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Abstract The early detection of osteoporosis risk enhances
the lifespan and quality of life of an individual. A reasonable
in-vivo assessment of trabecular bone strength at the proximal
femur helps to evaluate the fracture risk and henceforth, to
understand the associated structural dynamics on occurrence
of osteoporosis. The main aim of our study was to develop a
framework to automatically determine the trabecular bone
strength from clinical femur CT images and thereby to esti-
mate its correlation with BMD.All the 50 studied south Indian
female subjects aged 30 to 80 years underwent CT and DXA
measurements at right femur region. Initially, the original CT
slices were intensified and active contour model was utilised
for the extraction of the neck region. After processing through
a novel process called trabecular enrichment approach (TEA),
the three dimensional (3D) trabecular features were extracted.
The extracted 3D trabecular features, such as volume fraction
(VF), solidity of delta points (SDP) and boundness, demon-
strated a significant correlation with femoral neck bone min-
eral density (r=0.551, r=0.432, r=0.552 respectively) at
p<0.001. The higher area under the curve values of the ex-
tracted features (VF: 85.3 %; 95CI: 68.2–100 %, SDP:

82.1 %; 95CI: 65.1–98.9 % and boundness: 90.4 %; 95CI:
78.7–100 %) were observed. The findings suggest that the
proposed framework with TEA method would be useful for
spotting women vulnerable to osteoporotic risk.
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Introduction

‘Osteoporosis’ is an abnormality characterized by reduction in
quality and density of bone, which eventually leads to a frail
skeleton and frequent fracture risks. The diagnosis of osteo-
porosis using dual energy x-ray absorptiometry (DXA) has
been a standard clinical method. The utilisation of DXA for
bone mineral density (BMD) assessment has been confined
only to urban areas in the most developing countries of the
world like India [1]. Though the trabecular BMD is a broadly
utilised method for assessing the osteoporotic fracture risk and
therapeutic efficiency, it does not consistently predict individ-
ual fracture risk and describe the physiopathology of osteopo-
rotic alterations [2, 3]. Thus, the quantitative analysis of tra-
becular bone architecture and the clarification of connections
between morphological parameters and bone strength have
been an important research focus in the field of osteoporosis.
The few studies highlighted the relationship between the
structural measures of trabecular bone and BMD in the recent
past [4–12]. These studies have utilised the images acquired
by in-vivo or in-vitro [8, 10] using various diagnostic imaging
modalities at different skeletal sites. In earlier attempts, the
peripheral sites were analysed in-vivo, since they involved
low dosages of radiation, and simple protocol; central body
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site, such as proximal femur was more often preferred for in-
vitro analysis [8, 10, 13].

The trabecular structure extracted from high resolution CT
and MR images of femur specimen described the bone
strength of an individual and aided in osteoporosis diagnosis
[10–13]. The in-vivo analysis on the spine trabecular structure
extracted from CT images lead to vertebral fracture risk as-
sessment; the extracted trabecular measures were compared
with QCTmeasured BMD [14, 15]. The 3D trabecular param-
eters were extracted from high resolution clinical multi detec-
tor row CT image for fracture risk assessment at spine and
compared against DXA measured BMD [16]. The efficacies
of therapy on trabecular micro-structure at spine were moni-
tored in patients with severe osteoporosis [17]. However, the
structural assessment from clinical CT image at proximal fe-
mur neck has not been studied in-vivo.

The recent observations relating to the perception of bone
quality highlighted the bone architecture as a key determinant
of trabecular bone strength at the proximal femur [14–17].
The bone strength, determination techniques has incorporated
the image processing algorithms; the global thresholding (GT)
algorithm was widely used for background intensity removal
because of its simple computation [6–12, 14–18]. This tech-
nique is not capable of utilising spatial or other image charac-
teristics which leads to uniform nature of implementation ir-
respective of morphological or intensity related information.
The major hindrance in this technique is that when the effect
of noise is extraneous: pixels which are not the part of inter-
ested region of analysis are included [6, 8, 18]. Hence, there is
a need to develop an alternative trabecular enhancement tech-
nique for better depiction of trabecular measures from clinical
CT image. This simplifies the diagnosis of osteoporosis,
where osteoporotic fracture of the proximal femur is legibly
prone and substantially increase mortality risk [19]. The sen-
sible in-vivo estimate of trabecular bone strength at proximal

femur neck aids, to quantify the fracture risk and to understand
the accompanied structural dynamics when osteoporosis pro-
gresses [20–24]. Hence, the present study is aimed to develop
a framework to automatically determine the trabecular bone
strength from clinical femur CT images in-vivo.

Materials and methods

Data collection

The present study is an attempt to initiate a novel approach to
osteoporosis related disorders on the public health grounds.
The SRM Hospital and Medical Research Center, SRM
University, Chennai, India, gave its consent to arrange an oste-
oporotic screening camp at the end of the year 2010. The pre-
scribed document was signed by every participant who
attended the camp as a means of written voluntary consent.
The institutional ethical clearance committee certified the pro-
tocol adopted for the study. Participants with disorders such as
Paget’s diseases, hypo and hyperthyroidism, rheumatoid arthri-
tis, diabetes, pregnancy, chronic liver and severe trauma-
induced fractures as well as osteoporotic fractures were not
considered for the study. Finally, 50 south Indian women
(Mean±SD age=49.3±13.4 years) aged 30 to 80 years were
considered for whom examination and analysis was performed.

The BMD quantifications of the right femur for neck
(N−BMD) and total femur (T−BMD) were performed with a
standard narrow fan beam DXA scanner with multi-view im-
age reconstruction (Lunar DPX Prodigy, GE Lunar
Corporation, Madison, WI, USA) using standard measure-
ment procedures. A control phantom was scanned every day
prior to the measurements for quality assurance determina-
tions. Then BMD T-score values were calculated using the
following WHO standard formula (Eq.1):

T −Score ¼ BMD of an individual − Average BMD of normal young adult populationð Þ
Standard Deviation in BMD of normal young adult population

� �
ð1Þ

The study population was divided into following two
groups based on calculated T-score values of measured femur
neck BMD: (1) normal subjects (n=18, age=41.3±
10.6 years), whose T-score≥−1 and (2) at-risk of osteoporosis
subjects (n=32, age=53.8±12.8 years), whose T-score<−1.

For each study subject, a standard CT image of the right
proximal femur was obtained using a CT machine (Siemens
Somatom, AS, Germany) utilising tube factors of 80 to
120 kVand 20 mAs by a single experienced imaging technol-
ogist. The image was acquired at reconstruction related as-
pects of slice thickness (0.5 mm), rotation time (single,

0.3 s) and rate of acquisition (128 slice/second). The study
subjects were imaged in supine position with the pelvis and
both legs stretched frontward and the big toes touching each
other, causing in slight internal rotation (12° to 15°) of the
femur. The images were acquired within the stipulated period
of 3 days after acquiring DXA measurements.

CT image processing

The detailed flow of the proposed CT image quantification
system is outlined in the Fig. 1. The slices of coronal direction
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were selected from each CT image set (mean 33±3 coronal
slices per CT image set).

Femur region extraction

The following is the proposed partially automated femur re-
gion extraction aided by a trained radiological assistant and a
model based segmentation technique. Though the shape of the
femoral neck region may vary in the subsequent slices, its
location remains unchanged. Hence, the center slice of each
CT image set is selected and the contours are manually
initialised. Then the active contour model (ACM) is applied
only on the center slice of each CT image set [25] with contour
area criterion for terminating the iterations [26]. The final
fitted contour regions in each CT image set are then cropped
and utilised for further neck extraction procedures. Figure 2a
illustrates the initialised and the final fit contours of the femur
region in a (processed) sample CT slice.

Automatic neck region extraction

Neck boundary detection The next phase involved the appli-
cation of a circular Hough transform (CHT) to the segmented

femur bone in order to identify the femur head region. When
the circle, obtained by CHT fits along with the periphery of
the femur head region, which intersects the femur neck re-
gions at points R1 and R2 as shown in Fig. 2b. These two
points are combined to form the reference line (R) and further
with the arc of the circle to form a circular segment. A tangent
line which is parallel to the reference line is drawn and which
passes through the point p1. Then a perpendicular line is
drawn from the point p1 and to intersect the reference line
and the intersecting point is denoted as p2. The distance be-
tween p1 and p2 is denoted as y. The line between p1 and p2 is
further extended on both the sides for the distances x and z,
where y = x + z and x = z; the points are noted as p3 and p4
respectively . Then two lines (B1 and B2) parallel to the refer-
ence line are drawn through the points p3 and p4 re-
spectively. These two lines are considered as the boundaries of
the neck region.

Neck region cropping The spatial location of the identified
boundary lines and the initialized contour points (Fig. 2c) are
projected across the slices; the ACMwas applied on each slice
to identify the boundary between the muscle region and cor-
tical bone based on the fitted contour point setsC1 andC2. The

Fig. 1 Functional block diagram of the CT image based 3D trabecular bone quantification system
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iteration was terminated when the number of points moved is
lesser than a threshold or when the number of iterations
reaches a maximum threshold [25]. The final fitted contours
are cropped from each slice and stored in a new stack.

Cortical bone removal The extracted neck region contains
cortical bone. Theminimal distance boundarymethodwas used
to remove the cortical bone region as depicted in the Fig. 2d.
The technique employed to remove the cortical bone region is
as follows: first, from the top right corner pixel, the control
propagates in parallel with the B1 line to identify the first black
pixel; the number of pixels propagated is called propagation
distance d1. Similarly, the propagation distances for subsequent
lines towardsB2 are called d2, d3… dn. The subsequent task was
to find the minimum propagation distance, which was fixed to
be the appropriate thickness of the cortical bone and it has been
removed on the C2 side. The same procedure was applied on
the C1 side also to remove the cortical bone. As a result, the
processed slices contained only trabecular bone.

Trabecular bone segmentation

Trabecular bone enhancement The novel trabecular enrich-
ment approach (TEA) was applied to the trabecular bone

region on the femur neck of each slice. The TEA method is
as follows: The gray level of the radiographic image, acquired
from several subjects, normally varied due to fatty tissue pro-
jection and radiological artefacts which corresponded to the
low frequency noise of the image. Hence, the method pro-
posed by Geraets et al. was used to eliminate the low frequen-
cy noise [27]. Then intensity normalisation using the histo-
gram specification technique detailed by Debashis et al. was
used to increase the information (trabecular structure enhance-
ment) and reduce the obscurity [28]. This procedure was ap-
plied independently to each individual 3×3 sub-block in order
to obtain a normalised image. Then, the local contrast en-
hancement transformation, incorporating point transformation
was applied; the goal was to localise the distribution around
the mean of the intensity which provides considerable en-
hancement within each sub-block of 3×3 [29].

Binarisation The enhanced image was binarised using a lo-
cally adaptive binarisation method (thresholding). The
binarisation was performed as follows: pixel value was
assigned one for those belonging to the trabecular bone, when
its value was greater than the mean intensity value of the
present block (16×16); else zero for those pixels belonging
or representing to the hollow region.

Fig. 2 Image processing steps involved in the extraction of femur neck region from CT image set. a. Femur bone segmentation using ACM. b.
Schematic of automatic neck boundary detection. c. Neck region extraction using ACM. d. Schematic of cortical bone removal
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Trabecular 3D reconstruction

The next phase was to visualise the trabecular bone ar-
chitecture by reconstructing the segmented trabecular
bone using the gradient based volume rendering recon-
struction technique [30]. Initially, the segmented femur
neck slices were arranged in a stack and surface shading
calculation were performed at every voxel with local
gradient vectors; opacity of every voxel was computed
by applying surface classification operators. The trabec-
ular structure was reconstructed by incorporating the cal-
culated shading, opacity and projecting it onto the pic-
ture plane with bilinear interpolation. The performance
was faster as it involved simple computation.

Trabecular feature extraction

Trabecular volume fraction2D The neck region extracted
from the center slice in the stack of each binarised CT
image set was utilised for calculating the trabecular vol-
ume fraction (2D). It is the ratio between the apparent
bone volume (BV) to the total volume (TV), which rep-
resents the number of segmented white pixels (belongs to
trabecular bone) over the total number of pixels in the
neck region and is designated as app.BV/TV [6].

3D volume fraction (VF3D) The segmented binary slices
(contains only neck trabecular bone information) are ar-
ranged in a stack; this signifies a 3D numerical repre-
sentation of the trabecular structure. The total number of
white pixels and black pixels in the stack are indepen-
dently calculated and designated as trabecular bone vol-
ume (TB3D) and volume of the hollow region (H3D)
respectively. The 3D volume fraction (VF3D) is comput-
ed by finding the ratio between TB3D and, summations
of TB3D and H3D (Eq.2).

VF3D ¼ TB3D

TB3D þ H3D
ð2Þ

Skeletonisation: The next step involved the imple-
mentation of the iterative thinning algorithm for all the
binarised CTslices in order to extract the additional trabecular
bone features. The parallel thinning with two sub-iteration
algorithm was used for skeletisation of every binarised CT
slice [31].

3D delta point set (DP3DS) The bifurcation points and the
connecting segments are different topological connectiv-
ity elements in the trabecular structure; disrupted trabec-
ular structure results in either crossing point or isolation
point [13]. The properties of crossing number (CN) as
detailed in the Fig. 3 and Eq.3 is used to classify the

present pixel as bifurcation point or others based on Eq.4
[32].

XCN pð Þ ¼
X8

i¼1

Xiþ1‐ Xij j; X9 ¼ X1 ð3Þ

p ¼
Isolated point;
Ridge ending point;
Bifurcation point;
Crossing point;

8>><
>>:

if ; XCN ¼ 0
1≤ XCN≤2
XCN ¼ 3
Otherwise

9>>=
>>;

ð4Þ

The bifurcation points (represented as delta points) in
each skeletonised CT slice in the stack were identified
by applying the above procedure and were marked as
true pixels (white color) in a new stack; this signifies a
3D numerical representation of delta points. Herein, the
total number of 3D connected delta points within each
26 neighbour (sub-volume of 3×3×3) was computed. In
our dataset, the six connected components were the
lengthiest connected set of delta points and the 1, 2
connected 3D delta point set did not contribute signifi-
cantly in the classification. Hence, every 3 to 6 connect-
ed delta point sets (Fig. 4) were considered for further
analysis.

Solidity of 3D delta points (SDP3D) The cumulative, 3
to 6 connected 3D delta points are designated as
CDP3d. The difference in volume of trabecular bone over
the volume of hallow region is compared with arbitrary refer-
ence of VF3D. This was well placed in the trabecular bone
structure of healthy subjects. This means, the greater the
amount of trabecular bone closer to the reference, relatively
lesser the risk of bone loss (RBLTB). The ratio between CDP3d
and RBLTB is designated as solidity of 3D delta points.
Increased value of RBLTB represents a low degree of trabecu-
lar thickness or higher rate of trabecular bone loss (Eq.5).

SDP3D ¼ CDP3D
RBLTB

ð5Þ

Fig. 3 Schematic of a eight neighborhood of a pixel
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Confidence level (CL) Dominants of 3 to 6 connected delta
points over the 1 and 2 connected delta points are considered
with high confidence level and vice versa are considered with
a low confidence level (Eq.6).

CL ¼ High 0:9ð Þ; if DP3−6 > DP1−2ð Þ
Low 0:5ð Þ; Otherwise

� �
ð6Þ

Where

DP1−2 Count of 1, 2 connected delta points
DP3−6 Count of 3 to 6 connected delta points

Boundness A measure of trabecular bone strength represents
the volumetric distribution of trabecular structure throughout
the volume of interest and is defined by the architectural

Fig. 4 A sample trabecular bone structure with a four connected 3D delta points. (a) Schematic of 2D representation of 3D delta points, (b) Schematic of
3D 4-connected delta points (front view), and (c) The 3D rear view of (b)
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connectivity of delta points in the 3D structure. Boundness is
interpreted in Eq. 7.

Bound ¼ VF3D � SDP3D � CL ð7Þ

Statistical analysis

Data were analysed using SPSS software package version
17.0 (SPSS Inc., Chicago, USA). All data were expressed as
mean±SD. The Pearson correlation analysis was used to find
the correlation of extracted trabecular features against mea-
sured BMD values. The measured values in each subgroup
were compared using a Student’s t-test.

Results

The CT image dataset of each woman was processed in order
to automatically segment the trabecular bone of the femur
neck region and its feature extraction (eqs. (2)–(7)) as de-
scribed in the methodology sector. Further, the extracted im-
age features are statistically analysed with DXA measured
BMD values.

The resulting images of automatically segmented femur
neck region from a sample CT slice, segmented trabecular
bone and its corresponding skeletons are displayed in Fig. 5.
The reconstructed 3D trabecular bone of the segmented neck
region of a normal and osteoporosis samples are displayed in
Fig. 6; the close approximation of trabecular bone in 3D space
visually confirms the neck regions are properly extracted.
Table 1 details the Pearson’s correlation results of extracted

image features (TEA) against age and DXA measured BMD
values. The trabecular volume fraction (2D) exhibited a sig-
nificant correlation with respect to age and BMD at p<0.05;
the rest, image features (VF3D, SDP3D and Boundness) exhib-
ited a significant correlation with BMD at p<0.001 and with
age at p<0.05 respectively. Table 2 enumerates the study out-
comes based on t-test for the extracted trabecular image fea-
tures (3D) by a standard method (p<0.05) and the proposed
TEA method (p<0.001) among normal and at-risk groups
respectively. The results of ROC analysis are detailed in
Table 3 and Fig. 7. The AUC values were predominant in
the 3D trabecular features (Boundness: 90.4 %, SDP3D:
82.6 % and VF3D: 87.5 %), whereas, the value was consider-
ably decremented in trabecular volume fraction 2D (69.7 %).

The proposed technique was implemented with MATLAB
8 software in a Windows background (WINDOWS 7); it took
120 s on an Intel E5620 (2.4GHz) and 3 GB of RAM to
extract features for each dataset on an average.

Discussion

The trabecular volume fraction (app.BV/TV) was extensively
analysed for describing the structural measure of trabecular
bone and correlated with BMD [6, 8, 10, 16, 33, 34]. The
studies on peripheral skeletal sites were immensely analysed
using every possible existing imaging techniques [6, 16, 33];
on the contrary, the studies on the proximal femur site are
limited. Previous structural measuring methods were mainly
based on either the 2D (center slice) approach using high
resolution radiological images or by the 3D approaches based

Fig. 5 Results of automatically
segmented femur neck region
from a CT slice. a Segmented
neck region from original CT
slice, b Segmented trabecular
region, c Skeleton of the
trabecular bone

Fig. 6 3D visualised trabecular
bone images of femur neck region.
a Normal subject (measured
N–BMD=1.408 g/cm2),
b Osteoporotic subject (measured
N–BMD=0.544 g/cm2)
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on in-vitro analysis of the proximal femur [10, 13, 34].
Irregular and more anisotropic nature of trabecular structure
leads to inaccurate illustration of morphological representa-
tion when a single slice (center slice) information is consid-
ered [10]. On the other hand, in-vitro analyses of the femur
bone in living subjects are nearly impossible. Hence, the pres-
ent study was designed to automatically extract the femur
neck region from clinical CT images, segment the trabecular
bone and, analyse the relationship between the extracted tra-
becular measures (3D) and DXA measured BMD; further, the
results obtained by the standard trabecular bone segmentation
algorithm (GT) and the proposed TEA method were com-
pared. Our results reflected the high degree of reproducibility
and consistency by means of the active contour model imple-
mented for femur bone segmentation and neck region
extraction.

Significance of trabecular architecture

Trabecular volume fraction (app.BV/TV) was an alternate den-
sity measure which was developed by considering only the
center slice on the stack. It neither depicted the density distri-
bution of the trabecular bone content present in the entire
stack, nor the location specific density in the volume of

interest [6]. Alternatively, we proposed a measure of the 3D
volume fraction by considering the entire femur neck volume
of interest for better definition of trabecular bone density. The
degree of trabecular thickness at the 3D delta point defines the
strength of the trabecular structure which gives the solidity of
3D delta points. The higher degree of trabecular content rep-
resents the dominance of bone content and well connected
multi joint trabecular structure. The dominance of trabecular
connectivity helps to improve the reliability of the solidity in
the evaluation of boundness. The solidity considers only mul-
tiple delta point connectivity and neglects the closeness be-
tween the delta point sets. A high solidity with lower volume
resulted in few strong and solid trabecular bone junctions
(delta points) with a higher degree of inter trabecular space.
Hence, the solidity was scaled by the 3D volume fraction to
ensure high solid nature of trabecular bone with closeness.

The proposed TEA method vs. global thresholding

The detection of binarisation threshold becomes a difficult
task in low resolution images with monomodal intensity his-
togram. The causes of this monomodal are owing to the partial
volume effects and noise. The subjective determination of the
threshold is more challenging and affects the estimation of

Table 1 Pearson’s correlation
between extracted image features
using TEA method and
DXA features

Extracted image features Age (years) N-BMD (g/cm2) T-BMD (g/cm2)

Trabecular volume fraction (2D) −0.357* 0.312* 0.275*

3D volume fraction −0.361** 0.551** 0.542**

Solidity of 3D delta points −0.225 0.432** 0.436**

Bound −0.269* 0.552** 0.539**

Values represented are Pearson’s correlation coefficient (r)

** p<0.001; * p<0.05

Table 2 Results of Student’s
t-test for DXA features and
extracted 3D image features

Features / Groups Normal (n=18)Mean±SD At-risk (n=32)Mean±SD p value

Age (years) 41.3±10.6 53.8±12.8 <0.001

Extracted image features by proposed TEA

Trabecular volume fraction (2D) in % 56.1±3.9 49.2±4.2 <0.01

3D volume fraction (%) 67.4±5.1 51.9±4.8 <0.001

Solidity of 3D delta points (%) 71.2±6.3 62.4±5.5 <0.001

Boundness (%) 41.6±9.6 22.7±8.4 <0.001

Extracted image features by ‘state of art’ global thresholding

Trabecular volume fraction (2D) in % 49.9±10.2 41.1±6.6 <0.05

3D volume fraction (%) 64.2±9.7 52.7±11.4 <0.05

Solidity of 3D delta points (%) 66.7±13.9 51.8±12.1 <0.01

Boundness (%) 24.2±7.3 16.1±6.2 <0.01

DXA measured variables

N-BMD (g/cm2) 1.023±0.12 0.735±0.09 <0.001

T-BMD (g/cm2) 1.057±0.11 0.739±0.14 <0.001

‘n’ indicates number of subjects in each sub-group
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app.BV/TV [35]. Link et al. described about the major chal-
lenges in deriving morphological parameters from high reso-
lutionMRI and multi-slice spiral CT images using a gray level
thresholding method and obtained better significant results in
high resolution MR images [36]. Similarly, Majumdar et al.
reported that the utilisation of GT technique produced a loss of
thickness and overestimation of trabeculae [6]; similar
results were evident on CT images by utilising the global
and local threshold techniques demonstrating insignificant
outcomes [8, 37]. Our study found a significant improvement
in recognising the trabecular morphology using the TEA
method than the GT method (Table 2). Similarly,
Akgundogdu et al. utilised hybrid skeleton graph analysis
method to extract morphological parameters from femur tra-
becular bone and successfully classified osteoporotic as well
as osteoarthritis samples [13]. The Pearson correlation results
revealed a higher level of significance (p<0.001) when the
extracted (TEA) trabecular features (3D volume fraction:
r=0.551; boundness: r=0.552) were correlated with femur
neck BMDvalue (Table 1); whereas, the same features depicted
lower degree of significance (p<0.05) when GT was utilised.
The parameter such as 3D volume fraction and boundness ex-
tracted using TEA method displayed 23 and 13 % superiority
respectively, than GT method in distinguishing the low BMD
subjects from normal subjects (Table 3).

Clinical application

Our results indicated that the extracted trabecular measures
demonstrated a significant correlation with BMD. Hence,
the combinational morphological features of the trabecular
bone extracted from the clinical CT images could eventually
be helpful in osteoporosis diagnosis. They are very useful in
situations, where the mobility of the patient is a concern for
DXA scans or additional information required for fracture
treatment. Though the low radiation protocol (clinical CT im-
age) is suited to depict the better morphology of a trabecular
bone; it is not inferred as a substitution for high resolution
radiological imaging systems. However, our results obtained
on spatial resolutions attainable make the latent and
feasibleness of using clinical CT in connection with digital
skeletonisation.

The present study had limitations in spatial resolution and
locating the region of interest, which is to locate the gap be-
tween the femur head region and the acetabulum to initialise
the contour as it is sensitive to manual control. That is, how-
ever, initially the application of the active contour method was
to identify proximal femur; subsequently Hough transform
eliminates inaccuracies introduced in the gap close to the ac-
etabulum. Since the objective was not to measure the size of
the trabeculae or microstructure the approximated measures
were considered; however, this hurdle can be minimised with
high resolution imaging.

Conclusion

This is the first study attempted to segment and visualise the
trabecular bone architecture from clinical femur CT images;
in-vivo estimation of trabecular bone strength by utilising par-
tially automated framework (semi-automated femur region

Table 3 Result of ROC for the
3D trabecular features extracted
from clinical CT images

Test result variable(s) AUC Standard error p-value Asymptotic 95 % CI

Lower bound Upper bound

Trabecular volume fraction(2D) 0.697 0.086 0.022 0.528 0.866

3D volume fraction 0.875 0.048 0.000 0.781 0.969

Solidity of 3D delta points 0.826 0.063 0.000 0.701 0.952

Boundness 0.904 0.045 0.000 0.803 0.978

AUC Area under the ROC curve, CI Confidence Interval

Fig. 7 ROC results of the 3D trabecular features extracted from clinical
CT images
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segmentation, automated neck region extraction, trabecular
bone enhancement and segmentation, feature extraction).
The extracted novel 3D trabecular features (3D volume frac-
tion, solidity of 3D delta points and boundness) demonstrated
a significant (p<0.001) correlation with the BMD values. The
features extracted using the novel TEA method demonstrated
superior results than the features extracted using the standard
GT method. The findings suggest that the proposed frame-
work with TEA method would be useful in a clinical environ-
ment where the mobility of patients is a concern for DXA scan
or addition information required during fracture treatment.
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