H is one-way hash function				
H: hash_func,				
SND, RCV: channel(dy))				
% Player: MSj				
played_by MSj				
$def =$				
local State: nat,				
RPWi, PWi, Bi, K, IDi, IDmsj,				
IDk, Xc, Xk, Aj, Pj, TSc, TSms: text,				
TSk, Rc, Rms, Rk, M12, M13,				
M14, M15 : text, Gen, Rep : hash_func				
const user_msj_tsc, user_msj_rc,				
msj_psk_tsms, msj_psk_rms,				
psk_user_tsk, psk_user_rk,				
s1, s2, s3, s4 : protocol_id				
init State := 0				
transition				
% Login phase				
% Receive the login request message from Ui				
1. State = $0 \wedge \text{RCV(IDmsi.IDk.}$				
xor(IDi, xor(IDmsj.H(IDmsj.Xc))).				
xor(IDi, xor(H(IDi.H(IDmsj.Xc)),Rc')).				
H(H(IDi.H(IDmsj.Xc)).				
xor(IDi, xor(IDmsj.H(IDmsj.Xc))).				
xor(IDi, xor(H(IDi.H(IDmsj.Xc)),Rc')).				
$\text{Rc'}.\text{TSc'}$). TSc') = \triangleright				
State' := $1 \land$ secret($\{Xc\}$, s1, MRS)				
\land secret($\{PWi, Bi, K\}, s2,Ui$)				
\land secret($\{Xk\}, s3, \{MSj, PSk\}$)				
A secret({IDi}, s4, {Ui,MSj,PSk})				
% Authentication and session key agreement phase				
\land TSms' := new()				
\land Rms' := new()				
\wedge M12' := xor(IDi, H(IDmsj.IDk.Xk))				
\land M13' := xor(H(IDi.Xk),Rms')				
\wedge M14' := xor(IDi, xor(Rc', Rms'))				
\wedge M15' := H(IDi.H(IDmsj.IDk.Xk).M12'.M13'.				
M14'.Rc'.Rms'.TSms')				
% Send authentication request message to PSk A SND(IDmsj.IDk.M12'.M13'.M14'.M15'.TSms')				
% MSj has freshly generated the value TSms for PSk				
A witness(MSj, PSk, msj_psk_tsms, TSms')				
% MSj has freshly generated the value Rms for PSk				
A witness(MSj, PSk, msj_psk_rms, Rms')				
% MSj's acceptance of the value TSc generated for MSj by Ui				
A request(Ui, MSj, user_msj_tsc, TSc')				
% MSj's acceptance of the value Rc generated for MSj by Ui				
A request(Ui, MSj, user_msj_rc, Rc')				
end role				

Fig. 4 Role specification in HLPSL for the medical server MS_j

During the login phase, U_i sends the login request message $\langle ID_{MS_j}, ID_k, M_3, M_4, M_5, TS_c \rangle$ to MS_j via a public channel. Finally, during the authentication and session key agreement phase, *Ui* receives the authentication reply message $\langle ID_k, M_{22}, M_{23}, M_{24}, TS_k \rangle$ from PS_k via a public channel. The type declaration *channel (dy)* declares that the channel is for the Dolev-Yao threat model (as described in our threat model) [\[19\]](#page-22-15). The intruder *(i)* will have the ability to intercept, analyze, and/or modify messages transmitted over the insecure channel. The declaration secret(PWi, Bi, K, s2, Ui) means that the information PW_i , B_i and K are only known to the user U_i , which are characterized by the protocol id *s*2. The declaration witness(A, B, id, E) declares for a (weak) authentication property of *A* by *B* on *E* and declares that agent *A* is witness for the information *E*. This goal is identified by the constant *id* in the goal Section [\[2\]](#page-22-34). request(B, A, id, E) declaration means for a strong authentication property of *A* by *B* on *E* and declares that agent *B* requests a check of the value *E*. This goal is identified by the constant *id* in the goal section [\[2\]](#page-22-34). In a similar way, we have also specified the HLPSL implementation for the roles of the MRS , the medical server MS_i and the physician server PS_k in Fig. [3,](#page-17-1) Figs. [4](#page-18-0) and [5,](#page-18-1) respectively.

In Fig. [6,](#page-19-0) we have shown the HLPSL implementation for the role of the session. In the session segment, all the basic roles: alice and bob are instanced with concrete arguments.

Finally, in Fig. [7,](#page-19-1) we have shown the HLPSL implementation for the role of goal and environment. The toplevel role (called the environment) needs to be always defined in the specification of HLPSL language. This contains the global constants and a composition of one or more sessions, where the intruder may play some roles as legitimate users. The intruder *(i)* also participates in the

role physician_serverk (Ui, MRS, MSj, PSk : agent,
% H is one-way hash function
H: hash_func,
SND, RCV: channel(dy))
% Player: PSk
played_by PSk
$def =$
local State: nat,
RPWi, PWi, Bi, K, Xc, Xk, IDi,
IDmsj, IDk, Aj, Pj, TSc, TSms: text,
TSk, Rc, Rms, Rk, M22,
M23, M24 : text,
Gen, Rep : hash_func
const user_msj_tsc, user_msj_rc,
msj_psk_tsms, msj_psk_rms,
psk_user_tsk, psk_user_rk,
$s1, s2, s3, s4$: protocol_id
init State := 0
transition
% Authentication and session key agreement phase
% Receive authentication request message from MSj
1. State = $0 \wedge \text{RCV(IDmsj.IDk.xor(IDi.$
H(IDmsj.IDk.Xk)).
xor(H(IDi.Xk),Rms').
xor(IDi, xor(Rc', Rms')).
$H(ID. H(IDmsj. IDk.Xk).xor(ID. H(IDmsj.IDk.Xk)).$
xor(H(IDi.Xk),Rms').
$xor(ID, xor(Re',Rms'))$. $Re'.Rms'.TSms').TSms') = \Leftrightarrow$
State':= $1 \wedge$ secret({Xc}, s1, MRS)
\wedge secret($\{PWi, Bi, K\}, s2, Ui$)
\wedge secret($\{Xk\}$, s3, $\{MSj, PSk\}$)
\land secret({IDi}, s4, {Ui,MSj,PSk})
\wedge TSk' := new()
\land Rk' := new()
\wedge M22' := xor(IDi, xor(Rc', Rk'))
\land M23' := xor(H(IDi.Xk),Rk')
\wedge M24' := H(H(IDi.IDk.Rc'.Rk'.H(IDi.Xk).TSk').
M22'.M23'.Rc'.Rk'.TSk')
% Send authentication reply message to Ui
A SND(IDk.M22'.M23'.M24'.TSk')
% PSk has freshly generated the value TSk for Ui
A witness(PSk, Ui, psk_user_tsk, TSk')
% PSk has freshly generated the value Rk for Ui
A witness(PSk, Ui, psk_user_rk, Rk')
% PSk's acceptance of the value TSms generated for PSk by MSj
A request(MSj, PSk, msj_psk_tsms, TSms')
% PSk's acceptance of the value Rms generated for PSk by MSj
\land request(MSj, PSk, msj_psk_rms, Rms')
end role

Fig. 5 Role specification in HLPSL for the physician server PS_k

role session (Ui, MRS, MS; PSk : agent,			
SKuimrs: symmetric key,			
% H is one-way hash function			
H: hash func)			
$def =$			
local S1, S2, S3, S4, R1, R2, R3, R4: channel (dy)			
composition			
useri (Ui, MRS, MSj, PSk, SKuimrs, H, S1, R1)			
A mrs (Ui, MRS, MSj, PSk, SKuimrs, H, S2, R2)			
A medical_serverj (Ui, MRS, MSj, PSk, H, S3, R3)			
A physician_serverk (Ui, MRS, MSj, PSk, H, S4, R4)			
end role			

Fig. 6 Role specification in HLPSL for the session.

execution of protocol as a concrete session during the simulation as shown in this figure.

In our implementation, the following four secrecy goals and six authentication properties are verified:

- secrecy of s1: It represents that X_c is kept secret to the *MRS* only.
- secrecy of s2: It tells that PW_i , B_i and K are kept secret to the user U_i only.
- secrecy of s3: In this case, X_k is kept secret to MS_i and *P Sk*.

Fig. 7 Role specification in HLPSL for the goal and environment

- secrecy of s4: It indicates that ID_i is known to U_i , MS_i and PS_k .
- authentication on user msj tsc: When MS_i receives TS_c from the messages from U_i , MS_i authenticates U_i based on TS_c .
- authentication on user msj rc: When MS_i receives R_c from the messages from U_i , MS_i also authenticates U_i based on *Rc*.
- authentication on msj psk tsms: When PS_k receives TS_{ms} from the messages from MS_i , PS_k authenticates MS_i based on TS_{ms} .
- authentication on msj psk rms: When PS_k receives R_{ms} from the messages from MS_i , PS_k also authenticates MS_i based on R_{ms} .
- authentication on psk user tsk: When U_i receives TS_k from the messages from PS_k , U_i authenticates PS_k based on *T Sk*.
- authentication on psk user rk: When U_i receives R_k from the messages from PS_k , U_i also authenticates PS_k based on *Rk*.

Analysis of the Results

We have simulated our scheme using the AVISPA web tool [\[3\]](#page-22-35) for the widely-accepted OFMC back-end [\[4\]](#page-22-36). The simulation results for the formal security verification of our scheme using OFMC back-end are shown in Fig. [8.](#page-19-2) For replay attack check, OFMC backend verifies whether the legitimate agents can execute the specified protocol by performing a search of a passive intruder. OFMC backend then gives the intruder the knowledge of some normal sessions between the legitimate agents. The simulation results shown in Fig. [8](#page-19-2) ensures that our scheme is secure against the replay

```
% OFMC
% Version of 2006/02/13
SUMMARY
 SAFE
DETAILS
 BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL
 /home/avispa/web−interface−computation/
 ./tempdir/workfile91NsmW.if
GOAL
 as_specified
BACKEND
 OFMC
COMMENTS
STATISTICS
 parseTime: 0.00s
  searchTime: 4.98s
  visitedNodes: 198 nodes
  depth: 8 plies
```
Fig. 8 The result of the analysis using OFMC backend

Note: *A*1: whether resists off-line password guessing attack or not; *A*2: whether resists insider attack or not; *A*3: whether prevents user impersonation attack or not; *A*4: whether resists session key discloser attack or not; *A*5: whether resists replay attack or not; *Skey*: whether provides session key agreement or not; *MA*: whether satisfies mutual authentication or not; *WPD*: whether detects early wrong password or not; *SKV* : whether session key verification property is achieved or not; *E/D*: whether the protocol is independent of encryption/decryption algorithm or not; *SDF*: whether several design flaws are avoided or not.

attack. OFMC backend also checks if there is any manin-the-middle attack possible by an intruder between the communications. In this backend, the depth for the search is 8, and 198 nodes have been searched in 4.98 s. It is thus evident from the results shown in Fig. [8](#page-19-2) that our scheme also fulfills the design properties and it is secure under the test of AVISPA using OFMC backend with the bounded number of sessions. Hence, our scheme is secure against the passive attacks and the active attacks, such as the replay and man-in-the-middle attacks.

Performance Comparison with Other Related Schemes

In this section, we analyze the performance analysis of our scheme and compare with the related existing schemes, such as Yang-Yang's scheme [\[58\]](#page-23-8), Sood et al.'s scheme [\[53\]](#page-23-10), Wang-Ma's scheme [\[56\]](#page-23-11), Chuang-Chen's scheme [\[9\]](#page-22-13), Xue et al.'s scheme [\[57\]](#page-23-7), Li et al.'s scheme [\[34\]](#page-22-12), Maitra-Giri's scheme [\[36\]](#page-22-11) and Amin-Biswas's scheme [\[1\]](#page-22-14).

In Table [7,](#page-20-1) we have compared the functionality features among our scheme and other existing related schemes. From this table, it is evident that our scheme outperforms other schemes as our scheme supports extra features and efficient design in the login and authentication phases as compared to those for other existing schemes.

In Table [8,](#page-20-2) we have compared the computation costs required by our scheme and other existing schemes during the login and authentication phases. We have used the notations in this table as follows: T_h : execution time for one-way hash function; T_h : execution time for biohashing function; T_{fe} : execution time for a fuzzy extractor function $(Gen(\cdot)/Rep(\cdot))$; T_e : execution time for exponentiation

Table 8 Computation cost comparison among our scheme and existing related schemes

Scheme	Login phase	Authentication phase	Total cost
[58]	$4T_h + 1T_e$	$4T_e + 4T_h$	$8T_h + 5T_e$
$[53]$	$7T_h$	$24T_h$	31T _h
$\left[56\right]$	$4T_h + 2T_{spm}$	$7T_h + 4T_{spm}$	$11T_h + 6T_{spm}$
[9]	$4T_h$	$12T_h$	$16T_h$
$\left[57\right]$	$3T_h$	$24T_h$	$27T_h$
$[34]$	$2T_h$	$25T_h$	$27T_h$
[36]	$4T_h + 1T_e + 1T_{sym}$	$6T_h + 1T_{spm}$	$10T_h + 1T_e + 2T_{spm}$
$[1]$	$1T_H + 4T_h$	$14T_h$	$18T_h + 1T_H$
Ours	$1T_{fe} + 4T_h$	$14T_h$	$18T_h + 1T_{fe}$

Scheme	Communication cost in bits			Communication mode	
	Login phase	Authentication phase	Total cost		
$\sqrt{58}$	1472	1344	2816	$(2) SC \rightarrow S_i, S_i \rightarrow SC$	
$\left[53\right]$	896	1216	2112	(5) $SC \rightarrow S_i$, $S_i \rightarrow CS$, $CS \rightarrow S_i$, $S_i \rightarrow SC$, $SC \rightarrow S_i$	
$\left[56\right]$	320	256	576	$(2) SC \rightarrow S_i, S_i \rightarrow SC$	
$\lceil 9 \rceil$	512	512	1024	(2) $SC \rightarrow S_i, S_j \rightarrow SC$	
$\left[57\right]$	768	2176	2944	(4) $SC \rightarrow S_i$, $S_i \rightarrow CS$, $CS \rightarrow S_i$, $S_i \rightarrow SC$	
[34]	512	1664	2176	(4) $SC \rightarrow S_j$, $S_j \rightarrow CS$, $CS \rightarrow S_j$, $S_j \rightarrow SC$	
$\lceil 36 \rceil$	512	384	896	$(2) SC \rightarrow S_i, S_i \rightarrow SC$	
$\lceil 1 \rceil$	768	1152	1920	(3) $SC \rightarrow MS$, $MS \rightarrow PS$, $PS \rightarrow SC$	
Ours	480	1098	1578	(3) $SC \rightarrow MS$, $MS \rightarrow PS$, $PS \rightarrow SC$	

Table 9 Communication cost comparison among our scheme and existing related schemes

Note: *SC*: Smart Card of a user *Ui*; *Sj* : Service provider server; *CS*: Control server; *MS*: Medical server; *P S*: Physician server.

operation; *Tspm*: execution time for encryption/decryption operation. Our scheme requires $1T_{fe} + 4T_h$ and $14T_h$ operations for the login phase, and authentication and session key agreement phase, respectively. On the other hands, Yang-Yang's scheme [\[58\]](#page-23-8), Sood et al.'s scheme [\[53\]](#page-23-10), Wang-Ma's scheme [\[56\]](#page-23-11), Chuang-Chen's scheme [\[9\]](#page-22-13), Xue et al.'s scheme [\[57\]](#page-23-7), Li et al.'s scheme [\[34\]](#page-22-12), Maitra-Giri's scheme [\[36\]](#page-22-11) and Amin-Biswas's scheme [\[1\]](#page-22-14) require $8T_h + 5T_e$, 31*Th*, 11*Th* + 6*Tspm*, 16*Th*, 27*Th*, 27*Th*, 10*Th* + 1*Te* + $2T_{spm}$ and $18T_h + 1T_H$ operations, respectively. Since the fuzzy extractor functions are efficient in computation, our scheme is also efficient in computation as compared to other schemes.

Finally, in Table [9,](#page-21-0) we have compared the communication costs required by our scheme and other existing schemes for the login and authentication phases. We assume that the bit lengths of identities ID_i , ID_{MS_i} and ID_k are 64 bits each, hash output and random number are of length 128 bits each, and timestamp is 32 bits. In this table, the third column (communication mode) represents the total number of messages required and the communication between the entities in the network. In our scheme, the communication costs required during the login phase for the message $\langle ID_{MS_j}, ID_k, M_3, M_4, M_5, TS_c \rangle$ is $(64 +$ $64 + 64 + 128 + 128 + 32 = 480$ bits, and during the authentication and session key agreement phase, the messages $\langle ID_{MS_j}, ID_k, M_{12}, M_{13}, M_{14}, M_{15}, TS_{ms} \rangle$ and $\langle ID_k, M_{22}, M_{23}, M_{24}, TS_k \rangle$ need $(64 + 64 + 64 + 128 + 128)$ $128 + 128 + 32$ + $(64 + 128 + 128 + 128 + 32)$ = 1098 bits. Thus, our scheme needs the total communication cost 1578 bits and requires 3 messages transmission. On the other hands, Yang-Yang's scheme [\[58\]](#page-23-8), Sood et al.'s scheme [\[53\]](#page-23-10), Wang-Ma's scheme [\[56\]](#page-23-11), Chuang-Chen's scheme [\[9\]](#page-22-13), Xue et al.'s scheme [\[57\]](#page-23-7), Li et al.'s scheme [\[34\]](#page-22-12), Maitra-Giri's scheme [\[36\]](#page-22-11) and Amin-Biswas's scheme [\[1\]](#page-22-14) require the communication costs of 2816, 2112,

576, 1024, 2944, 2176, 896 and 1920 bits, respectively. Our scheme is efficient in computation as compared to Yang-Yang's scheme [\[58\]](#page-23-8), Sood et al.'s scheme [\[53\]](#page-23-10), Xue et al.'s scheme [\[57\]](#page-23-7), Li et al.'s scheme [\[34\]](#page-22-12) and Amin-Biswas's scheme [\[1\]](#page-22-14). Though our scheme requires more communication overhead as compared to Wang-Ma's scheme [\[56\]](#page-23-11), Chuang-Chen's scheme [\[9\]](#page-22-13), Maitra-Giri's scheme [\[36\]](#page-22-11), either those schemes are vulnerable to known attacks or they are inefficient and do not support extra important functionality features. As compared to Amin-Biswas's scheme [\[1\]](#page-22-14), our scheme is highly efficient and provides more functionality features.

Conclusion

In this paper, we have proposed a robust user authentication with key agreement scheme in hierarchical multi-medical server architecture in TMIS in order to erase several security drawbacks and design flaws found in Amin-Biswas's scheme. From the performance and functionality analysis, it is evident that our scheme provides more features and is efficient in communication and computation as compared to Amin-Biswas's scheme and other related existing schemes. The rigorous formal security analysis using both BAN logic and random oracle, and informal security analysis show that our scheme has the ability to tolerate various known attacks. In addition, the simulation results using the widely-accepted AVISPA tool for the formal security verification reveal that our scheme is also secure against passive and active adversaries. Furthermore, our scheme supports dynamic medical server addition in the network after initial deployment, and password and biometric update phase correctly and effectively without further contacting the *MRS*. Thus, our scheme is very suitable for practical applications in TMIS.

Acknowledgments The authors would like to acknowledge the helpful suggestions of the anonymous reviewers and the Editor, which have improved the content and the presentation of this paper.

Conflict of interests The authors declare that there is no conflict of interest.

References

- 1. Amin, R., and Biswas, G.P., A Novel User Authentication and Key Agreement Protocol for Accessing Multi-Medical Server Usable in TMIS. *J. Med. Syst.* 39(3):1–17, 2015.
- 2. AVISPA: Automated Validation of Internet Security Protocols and Applications. [http://www.avispa-project.org/.](http://www.avispa-project.org/) Accessed on January 2013.
- 3. AVISPA: AVISPA Web Tool. [http://www.avispa-project.org/](http://www.avispa-project.org/web-interface/expert.php/) [web-interface/expert.php/.](http://www.avispa-project.org/web-interface/expert.php/) Accessed on March 2015.
- 4. Basin, D., Modersheim, S., OFMC, L.V., A symbolic model checker for security protocols. *Int. J. Inf. Secur.* 4(3):181–208, 2005.
- 5. Burnett, A., Byrne, F., Dowling, T., Duffy, A., A Biometric Identity Based Signature Scheme. *Int. J. Netw. Secur.* 5(3):317–326, 2007.
- 6. Burrows, M., Abadi, M., Needham, R., A logic of authentication. *ACM Trans. Comput. Syst.* 8(1):18–36, 1990.
- 7. Chatterjee, S., and Das, A.K., An effective ECC-based user access control scheme with attribute-based encryption for wireless sensor networks. *Secur. Commun. Netw.* 8(9):1752–1771, 2015.
- 8. Chatterjee, S., Das, A.K., Sing, J.K., A novel and efficient user access control scheme for wireless body area sensor networks. *J. King Saud Univ.-Comput. Inf. Sci.* 26(2):181–201, 2014.
- 9. Chuang, M.-C., and Chen, M.C., An anonymous multi-server authenticated key agreement scheme based on trust computing using smart cards and biometrics. *Expert Syst. Appl.* 41(4):1411– 1418, 2014.
- 10. Chuang, Y.-H., and Tseng, Y.-M., An efficient dynamic group key agreement protocol for imbalanced wireless networks. *Int. J. Netw. Manag.* 20(4):167–180, 2010.
- 11. Das, A.K., Analysis and improvement on an efficient biometricbased remote user authentication scheme using smart cards. *IET Inf. Secur.* 5(3):145–151, 2011.
- 12. Das, A.K., A secure and robust temporal credentialbased three-factor user authentication scheme for wireless sensor networks. *Peer-to-Peer Netw. Appl.* 1–22, 2014. doi[:10.1007/s12083-014-0324-9.](http://dx.doi.org/10.1007/s12083-014-0324-9)
- 13. Das, A.K., A secure and efficient user anonymity-preserving three-factor authentication protocol for large-scale distributed wireless sensor networks. *Wirel. Pers. Commun.* 1–28, 2015. doi[:10.1007/s11277-015-2288-3.](http://dx.doi.org/10.1007/s11277-015-2288-3)
- 14. Das, A.K., A secure user anonymity-preserving three-factor remote user authentication scheme for the telecare medicine information systems. *J. Med. Syst.* 39(3):1–20, 2015.
- 15. Das, A.K., and Goswami, A., A secure and efficient uniquenessand-anonymity-preserving remote user authentication scheme for connected health care. *J. Med. Syst.* 37(3):1–16, 2013.
- 16. Das, A.K., Paul, N.R., Tripathy, L., Cryptanalysis and improvement of an access control in user hierarchy based on elliptic curve cryptosystem. *Inf. Sci.* 209(C):80–92, 2012.
- 17. Das, A.K., Sharma, P., Chatterjee, S., Sing, J.K., A dynamic password-based user authentication scheme for hierarchical wireless sensor networks. *J. Netw. Comput. Appl.* 35(5):1646–1656, 2012.
- 18. Dodis, Y., Reyzin, L., Smith, A., Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Proceedings of the Advances in Cryptology (Eurocrypt'04), Vol. 3027, pp. 523–540: LNCS, 2004.
- 19. Dolev, D., and Yao, A., On the security of public key protocols. *IEEE Trans. Inf. Theory* 29(2):198–208, 1983.
- 20. Guo, P., Wang, J., Geng, X.H., Kim, C.S., Kim, J.-U., A variable threshold-value authentication architecture for wireless mesh networks. *J. Internet Technol.* 15(6):929–936, 2014.
- 21. He, D., Kumar, N., Chen, J., Lee, C.-C., Chilamkurti, N., Yeo, S.-S., Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks. *Multimed. Syst.* 21(1):49–60, 2015.
- 22. He, D., Kumar, N., Chilamkurti, N. *A secure temporal-credentialbased mutual authentication and key agreement scheme with pseudo identity for wireless sensor networks*: Information Sciences, 2015. doi[:10.1016/j.ins.2015.02.010.](http://dx.doi.org/10.1016/j.ins.2015.02.010)
- 23. He, D., Kumar, N., Chilamkurti, N., Lee, J.-H., Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol. *J. Med. Syst.* 38(10), 2014.
- 24. He, D., Kumar, N., Lee, J.-H., Sherratt, R.S., Enhanced threefactor security protocol for consumer USB mass storage devices. *IEEE Trans. Consum. Electron.* 60(1):30–37, 2014.
- 25. He, D., and Zeadally, S., Authentication protocol for an ambient assisted living system. *IEEE Commun. Mag.* 53(1):71–77, 2015.
- 26. Islam, S.K.H., and Khan, M.K., Cryptanalysis and Improvement of Authentication and Key Agreement Protocols for Telecare Medicine Information Systems. *J. Med. Syst.* 38(10):135, 2014.
- 27. Jina, A.T.B., Linga, D.N.C., Biohashing, A.G., Two factor authentication featuring fingerprint data and tokenized random number. *Pattern Recogn.* 37(11):2245–2255, 2004.
- 28. Khan, M.K., and Kumari, S., An authentication scheme for secure access to healthcare services. *J. Med. Syst.* 37(4), 2013.
- 29. Khan, M.K., and Kumari, S., Cryptanalysis and Improvement of "An Efficient and Secure Dynamic ID-based Authentication Scheme for Telecare Medical Information Systems. *Secur. Commun. Netw.* 7(2):399–408, 2014.
- 30. Khan, M.K., and Kumari, S., An improved user authentication protocol for healthcare services via wireless medical sensor networks. *Int. J. Distrib. Sensor Netw.* 2014:1–10, 2014. doi[:10.1155/2014/347169.](http://dx.doi.org/10.1155/2014/347169) Article ID 347169.
- 31. Kocher, P., Jaffe, J., Jun, B., Differential power analysis. In: Proceedings of Advances in Cryptology - CRYPTO'99, Vol. 1666, pp. 388–397: LNCS, 1999.
- 32. Kumari, S., Khan, M.K., Kumar, R., Cryptanalysis and improvement of 'a privacy enhanced scheme for telecare medical information systems. *J. Med. Syst.* 37(4), 2013.
- 33. Li, X., Niu, J.-W., Ma, J., Wang, W.-D., Liu, C.-L., Cryptanalysis and improvement of a biometrics-based remote user authentication scheme using smart cards. *J. Netw. Comput. Appl.* 34(1):73– 79, 2011.
- 34. Li, X., Xiong, Y., Ma, J., Wang, W., An efficient and security dynamic identity based authentication protocol for multi-server architecture using smart cards. *J. Netw. Comput. Appl.* 35(2):763– 769, 2012.
- 35. Lumini, A., and Nanni, L., An improved biohashing for human authentication. *Pattern Recogn.* 40(3):1057–1065, 2007.
- 36. Maitra, T., and Giri, D., An efficient biometric and passwordbased remote user authentication using smart card for telecare medical information systems in multi-server environment. *J. Med. Syst.* 38(12):1–19, 2014.
- 37. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Examining smartcard security under the threat of power analysis attacks. *IEEE Trans. Comput.* 51(5):541–552, 2002.
- 38. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Examining smartcard security under the threat of power analysis attacks. *IEEE Trans. Comput.* 51(5):541–552, 2002.
- 39. Mishra, D., On the security flaws in ID-based password authentication schemes for telecare medical information systems. *J. Med. Syst.* 39(1):154, 2014.
- 40. Mishra, D., Understanding security failures of two authentication and key agreement schemes for telecare medicine information systems. *J. Med. Syst.* 39(3):19, 2015.
- 41. Mishra, D., Das, A.K., Mukhopadhyay, S., A secure and efficient ECC-based user anonymity-preserving session initiation authentication protocol using smart card. *Peer-to-Peer Netw. Appl.* 1–22, 2014. doi[:10.1007/s12083-014-0321-z.](http://dx.doi.org/10.1007/s12083-014-0321-z)
- 42. Mishra, D., Das, A.K., Mukhopadhyay, S., A secure user anonymity-preserving biometric-based multi-server authenticated key agreement scheme using smart cards. *Expert Syst. Appl.* 41(18):8129–8143, 2014.
- 43. Mishra, D., and Mukhopadhyay, S., Cryptanalysis of Pairing-Free Identity-Based Authenticated Key Agreement Protocols. In: Information Systems Security, volume 8303 of Lecture Notes in Computer Science, pp. 247–254: Springer Berlin Heidelberg, 2013.
- 44. Mishra, D., Mukhopadhyay, S., Chaturvedi, A., Kumari, S., Khan, M.K., et al., Cryptanalysis and Improvement of Yan Biometric-Based Authentication Scheme for Telecare Medicine Information Systems. *J. Med. Syst.* 38(6):24, 2014.
- 45. Mishra, D., Mukhopadhyay, S., Kumari, S., Khan, M.K., Chaturvedi, A., Security enhancement of a biometric based authentication scheme for telecare medicine information systems with nonce. *J. Med. Syst.* 38(5):41, 2014.
- 46. Mishra, D., Srinivas, J., Mukhopadhyay, S., A secure and efficient chaotic map-based authenticated key agreement scheme for telecare medicine information systems. *J. Med. Syst.* 38(10), 2014.
- 47. Mishra, R., and Barnwal, A.K., A privacy preserving secure and efficient authentication scheme for telecare medical information systems. *J. Med. Syst.* 39(5):54, 2015.
- 48. Odelu, V., Das, A.K., Goswami, A., A secure and efficient eccbased user anonymity preserving single sign-on scheme for dis-

tributed computer networks. *Secur. Commun. Netw.* 8(9):1732– 1751, 2015.

- 49. Odelu, V., Das, A.K., Goswami, A. *A secure and scalable group access control scheme for wireless sensor networks*: Wireless Personal Communications, 2015. doi[:10.1007/s11277-015-](http://dx.doi.org/10.1007/s11277-015-2866-4) [2866-4.](http://dx.doi.org/10.1007/s11277-015-2866-4)
- 50. Odelu, V., Das, A.K., Goswami, A., A secure biometricsbased multi-server authentication protocol using smart cards. *IEEE Trans. Inf. Forensic. Secur.* 10(9):1953–1966, 2015. doi[:10.1109/TIFS.2015.2439964.](http://dx.doi.org/10.1109/TIFS.2015.2439964)
- 51. Sarkar, P., A simple and generic construction of authenticated encryption with associated data. *ACM Trans. Inf. Syst. Secur.* 13(4):1–16, 2010.
- 52. Siddiqui, Z., Abdullah, A.-H., Khan, M.K., Alghamdi, A.S., Smart environment as a service, three factor cloud based user authentication for telecare medical information system. *J. Med. Syst.* 38(1):9997, 2014.
- 53. Sood, S.K., Sarje, A.K., Singh, K., A secure dynamic identity based authentication protocol for multi-server architecture. *J. Netw. Comput. Appl.* 34(2):609–618, 2011.
- 54. Stinson, D.R., Some Observations on the Theory of Cryptographic Hash Functions. *Des., Codes Crypt.* 38(2):259–277, 2006.
- 55. Von Oheimb, D., The high-level protocol specification language hlpsl developed in the eu project avispa, pp. 1–17: Tallinn, 2005.
- 56. Wang, B., and Ma, M., A smart card based efficient and secured multi-server authentication scheme. *Wirel. Pers. Commun.* 68(2):361–378, 2013.
- 57. Xue, K., Hong, P., Ma, C., A lightweight dynamic pseudonym identity based authentication and key agreement protocol without verification tables for multi-server architecture. *J. Comput. Syst. Sci.* 80(1):195–206, 2014.
- 58. Yang, D., and Yang, B., A biometric password-based multi-server authentication scheme with smart card. In: 2010 International Conference on Computer Design and Applications (ICCDA), Vol. 5, pp. 554–559: IEEE, 2010.