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Abstract Lung cancer is one of the types of cancer with
highest mortality rate in the world. In case of early
detection and diagnosis, the survival rate of patients
significantly increases. In this study, a novel method
and system that provides automatic detection of
juxtapleural nodule pattern have been developed from
cross-sectional images of lung CT (Computerized To-
mography). Shape-based and both shape and texture
based 7 features are contributed to the literature for lung
nodules. System that we developed consists of six main
stages called preprocessing, lung segmentation, detection
of nodule candidate regions, feature extraction, feature
selection (with five feature ranking criteria) and classi-
fication. LIDC dataset containing cross-sectional images
of lung CT has been utilized, 1410 nodule candidate
regions and 40 features have been extracted from 138
cross-sectional images for 24 patients. Experimental re-
sults for 10 classifiers are obtained and presented.
Adding our derived features to known 33 features has
increased nodule recognition performance from 0.9639
to 0.9679 AUC value on generalized linear model re-
gression (GLMR) for 22 selected features and being
reached one of the most successful results in the
literature.

Keywords Feature extraction . Image processing . Lung
cancer . Machine learning . Pattern recognition

Introduction

Lung cancer, is one of the types of cancer, cells in lung tissue
can invade other organs by covering the surrounding tissue
cells, has highest mortality rate in the world. According to
report of the World Health Organization (WHO), lung cancer
is type of cancer that causes to death in men ranked first and in
woman ranked second among cancer types in the world [1].
Treatment of lung cancer and the survival rate of patient de-
pend on early detection of the cancer and patient not to smoke.

One of the most important signs of lung cancer in initial
stage is detection of cancerous (malignant) lung nodules.
Medical imaging techniques such as LDCT or low dose CT
(Computerized Tomography), PET (Positron Emission To-
mography), chest radiography, ultrasonography and X-ray
are extensively used for early detection of lung cancer and
imaging of nodules. CT medical imaging method has highest
sensitivity and lower error rate. CT enables visualization of
small or low-contrast nodules that could hardly be screened in
conventional radiograms [2].

Development of computer aided lung nodule region detec-
tion method and system on CT images is so important in terms
of being useful and helpful to expert radiologists in the process
of early diagnosis and treatment of lung cancer, increasing of
the survival rate of patients, reduction and minimization of
error rate of nodule detection and interpretation of radiolo-
gists, reducing the time required for these operations, facilitat-
ing detection of cancerous nodules which can be overlooked.
These and many other benefits of the system which can be
used in various fields, are motivation of the project. So, these
factors have led to this work.

In this study, a method and software that provides automat-
ic detection of juxtapleural nodule region have been devel-
oped from cross-sectional images of lung CT using classifiers
and image processing techniques. Juxtapleural nodules which
have a significant degree of connection to the pleural surface,
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emerge segmentation problems in the stage of lung segmen-
tation due to the fact that nodules have Hounsfield Units near
to pleura. In the scope of this study, lungs have been segment-
ed using image processing techniques by separating from
complex background, juxtapleural nodule candidate regions
have been identified using α-hull method [3], then morpho-
logical, statistical and texture based features have been ex-
tracted from these regions and feature selection has been ap-
plied, original nodule region has been detected by means of
classification models. LIDC dataset containing cross-sectional
images of lung CT has been utilized.

Main contribution to the literature is to gain novel seven
features (five shape-based and two both shape and texture
based) extracted from nodule candidates which identified by
means ofα-hull method. In the developed system, distinctive-
ness factor between nodule candidates has been increased by
providing wealth of features.

Related work

Numerous studies have been made for computer aided detec-
tion and diagnosis of lung nodules [4, 5]. While some studies
consist of scientific publications, another portion of studies
consist of patents of CAD (Computer Aided Detection) sys-
tems having commercial value used extensively in hospitals
nowadays. CAD systems used in lung cancer generally consist
of five main stages. These stages are image acquisition, pre-
processing, lung segmentation, detection of nodule candidate
regions, reduction of false positives.

Image acquisition stage is based on obtaining images
which contain lung nodules from medical imaging methods.
For example, Lung Image Database Consortium (LIDC) [6],
Public Lung Database to Address Drug Response (ELCAP)
[7] data sets. Image pre-processing refers to the process of
improving both the quality and interpretability of the acquired
lung images. The pre-processing component reduces noise
and artefacts in the lung image slices [2]. Ezoe et al. [8] ap-
plied N-Quoit (Q) filter based onmathematical morphology to
enhance candidate nodules, Frangi et al. [9] applied blob-
enhancement filter based on Hessian Matrix to enhance
sphere-like objects [10], Ochs et al. [11] and Paik et al. [12]
applied sphericity structure enhancement filter to enhance the
nodule like structure in CT images, Gaussian smoothing was
employed by Retico et al. [13] to eliminate the image artefacts
and Li et al. [14] applied multi-scale enhancement filter to
suppress blood vessels and highlight nodule like structures
in their studies [2].

Lung segmentation stage consists of some operations for
separating lung regions and removing other parts from image.
Healthy lung tissues constitute darker region than structures
located in and around the lungs. This feature of lung tissues is
one of the basic methods for segmentation of lungs. While

isolated nodules don’t have segmentation problem,
juxtapleural nodules have some segmentation problems be-
cause of the fact that these nodules have similar color, Houns-
field Unit near to pleural surface. In these situations, different
segmentation approaches are needed to solve this problem.
Gray level thresholding based approaches were used by
Armato et al. [15], Hu et al. [16]. Apart from the gray level
thresholding and pixel based approaches, different approaches
such as active shape model (ASM) (snakes), active appear-
ance model (AAM), deformable model, level set are also used
[17]. Adaptive border marching method proposed in [18],
alpha hull method proposed in [19, 20] were developed for
detection of juxtapleural nodule regions.

Lung nodule detection refers to the process of determining
whether nodule patterns are present in the image, and identi-
fying the location of the nodules [2]. Lung nodule detection is
classified into intensity and model based detection methods. It
can be achieved using template-based, segmentation-based,
and classification-based methods. An ensemble classification
aided by clustering (CAC) method was proposed for classifi-
cation based method [21]. In intensity based detection
methods, thresholding [22], clustering algorithms [23], artifi-
cial neural network (ANN) [24], mathematical morphology
and ANN [25], 3D region growing approach [14] were devel-
oped. In model based detection methods, template matching
based on genetic algorithm [26], deformable template [27],
object based deformation [28], anatomy based generic model
[29] were proposed [30]. Studies using combination of inten-
sity based and model based methods are also available. Sur-
face normals and gradient-based method to capture the con-
centration of normals by calculating derivatives of intensity
images was proposed by [12], [30].

False positives reduction refers to the process of further
eliminating the false positives from the output of nodule de-
tection or lung segmentation components [2]. Appearance,
shape, spectral and textural and contextual features are used
to describe the content of image. Some fundamental feature
types, representing the appearance of medical images in the
most discriminatory way eases the classification procedure
and detection and understanding disease process [31]. Retico
et al. [13] used voxel based neural approach by extracting
features from voxel neighborhood to reduce the amount of
false positive findings in the lists of nodule candidates in their
study. Nunzio et al. [20] applied threshold values on features
extracted from juxtapleural nodule candidate regions identi-
fied by α-hull method and used a supervised two-layer, 13-
input, 20-hidden-neuron, 1-output feed-forward neural net-
work, trained with gradient descent learning rule with momen-
tum as the classifier system. Choi and Choi [32] developed
three dimensional shape based feature descriptor to detect
nodules and iterative wall elimination method for refinement
of feature descriptor. Ozekes and Osman [33] introduced a
CAD system based on three-dimensional (3D) feature
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extraction to detect lung nodules. Kuruvilla and Gunavathi
[34] extracted features and used different ANNs for classifi-
cation. Daliri [35] proposed a hybrid automatic system based
on genetic algorithm and fuzzy extreme learning machines.
Other studies and detailed experimental results in this area
can be achieved from [2] and [17].

Materials and methods

Image acquisition (materials)

Lung CTs have been obtained from LIDC-IDRI data set [36].
This dataset is publicly available in the National Biomedical
Imaging Archive (NBIA) and it provides a reference for the
medical imaging research community.

The characteristics of LIDC-IDRI dataset is shown in
Table 1. In the initial blinded-read phase, each radiologist
independently reviewed each CT scan and marked lesions
belonging to one of three categories (Bnodule ≥3 mm,^
Bnodule<3 mm,^ and Bnon-nodule≥3 mm^) [6]. In the sub-
sequent unblinded-read phase, each radiologist independently
reviewed their own marks along with the anonymized marks
of the three other radiologists to render a final opinion [6].
Radiologists used the computer interface to construct outlines
of around the nodules in each CT section [6].

These images have been obtained using several CT scan-
ners and CT protocols in helical mode. These nodules have at
least 3 mm and less than 30 mm diameter in lung CTs. In the
scope of this study, only lung CT slices containing
juxtapleural lung nodules have been utilized.

System methodology

System architecture and stages of the project are illustrated in
Fig. 1. Details of these stages will be explained in the follow-
ing subsections, methods and approaches used for every stage
will be discussed.

Preprocessing

Preprocessing consists of initial operations which select ap-
propriate images to be suitable for processing on the computer.
These operations used in this stage are shown in Fig. 2.

Firstly, slices containing juxtapleural lung nodule are se-
lected from LIDC dataset. Images obtained according to med-
ical imaging methods have DICOM image format. Represen-
tation of nodule regions that outlined by expert radiologists is
implemented on these lung CT slices (Fig. 3). The ground
truth regions are stored in xml file containing all information
of every patient about all slice images for each case. Then,
pixel values are converted into double format in terms of ac-
curacy of applied operations.

Image information stored in DICOM consists of pixel
values in form of binary data. In order to identify window
level and width appropriate for lung region, pixel values must
be converted into Hounsfield Unit (HU). Linear transforma-
tion is made according to Rescale Slope and Rescale Intercept
tags in DICOM file. One is used for Rescale Slope and −1024
is used for Rescale Intercept.

Window width is equal to 1500 and window level is equal
to −400 for lung CTs. HU values having [−1150, 350] can be
shown effectively for this window values. While HU values
that exceeds upper limit of this range are shown in white, HU
values that exceeds lower limit of this range are shown in
black. Besides, so as to apply image processing operations
appropriately, 16-bits image is converted into 8-bits image
(Fig. 4).

In the next step, somemorphological operations are applied
for obtaining thorax by removing other undesirable structures
over 8-bit lung slice image. First of all, the inside of chest
region is filled with gaps. By this process, lungs are covered
with color of portion fall outside the lung region of the thorax.
Then, mask of thorax and line at the bottom of the thorax are
extracted by using Otsu thresholding method [37] on CT
slices. Otsu method selects the optimal threshold automatical-
ly to maximize the seperability of resultant classes in gray
levels [37]. In order to remove the pieces outside of the thorax,
disk shaped structural element with 10 units of radius is con-
structed and erosion operation is applied on image. After the
erosion operation, thorax mask is obtained, areas that outside
of thorax mask are covered in white color on original slice and

Table 1 The characteristics of LIDC-IDRI dataset [6]

Dataset Property Value/Type

Number of cases 1018

Associated file types for each case CT, XML

Number of phase for image annotation process 2

Number of radiologists 4

Fig. 1 Flow chart of system architecture
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thorax is obtained. An example of this process is illustrated in
Fig. 5.

Lung segmentation

In this stage, lungs are segmented by applying Otsu
thresholding method on thorax region. As a result of segmen-
tation, some parts where outside of the lungs may occur. So as
to solve this problem, morphological opening operation is
carried out with disk shaped structural element four units in
radius on segmented lung images. Besides, lung boundaries
are obtained by filling the gaps in lung regions and applying
Otsu thresholding method on lung mask. As a result of these
operations, lung segmentation process is carried out by iden-
tifying two regions with highest area in regions with border-
line. An example of lung segmentation process is illustrated in
Fig. 6.

Detection of nodule candidates

Juxtapleural nodules have a significant degree of connection
to the pleural surface. While tissue densities of these nodules
have Hounsfield Units near to pleura and thorax surrounding
lung region, their tissue densities are different from lung tis-
sue. For this reason, segmentation operation depending on
tissue density is not suitable for detection of nodule
candidates.

Alpha shape is an approach that generalizes convex hull for
given finite set of points. Alpha shapes are also subgraph of

delaunay triangulation. Alpha parameter that identifies level
of detail is used for generalization operation. This approach
has been firstly emerged by Edelsbrunner, Kirkpatrick and
Seidel [3]. Given a set S of n points in the plane, the α-hull
of S is the intersection of all closed disks with radius 1/α that
contain all the points of S [3]. For α-hull method, there is not
any point in all disks, points locate on only boundary lines of
disks. α values are inversely proportional to level of detail. If
α value is decreased then level of detail increases or vice
versa.

In the scope of this study, juxtapleural lung nodule candi-
date regions are detected by using α-hull method based on
generalizing of convex hull. Code example and algorithm
used in this study for α-hull method can be accessed from
[38]. Therefore, radius values that change between 45 units
and 80 units with an interval of five units are separately tried
on images of left and right lungs in different slice images and
nodule candidate regions are extracted. The best result of ra-
dius values for every lung CT is identified as parameter. In
order to select radius values, coverage of nodule boundaries of
lines occurred as a result of α-hull method is taken into
account.

Nodule candidate regions are defined as a region between
lines obtained as a result of α-hull method and boundaries
obtained as a result of lung segmentation. New boundary
points that contact with boundary of segmented lung image
are accepted as starting and finishing point of nodule candi-
date region. Due to the fact that locations between these
boundary points must be integer, Bresenham line drawing

Fig. 2 Preprocessing stage

Fig. 3 Representation of ground
truth region and information of
nodule [36]
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algorithm has been carried out. So as to discard small regions,
minimum distance between starting and finishing point of
nodule candidates is set to 10 units.

In the developed system, only one real lung nodule is avail-
able among lung nodule candidate regions for each slice. So as
to identify and enumerate real lung nodule as a true positive,
central point of every nodule candidate region and ground
truth region is computed. One region having minimum Eu-
clidean distance between central point of the nodule candidate
region and ground truth region is defined as a real nodule and
it is enumerated by red color on image. An example of this
process is shown in Fig. 7.

Feature extraction

Feature extraction stage has been carried out for reduction of
false positives by identifying nodule candidates that do not
contain ground truth region from convex nodule candidate
regions obtained by using α-hull method in the previous step.
Threshold values on features are identified by means of clas-
sifiers. In the scope of this project, 40 features based on shape
information, texture information, both texture and shape in-
formation are extracted from nodule candidates (Fig. 8). Total
seven novel features including five of them are based on shape
information, two of them are based on both shape and texture
information are extracted and presented to the literature. Some
portion of these 40 features is available in [19, 20]. Informa-
tion about these features is provided on following subsections.

Shape based features

Shape based features are geometrical features that color and
texture information are not considered. There are 16 features
based on shape information in this study. These shape based
features are span, depth, boundary length, depth over span,
radius, area, circularity ratio, eccentricity, solidity, convex ar-
ea, extent, bound over span, major axis over boundary, minor
axis over boundary, span over major axis and Mj_MnAxis
over boundary.

The span of concave lung nodule candidate is the length of
the segment that joins its extremal points, the depth is the
greatest perpendicular distance between the boundary points
of concave nodule candidate and the segment defining the
span, the boundary length is the number of boundary points
composing concave nodule candidate, depth over span is
equal to depth / span, radius is the mean distance of boundary
points from the centroid of concave nodule candidate, the area
of region candidate is defined by the closed boundary formed
from the concavity boundary points and span segment
connecting the first and last boundary points, circularity ratio
is the ratio of area of concavity region candidate and that of the
circle having the same perimeter [19, 20], eccentricity is the
aspect ratio of concavity region, solidity is the ratio of the area
of nodule region candidate (As) to the convex hull area of the
shape (Ahull) [39], convex area is the total number of pixels in
the convex hull of the shape [40], extent is the ratio of the
number of pixels in the lung nodule candidate to pixels in the

Fig. 4 Identifying of window
variables a original lung CT b
setting the window level and
width [36]

Fig. 5 Obtaining thorax a
original lung slice, b filling the
gaps, c Otsu thresholding
operation, d morphological
erosion, e masking of thorax
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minimum bounding box of the shape [40]. Representation of
lung nodule candidate and some shape based features are il-
lustrated in Fig. 9.

Texture based features

Texture information consists of color, brightness, shape and
size information about the surface of image. First order statis-
tical features considering only original tissue density values
and second order statistical features considering neighbor tis-
sue density pair with distance d and relative positions of gray
levels are extracted in this study. Besides, total number of
texture based features is 22.

There are 15 first order statistical features including arith-
metic, geometric and harmonic mean, standard deviation,
skewness, kurtosis, entropy, interquartile range, seven Hu
geometric moments.

Gray level co-occurrence matrix (Gray Level Spatial De-
pendence Matrix) (GLCM) is used for second order statistical

features. Then, gray level nodule candidate regions are scaled
into eight different texture levels. While GLCM is indepen-
dent from translation operation, it is sensitive to rotation op-
eration. So as to eliminate this problem, GLCMswith distance
one in four different directions are constructed according to 0,
45, 90 and 135°. Then, the sum of these matrices is computed.
As a result of this operation, GLCM is independent from ro-
tation operation.

After obtaining GLCM stage, second order statistical fea-
tures are extracted by normalizing GLCM so that sum of the
matrix elements is equal to 1. There are seven GLCM features
including autocorrelation, contrast, cluster prominence, clus-
ter shade, energy, entropy and homogeneity.

Novel features proposed to the literature

In this study, seven novel features extracted from lung nodule
candidates are proposed to the literature. Five of these features
are based on shape information and two of them are based on

Fig. 6 Lung segmentation a lung
image containing thorax, b Otsu
thresholding, c morphological
opening, d filling the gaps, e lung
mask, f extraction of lung
boundaries

Fig. 7 Nodule candidate regions
a Segmented lung image, b Lung
borders, c Numbered nodule
candidate regions
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shape and texture information of lung nodule candidates. The-
se features are explained as follows:

Shape Based Novel Features

Bound over Span: It is the ratio of the value of boundary
length to the value of span. This feature is closely related
with nodule candidate size and noise. Boundary length
provides identification of lung nodule caused by noise by
setting minimum threshold and span is based on nodule
candidate size [19]. It is denoted as:

BoS ¼ BL

S
ð1Þ

where BoS is value of bound over span, BL is bound-
ary length and S is the span of nodule candidate.

Major Axis over Boundary: It is the ratio of the length
of major axis of nodule candidate (Dmax) to boundary
length. Major axis length is longest axis length of the

nodule candidate. This feature is closely related with nod-
ule candidate size and noise. It is denoted as:

MjoB ¼ Dmax

BL
ð2Þ

where MjoB is value of major axis over boundary,
Dmax is major axis length and BL is boundary length of
nodule candidate.

Minor Axis over Boundary: It is the ratio of the length
of minor axis of nodule candidate (Dmin) to boundary
length. Minor axis is shortest axis of the nodule candi-
date. This feature is closely related with nodule candidate
size and noise. It is denoted as:

MnoB ¼ Dmin

BL
ð3Þ

where MnoB is value of minor axis over boundary,
Dmin is minor axis length and BL is boundary length

Fig. 8 Types of features
extracted in the scope of this
project

Fig. 9 Representation of lung
nodule candidate a span, depth
and boundary length features b
Major and minor axis length
features
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of nodule candidate.

Span overMajor Axis: It is the ratio of the value of span
to length of major axis. It is denoted as:

SoMj ¼ S

Dmax
ð4Þ

where SoMj is value of span over major axis, S is the
span and Dmax is major axis length of nodule candidate.

Mj_MnAxis over Boundary: It is the ratio of the prod-
uct of length of major axis and minor axis to boundary
length. It is denoted as:

MjMnoB ¼ Dmax � Dmin

BL
ð5Þ

where MjMnoB is value of Mj_MnAxis axis over
boundary, Dmax is major axis length, Dmin is minor axis
length and BL is boundary length of nodule candidate.

Shape and Texture Based Novel Features

Span over Variance: It is the ratio of span to variance of
tissue density of nodule region candidate. It is denoted as:

SoV ¼ S

VarROI
ð6Þ

where SoV is value of span over variance, S is the span
and VarROI is variance of tissue density of nodule
candidate.

F1: It is ratio of the product of major axis length of nod-
ule region candidate and minor axis length of nodule
region candidate to variance of tissue density of shape.
It is denoted as:

F1 ¼ Dmax � Dmin

VarROI
ð7Þ

where Dmax is major axis length, Dmin is minor axis
length and VarROI is variance of tissue density of nodule
candidate.

Feature Selection

This stage is carried out for selecting features having high
level distinctive information and discarding features having
low level information in extracted 40 features. Feature selec-
tion is important to increase prediction performance and im-
prove generalization ability of classifier by reducing data size
in classifier design.

Filter method that ranks features independent of the choice
of classifiers has been utilized in this study. Statistical t test,
Kullback—Leibler Divergence (Relative Entropy),
Bhattacharyya Distance, Wilcoxon Test and ROC (Receiver
Operating Characteristic) value have been used as feature
ranking criteria [41, 42]. The number of features has been
identified by evaluating classifier performance on top five
classifiers. Every classifier has been run 10 times and mean
of results has been computed. The number of features is based
on area of the best classifier under the ROC curve (AUC)
(Area Under Curve) according to every feature selection

Fig. 10 Heat map matrix
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criteria. When success rate decreases and there is not signifi-
cant degree of improvement, increasing of feature number is
stopped and it is identified as a terminating condition. As a
result of feature selection stage, GLMR is identified as a clas-
sifier, ROC is identified as a feature selection criterion and the
number of features is 22 for classification operation.

When feature selection stage is applied, 22 features are
obtained. These features are DepthOverSpan, MjoB, M2, har-
monic mean, eccentricity, geometric mean, BoS, MnoB, M1,
Circularity, Mean, M3, M4, autocorrelation, depth, homoge-
neity, extent, entropy, skewness, F1, MjMnoB, Convex Area,
respectively.

In addition to this stage, importance degree of features is
determined by measuring correlation with each other and target
classes. It is expected that features must have high correlation
with output values of target class and must have low correlation
among them. Pair linear relationship between feature values is
computed with Pearson correlation coefficient used frequently
in statistics. Heat Map data visualization tool has been used for
representation of matrix values. It is shown in Fig. 10.

Classification

This stage is nodule recognition stage that identifies whether
region of interest is a real nodule or not by means of classifiers
using extracted features from lung nodule candidates. In the
scope of this project, performance comparison has been made

on 10 different classifiers according to AUC values and
GLMR has been identified as the best classifier in the devel-
oped system. Experimental results have been implemented for
top of five classifiers. These 10 classifiers consist of linear
discriminant classifier (LDC) [43], quadratic discriminant
classifier (QDC) [44], k nearest neighbor classifier (K-NN)
[45], multi-layer perceptron (MLP) [46], probabilistic neural
network (PNN) [47], support vector machines (SVM) [48],
classification tree (CT) [49], Naïve Bayes Classifier (NBC)
[50], generalized linear model regression (GLMR) [51] and
ensemble classifiers (ECT) [52]. As a result of the trials, k
value is identified as one in K-NN, spread parameter is taken
as 0.02 in PNN, the number of neurons of hidden layer in
MLP is assigned to 5, the ratio of training data to test data is
identified as 80–20 or 4, classification trees is made 20 learn-
ing cycle by bagging method in ensemble classifiers. Binomi-
al distribution is used for GLMR. For NBC and CT classifier,
default parameter values in Matlab are used. Dot product

Table 2 Information about the dataset

Dataset Property Value/Type

Data set LIDC

Medical imaging technique CT

Type of nodule Juxtapleural

Total number of CT cases 24

Total number of slices 138

Total number of nodule candidates 1410

Total number of features 40

Total number of selected features 22

Size of the training data 40 × 1269

Size of the test data 40 × 141

Value of k for cross validation 10

Type of partition for cross validation Random

The ratio of training data to test data 90–10

Table 3 Computation time of the proposed system

Operation Computation time

Experimental study
Nodule detection and classification (data set)

13 min 21.7648 s

Testing a nodule candidate
Nodule classification (only one nodule)

0.0308 s

Table 4 Experimental results of feature extraction stage based on
classifiers and performance criteria (22 features are selected in 33)

Classifier performance criteria AUC
(10 runs)

Training classification
accuracy %

CT 0.8109 93.38

ECT 0.8105 95.39

K-NN (K=1) 0.8769 95.11

LDC 0.8550 92.14

GLMR 0.9639 95.64

NBC 0.8503 77.53

MLP 0.7855 91.62

PNN (S=0.02) 0.8681 94.05

QDC 0.8964 88.22

SVM 0.8125 89.20

Bold values indicate the best results

Table 5 Experimental results of nodule recognition system based on
classifiers and performance criteria (22 features are selected in 40)

Classifier performance criteria AUC
(10 runs)

Training classification
accuracy %

CT 0.8162 93.59

ECT 0.8196 95.32

K-NN (K=1) 0.8666 95.69

LDC 0.8793 92.6

GLMR 0.9679 95.88

NBC 0.8465 78.35

MLP 0.795 92.3

PNN (S=0.02) 0.8591 94.24

QDC 0.9034 89.06

SVM 0.7701 89.84

Bold values indicate the best results
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kernel function is used for SVM. GLMR, QDC, LDC, K-NN
and PNN are top five classifiers in the developed system.

Besides, k fold cross validation technique is used for the
selection of classification model. k value is identified as 10 for
balancing variance and error value. The ratio of training data
to test data is identified as 90–10 or 9 in the developed system.
There are 1269 training data and 141 test data. In each of 10
runs, 127 of 1269 data are used as a validation data and other
parts of 1269 data are used as a training data by using 10 fold
cross validation. Real nodule depends on the fact that lung
nodule candidate comprises of ground truth region. If nodule
candidate is a real nodule, the output value will become 1,
otherwise it will become 0. Additionally, GLMR classifier
has been evaluated by using AUC and classification accuracy
on test data according to different feature selection criteria and
the number of features.

Results

Using of all data and software has been implemented on
Matlab R2011a environment and notebook with Intel i7-
2670 QM 2.2 Ghz processor in this study. In the scope of this
project, LIDC dataset containing only slice images with

juxtapleural lung nodule is used. Every CT image can contain
many slices. Besides, every slice image has only one nodule.
Information about the dataset is illustrated in Table 2.

The suitability of performance criteria used in classification
depends on features of training data. The number of real nod-
ule region is 124 of 1269 regions in training data are real
nodule region. The number of non-nodule region is 1145.
Due to the fact that class skewness of training set (the ratio
of the number of nodule regions to the number of non-nodule
regions) is not equal to 1, AUC (Area Under the Curve) that is
not sensitive to skewness is used in this study. Additionally,
classification accuracy is also used for measuring overall per-
formance of system.

Computation time of the proposed system is shown in
Table 3. Nodule detection stage consists of preprocessing,
lung segmentation, detection of nodule candidates and feature
extraction. Classification stage consists of feature selection
and classification. Computation time is computed for data
set (design and test set) and only one nodule candidate.

In the next subsection, experimental results of nodule rec-
ognition without derived seven novel features based on 33
features on design set is presented. After that, effect of derived
novel features on design set is shown. Next, nodule

Fig. 11 Comparison of nodule
recognition system obtained
according to classifiers and
performance criteria

Table 6 Experimental results of feature extraction stage based on
classifiers and performance criteria (22 features are selected in 40)

Classifier performance
criteria

AUC
(10 runs)

Test classification
accuracy %

GLMR 0.8870 91.49

QDC 0.7981 86.52

LDC 0.7343 92.20

K-NN (K=1) 0.8057 93.62

PNN (S=0.02) 0.8017 92.91

Bold values indicate the best results

Table 7 Experimental results of feature extraction stage based on
classifiers and performance criteria (22 features are selected in 33)

Classifier performance
criteria

AUC (10
runs)

Test classification accuracy
%

GLMR 0.8830 92.91

QDC 0.7663 86.52

LDC 0.7264 90.78

K-NN (K=1) 0.7700 92.91

PNN (S=0.02) 0.7660 92.20

Bold values indicate the best results
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recognition system and effect of derived features using test set
is presented. Finally, effect of feature selection stage on design
set is shown.

Nodule Recognition (without derived features)

Experimental results based on total 33 features which do not
contain seven novel features that we developed, ROC feature
selection criterion and 22 selected features are shown in Ta-
ble 4. The best result has been obtained on GLMR classifier
with 0.9640 AUC value for 33 features. In this case, the newly
formed five features are boundary length, area, radius, contrast
(GLCM), cshade (GLCM), respectively. Novel seven features
in feature extraction stage have increased performance of the
nodule recognition system by 0.41 % according to AUC and
by 0.25 % according to classification accuracy performance
criteria for GLMR classifier.

Nodule Recognition System and Effect of Derived Features

When feature selection stage is applied and ROC feature se-
lection criteria is used, experimental results based on 40 fea-
tures for 10 classifiers are illustrated in Table 5 and Fig. 11.
The best result is obtained with GLMR classifier and %95.88
classification accuracy. As a result of these experimental re-
sults, it is shown that feature selection stage has increased the
success rate of nodule recognition and classification stage and

has decreased training time of classifiers. Additionally, five of
seven novel features presented literature including MjoB,
BoS, MnoB, MjMnoB, F1 have entered into first 22 features
of system according to ROC feature selection criterion and
have increased nodule recognition performance of the system.

Nodule Recognition System and Effect of Derived Features
Using Test Set

GLMR is selected as best classifier using ROC performance
criterion and training set. So as to determine generalization
performance of selected model on the new data, experimental
results are applied on the test data. When feature selection
stage is applied and seven novel features presented the system,
experimental results are illustrated in Table 6. When derived
features are not used in the system, experimental results based
on 33 features are illustrated in Table 7. Feature selection stage
uses only 22 features and five of seven novel features includ-
ing MjoB, BoS, MnoB, MjMnoB, F1 have entered to system.
Novel features have increased performance of the nodule rec-
ognition system by 0.45% according to AUC value for test set
(Fig. 12).

The Effect of Feature Selection Stage

When feature selection stage is not applied in the system,
experimental results based on 40 features for top five classi-
fiers are illustrated in Table 8. While feature selection stage is
done, 0.9679 mean AUC value is obtained with 22 different
features, 0.9551 mean AUC value is obtained when it is not
applied. In both cases, the best result has been provided with
GLMR classifier. As a result of feature selection stage, other
three classifiers except K-NN and PNN classifiers have per-
formance improvement with AUC value. Besides, classifica-
tion performance has beenmeasured by increasing the number
of features from 1 to 25 on GLMR classifier step by step. This
process is repeated for each feature selection criterion and
other four classifiers.

Fig. 12 The representation of the
effect of derived features to
nodule recognition performance
on test set

Table 8 Experimental results obtained when feature selection stage is
not applied

Classifier performance criteria AUC (10 runs)

GLMR 0.9551

QDC 0.8992

LDC 0.8706

K-NN (K=1) 0.8876

PNN (S=0.02) 0.8640

Bold values indicate the best results
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Conclusion

Computer aided detection of lung cancer with highest mortal-
ity rate is so important in terms of increasing of the survival
rate of patients and providing early detection and diagnosis. In
this study, automatic juxtapleural lung nodule region detection
method and related software is developed. α-hull method is
used for detection of nodule candidates. Total seven novel
features based on shape, texture information are presented as
a new method to the literature. Besides, ranking and selection
of all features using statistical criteria made a contribution in
terms of performance improvement. It is shown that feature
selection stage increased the overall performance of the sys-
tem by increasing AUC value from 0.9551 to 0.9679. Feature
extraction and classification stages are important for reduction
of false positives.

In the future studies, the scope of this study may be extend-
ed by developing the system which considers other types of
lung nodules. Parameter tuning of all classifiers is out of scope
of this paper and may be considered as another study. Addi-
tionally, the comparison of methods used with alternatives in
literature can be made by applying different techniques and
approaches on developed system for every stage.

Acknowledgments This study has been supported by Scientific and
Technological Research Council of Turkey (TÜBİTAK) 2211 National
Graduate Scholarship Program.

References

1. World Health Organization, World Health Report. http://www.who.
int/whr/2004/en/. Accessed 12 Feb 2014, 2004.

2. Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Automated detection of
lung nodules in computed tomography images: A review.Mach. Vis.
Appl. 23(1):151–163, 2012. doi:10.1007/s00138-010-0271-2.

3. Edelsbrunner, H., Kirkpatrick, D. G., and Seidel, R., On the shape of
a set of points in the plane. IEEE Trans. Inf. Theory 29(4):551–559,
1983.

4. Wang, Q., Zhu, W., and Wang, B., Three-dimensional SVM with
latent variable: Application for detection of lung lesions in CT im-
ages. J. Med. Syst. 39(1):171, 2015. doi:10.1007/s10916-014-0171-
5.

5. Avci, E., A new expert system for diagnosis of lung cancer: GDA—
LS_SVM. J. Med. Syst. 36(3):2005–2009, 2012. doi:10.1007/
s10916-011-9660-y.

6. Armato, S. G., 3rd, McLennan, G., Bidaut, L., McNitt-Gray, M. F.,
Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I.,
Hoffman, E. A., Kazerooni, E. A., MacMahon, H., van Beek, E. J. R.,
Yankelevitz, D., et al., The Lung Image Database Consortium
(LIDC) and Image Database Resource Initiative (IDRI): A completed
reference database of lung nodules on CT scans. Med. Phys. 38(2):
915–931, 2011.

7. Cornell University, Public lung database to address drug response.
Vision and Image Analysis Group (VIA) and International Early
Lung Cancer Action Program (I-ELCAP) Labs. http://www.via.
cornell.edu/crpf.html, Accessed 18 Feb 2014, 2008

8. Ezoe, T., Takizawa, H., Yamamoto, S., Shimuzu, A., Matsumoto, T.,
Tateno, Y., Iimura, T., Matsumoto, M., An automatic detection meth-
od of lung cancers including ground glass opacities from chest X-ray
CT images. In: Proc. of SPIE 4684:1672–1680, 2002.

9. Frangi, A. F., Niessen, W. J., Hoogeveen, R. M., Walsum, T. V., and
Viergever, M. A., Model-based quantitation of 3-D magnetic reso-
nance angiographic images. IEEE Trans. Med. Imaging 18(10):946–
956, 1999.

10. Suzuki, K., Supervised Blesion-enhancement^ filter by use of a
Massive-Training Artificial Neural Network (MTANN) in
Computer-Aided Diagnosis (CAD). Phys. Med. Biol. 54(18):31–45,
2009.

11. Ochs, R. A., Goldin, J. G., Abtin, F., Kim, H. J., Brown, K., Batra, P.,
Roback, D., McNitt-Gray, M. F., and Brown, M. S., Automated clas-
sification of lung bronchovascular anatomy in CT using Adaboost.
Med. Image Anal. 11(3):315–324, 2007.

12. Paik, D. S., Beaulieu, C. F., Rubin, G. D., Acar, B., Jeffrey, R. B.,
Yee, J., Dey, J., and Napel, S., Surface normal overlap: A computer-
aided detection algorithm with application. IEEE Trans. Med.
Imaging 23(6):661–675, 2004.

13. Retico, A., Delogu, P., Fantacci, M. E., Gori, I., and Martinez, A. P.,
Lung nodule detection in low-dose and thin-slice computed tomog-
raphy. Comput. Biol. Biomed. 38(4):525–534, 2008.

14. Li, Q., Li, F., and Doi, K., Computerized detection of lung nodules in
thin-section CT images by use of selective enhancement filters and an
automated rule-based classifier. Acad. Radiol. 15(2):165–175, 2008.

15. Armato, S. G., 3rd, Giger, M. I., Moran, C. J., Blackburn, J. T., Doi,
K., and Macmahon, H., Computerized detection of pulmonary nod-
ules on CT scans. Radiographics 19(5):1303–1311, 1999.

16. Hu, S., Hoffman, E. A., and Reinhardt, J. M., Automatic lung seg-
mentation for accurate quantitation of volumetric X-ray CT images.
IEEE Trans. Med. Imaging 20(6):490–498, 2001.

17. El-Baz, A., Beache, G. M., Gimel’farb, G., Suzuki, K., Okada, K.,
Elnakib, A., Soliman, A., Abdollahi, B., Computer-aided diagnosis
systems for lung cancer: challenges and methodologies. Int. J.
Biomed. Imaging Article ID 942353, 46 pages, 2013

18. Pu, J., Roos, J., Yi, C. A., Napel, S., Rubin, G. D., and Paik, D. S.,
Adaptive border marching algorithm: Automatic lung segmentation
on chest CT images. Comput. Med. Imaging Graph. 32(6):452–462,
2008.

19. Sensakovic, W. F., Starkey, A., Armato, S. G. 3rd, A general method
for the identification and repair of concavities in segmented medical
images. IEEE Nuclear Science Symposium Conference Record
5320–5326, 2008

20. Nunzio, G. De, Massafra, A., Cataldo, R., Mitri I. De, Peccarisi, M.,
Fantacci, M. E., Gargano, G., Torres, E. L., Approaches to juxta-
pleural nodule detection in CT images within the MAGIC-5
Collaboration. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 648(1):103–106, 2011.

21. Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Random forest based
lung nodule classification aided by clustering. Comput. Med.
Imaging Graph. 34(7):535–542, 2010.

22. Armato, S. G., 3rd, Giger, M. L., and MacMahon, H., Automated
detection of lung nodules in CT scans: Preliminary results. Med.
Phys. 28(8):1552–1561, 2001.

23. Gurcan, M,, Sahiner, B,, Petrick, N,, Chan, H, P., Kazerooni, E. A.,
Cascade, P. N., Hadjiiski, L., Lung nodule detection on thoracic com-
puted tomography images: preliminary evaluation of a computer-
aided diagnosis system. Med. Phys. 29(11):2552–2558.

24. Suzuki, K., Armato, S. G., 3rd, Li, F., Sone, S., and Doi, K., Massive
training artificial neural network (MTANN) for reduction of false
positives in computerized detection of lung nodules in low-dose com-
puted tomography. Med. Phys. 30(7):1602–1617, 2003.

25. Awai, K., Murao, K., Ozawa, A., Komi, M., Hayakawa, H., Hori, S.,
and Nishimura, Y., Pulmonary nodules at chest CT: Effect of

46 Page 12 of 13 J Med Syst (2015) 39: 46

http://www.who.int/whr/2004/en/
http://www.who.int/whr/2004/en/
http://dx.doi.org/10.1007/s00138-010-0271-2
http://dx.doi.org/10.1007/s10916-014-0171-5
http://dx.doi.org/10.1007/s10916-014-0171-5
http://dx.doi.org/10.1007/s10916-011-9660-y
http://dx.doi.org/10.1007/s10916-011-9660-y
http://www.via.cornell.edu/crpf.html
http://www.via.cornell.edu/crpf.html


computer-aided diagnosis on radiologists’ detection performance.
Radiology 230(2):347–352, 2004.

26. Lee, Y., Hara, T., Fujita, H., Itoh, S., and Ishigaki, T., Automated
detection of pulmonary nodules in helical CT images based on an
improved template-matching technique. IEEE Trans. Med. Imaging
20(7):595–604, 2001.

27. Farag, A., El-Baz, A., Gimel’farb, G. G., Falk, R., Hushek, S. G.
Automatic detection and recognition of lung abnormalities in helical
CT images using deformable templates. Lecture Notes in Computer
Science, Springer-Verlag, Medical Image Computing and Computer-
Assisted Intervention 3217:856–864, 2004.

28. Ge, Z. Y., Sahiner, B., Chan, H. P., Hadjiiski, L. M., Cascade, P. N.,
Bogot, N., Kazerooni, E. A., Wei, J., and Zhou, C., Computer-aided
detection of lung nodules: False positive reduction using a 3D gradi-
ent field method and 3D ellipsoid fitting. Med. Phys. 32(8):2443–
2454, 2005.

29. Brown, M. S., McNitt-Cray, M. F., Golldin, J. G., Suh, R. D., Sayre,
J. W., and Aberle, D. R., Patient-specific models for lung nodule
detection and surveillance in CT images. IEEE Trans. Med.
Imaging 20(12):1242–1250, 2001.

30. Ye, X., Lin, X., Dehmeshki, J., Slabaugh, G., and Beddoe, G., Shape-
based computer-aided detection of lung nodules in thoracic CT im-
ages. IEEE Trans.Biomed. Eng. 56(7):1810–1820, 2009.

31. Bağci, U., Bray, M., Caban, J., Yao, J., andMollura, D. J., Computer-
assisted detection of infectious lung diseases: A review. Comput.
Med. Imaging Graph. 36(1):72–84, 2012.

32. Choi, W. J., and Choi, T. S., Automated pulmonary nodule detection
based on three-dimensional shape-based feature descriptor. Comput.
Methods Prog. Biomed. 113(1):37–54, 2014.

33. Ozekes, S., and Osman, O., Computerized lung nodule detection
using 3D feature extraction and learning based algorithms. J. Med.
Syst. 34(2):185–194, 2010. doi:10.1007/s10916-008-9230-0.

34. Kuruvilla, J., and Gunavathi, K., Lung cancer classification using
neural networks for CT images. Comput. Methods Prog. Biomed.
113(1):202–209, 2014.

35. Daliri, M. R., A hybrid automatic system for the diagnosis of lung cancer
based on genetic algorithm and fuzzy extreme learningmachines. J.Med.
Syst. 36(2):1001–1005, 2012. doi:10.1007/s10916-011-9806-y.

36. Cancer Imaging Archive (2014) LIDC-IDRI. https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI. Accessed 9
Oct 2014.

37. Otsu, N., A threshold selection method from gray-level histograms.
IEEE Trans. Syst. Man Cybern. 9(1):62–66, 1979.

38. Lundrgen J. Alpha Shapes http://www.mathworks.com/
matlabcentral/fileexchange/28851-alpha-shapes/content/alphavol.
m. Accessed 12 Feb 2014, 2010

39. Mingqiang, Y., Kidiyo, K., Joseph, R. A survey of shape feature
extraction techniques. Pattern Recognition Techniques, Technology
and Applications 43–90, 2008

40. Math Works Inc, Matlab R2011a documentation. http://www.
mathworks.com/help/index.html. Accessed 12 Feb 2014, 2014

41. Theodoridis S., Koutroumbas K. (1999) Pattern recognition.
Academic Press.

42. Liu, H., and Motoda, H., Feature selection for knowledge discovery
and data mining. Kluwer Academic Publishers, Boston, 1998.

43. Fisher, R. A., The use of multiple measurements in taxonomic prob-
lems. Ann. Eugen. 7(2):179–188, 1936. doi:10.1111/j.1469-1809.
1936.tb02137.x.

44. Cover, T. M., Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition. IEEE
Trans. Electron. Comput. EC-14(3):326–334, 1965. doi:10.1109/
pgec.1965.264137.

45. Cover, T. M., and Hart, P. E., Nearest neighbor pattern classification.
IEEE Trans. Inf. Theory IT-13(1):21–27, 1967. doi:10.1109/TIT.
1967.1053964.

46. Rumelhart D. E., Geoffrey, E. H., Williams, R. J., Learning internal
representations by error propagation. Parallel distributed processing:
explorations in the microstructure of cognition 1:318–362. MIT
Press, Cambridge, 1986

47. Specht, D. F., Probabilistic neural networks. Neural Netw. 3(1):109–
118, 1990. doi:10.1016/0893-6080(90)90049-Q.

48. Vapnik, V., Estimation of dependences based on empirical data.
Springer Verlag, New York, 1982.

49. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.,
Classification and regression trees. CRC Press LLC, Florida, 1984.

50. Good, I. J.,Probability and the weighing of evidence. Charles Griffin,
London, 1950.

51. Dobson, A. J., An introduction to generalized linear models.
Chapman & Hall, New York, 1990.

52. Breiman, L., Bagging predictors. Mach. Learn. 24(3):123–140,
1996. doi:10.1023/A:1018054314350.

J Med Syst (2015) 39: 46 Page 13 of 13 46

http://dx.doi.org/10.1007/s10916-008-9230-0
http://dx.doi.org/10.1007/s10916-011-9806-y
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
http://www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes/content/alphavol.m
http://www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes/content/alphavol.m
http://www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes/content/alphavol.m
http://www.mathworks.com/help/index.html
http://www.mathworks.com/help/index.html
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1109/pgec.1965.264137
http://dx.doi.org/10.1109/pgec.1965.264137
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/0893-6080(90)90049-Q
http://dx.doi.org/10.1023/A:1018054314350

	Shape and Texture Based Novel Features for Automated Juxtapleural Nodule Detection in Lung CTs
	Abstract
	Introduction
	Related work
	Materials and methods
	Image acquisition (materials)
	System methodology
	Preprocessing
	Lung segmentation
	Detection of nodule candidates
	Feature extraction

	Shape based features
	Texture based features
	Novel features proposed to the literature
	Feature Selection
	Classification


	Results
	Nodule Recognition (without derived features)
	Nodule Recognition System and Effect of Derived Features
	Nodule Recognition System and Effect of Derived Features Using Test Set
	The Effect of Feature Selection Stage

	Conclusion
	References


