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Abstract The primary goal of this study is to state the
clear changes in functional brain connectivity during all
night sleep in psycho-physiological insomnia (PPI). The
secondary goal is to investigate the usefulness of Mutual
Information (MI) analysis in estimating cortical sleep
EEG arousals for detection of PPIL. For these purposes,
healthy controls and patients were compared to each other
with respect to both linear (Pearson correlation coefficient
and coherence) and nonlinear quantifiers (MI) in addi-
tion to phase locking quantification for six sleep stages
(stage.1—4, rem, wake) by means of interhemispheric depen-
dency between two central sleep EEG derivations. In test,
each connectivity estimation calculated for each couple of
epoches (C3-A2 and C4-Al) was identified by the vector
norm of estimation. Then, patients and controls were classi-
fied by using 10 different types of data mining classifiers for
five error criteria such as accuracy, root mean squared error,
sensitivity, specificity and precision. High performance in a
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classification through a measure will validate high contri-
bution of that measure to detecting PPI. The MI was found
to be the best method in detecting PPI. In particular, the
patients had lower MI, higher PCC for all sleep stages. In
other words, the lower sleep EEG synchronization suffer-
ing from PPI was observed. These results probably stand
for the loss of neurons that then contribute to less com-
plex dynamical processing within the neural networks in
sleep disorders an the functional central brain connectivity
is nonlinear during night sleep. In conclusion, the level of
cortical hemispheric connectivity is strongly associated with
sleep disorder. Thus, cortical communication quantified in
all existence sleep stages might be a potential marker for
sleep disorder induced by PPI.

Keywords Sleep EEG - Brain connectivity - Mutual
information - Data mining - Classification

Introduction

Brain connectivity is a complementary aspect covering three
different but interrelated issues such as structural, functional
and effective connectivity [9]. Functional connectivity is
a statistical concept which can quantify temporal depen-
dency of neuronal activation patterns of morphologically
and physiologically distinct brain regions by using statisti-
cal approaches such as Mutual Information (MI), Pearson
correlation coefficient (PCC), spectral coherence estimation
and, cross-correlation [9]. Statistical dependencies fluctu-
ate on multiple time scales ranging from milliseconds to
seconds. In the present study, these four methods were
examined to observe the difference between patients with
psycho-physiological insomnia (PPI) and controls by means
of EEG synchronization in night sleep.
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EEG synchronization is a hypothetical mechanism of
functional connectivity originated from the information
transmission in nervous systems [10]. Regarding as several
studies, EEG synchronization alters in Alzheimer’s disease
[16] and seizure [1] with respect to coherence estimations.
However, the capability of coherence was found to be highly
dependent on wakefulness [14, 29], reference arrangement
[15], and experimental paradigm [20]. Therefore, the MI
has been proposed as a better alternative to coherence, to
measure both linear and nonlinear statistical dependencies
between two time series [3]. Therefore, MI has frequently
been applied to EEG series to understand the information
transmission between particular brain regions in different
physiological conditions such as waking and sleep [30], as
well as cognitive tasks [13, 17].

MI was also applied to multichannel EEG series to detect
some neurological disorders such as Alzheimer’s disease
[12] and schizophrenia in past [19]. In the present study, the
models obtained through various classification approaches
were examined to compare linear and nonlinear connectivity
approaches in detecting PPI regarding as all epochs in each
particular sleep state (stage.l-2-3-4, wake, REM). Rule,
naive Bayes, nearest neighbours, tree, radial basis function
network, regression, and support vectors based classifiers
were used as classification methods of data mining. Various
classifiers based on these methodologies were implemented
in Waikato Environment for Knowledge Analysis (WEKA)
[8]. These classifiers are supervised learning techniques and
needs a training data set to learn the behaviour of the system
under consideration. To this end, the data was divided into
two parts; training data and testing data. The mentioned data
mining techniques were used to construct a model using the
training data set. Testing data set was used to measure the
performance of the obtained model through each classifier
and the performance of each classifier in terms of accuracy,
sensitivity, specificity, and precision were evaluated through
the elements of the confusion matrix that are true positive,
true negative, false positive, and false negative [27]. The
root mean squared error (RMSE) measure was also used to
examine the accuracy of the obtained models.

Materials and methods
Data collection

Experimental sleep EEG series were collected from vol-
unteers by using a digital polysomnography (Somno
Star Alpha Series-4, Sensor Media Corporation, Yorba
Linda,CA) at Department of Psychiatry, Sleep Research
Center in Giilhane Military Medical Academy. The volun-
teers did not drink any caffeine within the time period of
two days (both before the adaptation night sleep and the
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voluntary night sleep following the adaptation). The sec-
ond night measurements (after an adaptation sleep) were
analyzed in this study. During experiments, sound was
attenuated to set the noise level approximately to 30 dB SPL
in a light controlled laboratory. According to the inter-
national 10-20 electrode system, six derivations of EEG
originated from frontal (F3, F4), central (C3,C4) and
occipital (O1, 02) regions of the brain were obtained. The
reference electrode was the contra lateral mastoid. Since,the
estimation of hemispheric cortical connectivity measures
from EEG signals is the bias introduced by effects of the ref-
erence electrode in recording procedure [26], the mastoids
have been commonly followed in sleep studies [22].

The sampling frequency of the signals was 256 Hz. The
time interval of each epoch is assigned as 30 s. As stated in
basic works, sleep EEG series used for recognition of sleep
stages are clearly visualized on central derivations such as
C3 — A2 and C4 — A1 [2]. Therefore, these two central
derivations were analyzed in the present study. Sleep EEG
measurements were acquired at 256 Hz and filtered by using
both a wide band analog filter (0.001-70 Hz) and a band-
pass filter (0.1-50 Hz). Sleep EEG series were visually
scored by experts according to the criteria of Rechtschaf-
fen and Kales [23] in to REM sleep (wake and REM) and
non-REM sleep (stage1—4). In literature, several classifica-
tion algorithms consisting of multi layer perceptrons [11]
and artificial neural networks [24], [28] were proposed in
scoring sleep recordings regarding as mean frequency and
amplitude of EEG series in addition correlation coefficients
[11], wavelet coefficients [24] and principle components
[28]. Sleep stage classification algorithms consist of feature
extraction and then classification. Therefore, both identifi-
cation method and classification approach should be useful
to identify any specified stage in sleep. These classification
methods were compared to each other with respect to com-
putation times and accuracy rates for automated scoring of
sleep stages identified by several features in both time and
frequency domain as well as statistical domain in reference
[5]. In a future work, wide range of not only feature extrac-
tion but also classification methods could be investigated in
detecting each particular sleep stage scored by experts.

The duration of each epoch was 30 s. Experiments were
started at 10:00 p.m. and finished at 7:00 a.m. the next day.
The transitions and relative amount of time spent in each
sleep stage in each individual experimental recording were
given in Table 1. Total Sleep Time (TST) was defined as
the amount of time between Sleep Start and End scored as
‘sleep’ in hour (h).

All data were stored on a hard disk in European data for-
mat. Both a wide band analog filter (0.001-70 Hz) and a
band-pass filter (0.1-50 Hz) were used to filter the measure-
ments. Sleep EEG data were collected from 14 volunteers (7
patients and 7 controls). The mean age of participants was
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Table 1 Distribution of sleep

stages (stg.) in the night sleep The number of epoch Duration
for patients (P.) and controls
(C) Stg.1 Stg.2 Stg.3 Stg.4 Wake REM Total TST
P. 1 25 348 68 228 185 162 1016 8.46
2 34 608 92 61 83 136 1014 8.45
3 18 547 39 86 141 166 997 8.30
4 17 742 52 124 323 170 1428 11.9
5 16 439 14 0 160 24 653 5.44
6 49 454 23 108 130 147 911 7.59
7 19 580 61 83 113 127 983 8.19
C. 1 35 504 72 50 145 66 872 7.26
2 16 433 23 0 48 40 560 4.66
3 6 247 38 139 25 54 509 4.24
4 23 504 59 87 48 69 790 6.58
5 16 566 93 3 65 98 841 7
6 11 376 67 114 165 145 878 7.31
7 26 647 39 0 57 47 816 6.8
40 years. None of volunteer has sleep apnea, respiratory dis- I(X,Y) < min(H(X),H()) where MI satisfies

orders and myoclonic activity. Patients are asked to estimate
their total subjective sleep time, which is later divided by
the PSG sleep to compute the subjective sleep ratio. Inter-
national Classification of Sleep Disorders (ICSD-2), (the
essential features of PPI are overdone arousal (physiologi-
cal, cognitive, or emotional)) was followed in diagnose as
stated in reference [25].

Functional brain connectivity measurements

Considering two random variables denoted by X =
X1,%x2,...,xyand Y = y1, y, ..., yn, the expected uncer-
tainty in each of them can be estimated in computing
probability distribution (p.d.) dependent entropy as follows

H(X) = =) p(x)log(p(x)),
HY) ==Y p()log(p(y) ¢))
y

Here, p(x) and p(y) denote the p.d. of X and Y, respec-
tively. The JE of X and Y is defined by

H(X,Y) ==Y p(x.y)log(p(x.y)) 2)
x.y

JE refers the uncertainty of a joint event is less than or equal

to the sum of the individual uncertainties, equal if X and Y

are independent. The MI derived from information theory

can be computed by using the formula in form,

IX,Y)=HX)+HY)-HX,Y)>0 3)

to obtain the information for Y knowing X or vice
versa. It is also well known that MI can never be
larger than any of the individual entropies such that

I(X,Y) = I(Y,X) = 0. The MI is not restricted to
linear dependencies and is able to quantify the possible
functional and nonlinear relationship between X and Y. To
quantify how X and Y track each other, a linear statistical
measurement so called PCC has been presented in form,

N
1 Z (k= o) (X — ) (4)

Cxy=—
Nk:1 0,0y

where 1. and o, denote the mean value and standard devi-
ation of time series, respectively [21]. In contrast to MI,
PCC is restricted to linear dependencies. The extension of
PCC from time domain to frequency domain coherence
estimation has been introduced by,

| Pxy (f)I?

Coherence(f) = VPx(HPr([)

®)

where Pxy (f), Px(f) and Py(f) denote cross power spec-
tral density between X and Y, power spectral density of
X and Y, respectively. Here, f is frequency. If X and Y
are not correlated with constant phase shifts, coherence
becomes 0. Contrary, if there is maximum linear interde-
pendence between them, coherence becomes 1 [21]. Tradi-
tionally, Welch method have been frequently used to obtain
the power spectral density estimations in (5) [31]. In the
present study, Burg method was also used to in computing
coherence value.

For those independent time series denoted by X and Y, it
is possible to calculate the distribution of the relative phase
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in form ¢y (1) = ¢x (¢) — ¢, (¢) within a given time window
such as single epoch of 30 s. The mean phase coherence was
considered in this study given by

p =1y (©)

as stated in reference [18].
Data preparation

After application of entropy based brain connectivity mea-
surements to sleep EEG series recorded from patients and
controls, the feature sets were re-organized and modelled to
be used in detecting PPIL. In modelling, supervised learning
techniques were used as data mining techniques which are
about learning the case from a training data set of correctly
identified observations. There are 14 observations including
both patients and controls where 7 of them are patients and
the rest are controls. As it is seen in Table 1, some sleep
stages did not exist during the night sleep of volunteers. This
results in missing values for modelling. Missing values have
a significant effect on the modelling performance. One way
to avoid this undesired situation is to compute the arithmetic
mean of the values observed for that variable and insert the
mean as a constant value into the missing part which has
the less variability in the presentation. Hence, the missing
parts occurring in the data set of this study were filled by
the corresponding mean value.

Variables of this experiment are dependent and inde-
pendent variables which are corresponding to outcomes
and features respectively. There are two categories for the
dependent variable of the model. The possible outcomes
of the model are patient and control. The zero value was
assigned to controls while the patients were represented by
the value, 1 in the modelling process which is corresponding
to binary classification.

The sleep stages are the independent variables (explana-
tory variables, parameters, features) of the targeted model.
There are 6 sleep stages, that is, there are 6 features in the
considered case. The synchronized data set in each sleep
stage has a vectorial form. The classification techniques
used in this study need real-valued scalars as the parameter
values. In this sense, instead of this vectorial form, a cor-
responding scalar value as the size (length) was obtained
through ¢>-norm which is also called vector norm and given
in the following form.

X1

x2
||X||2=\/x12+x22+~~~+x%, where x = : @)

Xn
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Data mining classification methods

This study aims to detect the psychophysiological insom-
nia through first learning the case using supervised learning
techniques and then making a prediction for a new case.
This process stands for a binary classification in which we
have the outputs 0 and 1 and is executed through stan-
dard data mining techniques. Some of these techniques
used in this study can be classified as bayesian networks
(NaiveBayes), hybrid methods (DTNB), rule based methods
(Ridor, DecisionTable), nearest neighbour based methods
(IB1, IBk, NNge, LWL), instance based methods (KStar),
decision tree based methods (RandomForest, ADTree,
NBTree, RandomSubSpace, RandomTree, J48, Rotation-
Forest), neural networks (RBFNetwork, MultilayerPer-
ceptron), regression methods (ClassificationViaRegression,
Logistic, SimpleLogistic), optimization algorithms (SMO),
ensemble algorithms (AdaBoostM1), and voting algorithms
(VFI). These are the methods having the best results in
predicting the psychophysiological insomnia.

NaiveBayes is a probabilistic classifier that applies Bayes
theorem. DTNB is a hybrid method based on building a
decision table and using naive bayes. Ridor is ripple-down
rule learner method. DecisionTable is based on constructing
a simple decision table. IB1 is a nearest neighbours clas-
sifier while IBk is a k-nearest neighbours classifier. NNge
is a nearest-neighbor-like algorithm based on non-nested
generalized exemplars. LWL is a locally weighted learning
technique that uses an instance-based algorithm to com-
pute and assign instance weights. KStar is an instance-based
classifier in which the class of training instances similar to
the test instance are used to identify the test case’s class.
Random Forest is a learning method that uses decision
trees. ADTree generalizes decision trees for classification.
NBTree generates a decision tree with naive Bayes clas-
sifiers at the leaves. RandomSubSpace is a method which
constructs a decision tree based classifier for classifica-
tion. RandomTree is a tree based algorithm works through
a specific number of randomly chosen attributes at each
node. J48 is a method that generates a pruned or unpruned
C4.5 decision tree. RotationForest does classification and
regression depending on the base learner. RBFNetwork is a
method that implements a normalized Gaussian radial basis
function network using the k-means clustering algorithm.
MultilayerPerceptron is a multilayer neural network clas-
sifier. ClassificationViaRegression uses regression methods
and builds a regression model for each class value. Logis-
tic is a method that builds and uses a multinomial logistic
regression model with a ridge estimator. SimpleLogistic
is a classifier for building linear logistic regression mod-
els. SMO is method which uses the John Platt’s sequential
minimal optimization algorithm to train a support vector
classifier. AdaBoostM1 is a method that boosts a nominal
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class classifier. VFI is a method that votes feature intervals
for classification [6, 8].

Performance evaluation techniques

To measure the performance of the considered data min-
ing techniques in predicting psychophysiological insomnia,
the statistical measures of binary classification were used.
These measures are accuracy, root mean squared error
(RMSE), sensitivity, specificity, and precision. To compute
these measures except RMSE, there are four basic data
about the results of the predictions in a binary classification
problem. They are true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). True positive
value is the number of correctly classified positive exam-
ples. True negative value is the number of correctly classi-
fied negative examples. False positive value is the number
of incorrectly classified negative examples and false neg-
ative value is the number of incorrectly classified positive
examples.

Accuracy presents systematic errors while precision
stands for random errors. Accuracy measures the propor-
tion of correctly identified instances. Precision measures
the consistency of the model through several predictions.
Sensitivity is the percentage of correctly identified actual
positives while specificity is the proportion of correctly
identified negatives. The corresponding metrics of these
measure are defined as follows

where n is the total number of testing nodes. These mea-
sures are obtained as a percentage and the closer the value
to 100 % the greater the performance the method has.
RMSE measures the differences between predicted values
and the observed values. The following relation is used for
evaluating RMSE.

1 n
=Y i —)?
n

i=1

RMSE = 9

where n, y; and y; stand for the total number of testing
nodes, the observed class and the predicted class of the test-
ing nodes respectively. The closer the RMSE value to 0.0
the greater the performance obtained in modelling.

Results

Four approaches were calculated for each epoch in both
patients and controls. Then, the average values of estima-
tions were computed for each particular sleep state for each
group. The error bars composed mean values of MI and PCC
were shown in Figs. 1 and 2, respectively. It can be clearly
seen that any individual error bar of controls did not almost
coincide with the bar of patients in any sleep period for both
estimations.

The error bars consisting of average values of coherence
estimations (with Welch method) for controls and patients
were shown in Fig. 3. As seen from this figure, individ-
ual error bar of coherence estimations of patients in each

TP+TN o TP particular sleep stage were smaller than that of controls.
Accuracy = ——, Sensitivity = ————, .
n TP+ FN In Fig. 4, the tuple (I (X,Y), Cx y) was shown where
. TN . TP each dot corresponds to this tuple. In accordance with lit-
Specificity = —————, Precision = ———— .
TN + FP TP+ FP erature, the correlation between MI and PCC was found to
(8) be positive and nonlinear. In particular, the inter relationship
Fig. 1 Error bars with means
and standard deviations of MI 3l
values for both controls (in
gray) and patients (in black)
25}
g
g 2f
£
Lﬁ -
g 1sf
s
g
?—E 1} A 4
g
=
=
0.5} ]
Stage-1 Stage-2 Stage-3 Stage-4 WAKE REM
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Fig. 2 Error bars with means
and standard deviations of PCC 0.61
for both controls (in gray) and _ o
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patients (in black) 05k _ T
s 041
£ v Y v v \ 4 v
o}
g 0.3F
O
=]
S
§ 0.2r | 1 i 1 |
[=9
011 %
of % %
Stage-1 Stage-2 Stage-3 Stage-4 WAKE REM
Fig. 3 Error bars with means 0.075
and standard deviations of
coherence values for both 0.07
controls (in gray) and patients )
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Fig. 4 A comparison between
MI and PCC estimations for all
sleep stages in controls (in
black) and patients (in blue)
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Table 2 Testing results for the

method of MI in predicting PP Methods (Classifiers) Accuracy RMSE Sensitivity Specificity Precision
SMO 100.0 0.0 100.0 100.0 100.0
IB1 100.0 0.0 100.0 100.0 100.0
LWL 100.0 0.0 100.0 100.0 100.0
VFI 100.0 0.0 100.0 100.0 100.0
NNge 100.0 0.0 100.0 100.0 100.0
AdaBoostM1 100.0 0.0 100.0 100.0 100.0
Ridor 100.0 0.0 100.0 100.0 100.0
J48 100.0 0.0 100.0 100.0 100.0
ClassificationViaRegression 100.0 0.0217 100.0 100.0 100.0
MultilayerPerceptron 100.0 0.0525 100.0 100.0 100.0

between MI and PCC of REM sleep was different from the
that of non-REM sleep in each group.

The results of the performance evaluations for several
data mining techniques were given in the related tables. The
classification methods were sorted by first accuracy value
then RMSE. The classifier with the highest accuracy value
was located as the best method. When the accuracy val-
ues of different classifiers were same then the place of the
method having the lowest RMSE comes first. The 100 %
accuracy value shows that the method can classify all the
cases correctly. In this sense, Table 2 shows that MI estima-
tions of patients are exactly different from that of controls.
All individuals were classified correctly with 10 classifiers.
In comparing Tables 3 and 4, coherence can also provide
error free classification when the Welch method was used
to compute power spectral estimations of sleep stages. If the
Burg method was used instead of Welch method, only one
individual was not allocated correctly.

Regarding as Table 5, any classification approach did not
provide the error free classification with respect to estima-
tions of PCC. In particular, one individual was misclassified
in all classifiers.

In case of mean phase estimations, the number of people
classified fail was increased as seen from Table 6.

Discussion and conclusion

In the present study, four hemispheric connectivity mea-
surements were examined to obtain the electrophysio-
logical arousals on sleep EEG epoches recorded from
healthy controls and patients with PPI. All individuals can
be classified correctly by using any data mining classi-
fier for both entropy based MI estimations and spectral
connectivity measurement so called coherence created by
Welch’ method. When the Burg method was performed
to compute the power spectral density estimation of sleep
EEG epoch in estimating coherence, error free classification
can be obtained by using only three classifiers (RBFNet-
work, NNge, SMO). Regarding as PCC estimations, one
person was misclassified in all classifiers. Concerning phase
coherence estimations, one or two individuals were always
misclassified.

In particular, lower interhemispheric coherence and
lower MI estimations as well as higher PCC values were
provided by patients in comparison to controls. In fact,
only linear relations between particular hemispheric loca-
tions could be observed by using coherence, whereas
the MI can measure both linear and nonlinear statistical
dependencies of hemispheres in time domain. The results

Table 3 Testing results for the

method of Coherence (with Methods Accuracy (%) RMSE  Sensitivity (%)  Specificity (%)  Precision (%)

Welch method) in predicting

PPI NaiveBayes 100.0 0.0 100.0 100.0 100.0
Logistic 100.0 0.0 100.0 100.0 100.0
RBFNetwork 100.0 0.0 100.0 100.0 100.0
SMO 100.0 0.0 100.0 100.0 100.0
IB1 100.0 0.0 100.0 100.0 100.0
NNge 100.0 0.0 100.0 100.0 100.0
J48 100.0 0.0 100.0 100.0 100.0
RandomTree 100.0 0.0 100.0 100.0 100.0
MultilayerPerceptron 100.0 0.478 100.0 100.0 100.0
IBk 100.0 0.1 100.0 100.0 100.0
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Table 4 Testing results for the
method of Coherence (with
Burg method) in predicting PPI

Table S Testing results for the
method of PCC in predicting
PPI

Table 6 Testing results for the
approach of mean phase
coherence in predicting PPI

@ Springer

Methods Accuracy (%) RMSE Sensitivity (%) Specificity (%) Precision (%)
RBFNetwork 100.0 0.0 100.0 100.0 100.0
NNge 100.0 0.0 100.0 100.0 100.0
SMO 100.0 0.0 100.0 100.0 100.0
Logistic 100.0 0.0153 100.0 100.0 100.0
VFI 83.3 0.2724 83.3 91.7 88.9
RotationForest 83.3 0.3240 83.3 91.7 88.9
NBTree 83.3 0.3464 83.3 91.7 88.9
RandomForest 83.3 0.3512 83.3 91.7 88.9
DTNB 83.3 0.3785 83.3 91.7 88.9
NaiveBayes 83.3 0.4082 83.3 91.7 88.9
Methods (Classifiers) Accuracy RMSE Sensitivity Specificity Precision
RotationForest 0.83 0.3606 0.83 0.67 0.87
DTNB 0.83 0.3711 0.83 0.67 0.87
RandomSubSpace 0.83 0.3728 0.83 0.67 0.87
DecisionTable 0.83 0.3742 0.83 0.67 0.87
IBk 0.83 0.3786 0.83 0.67 0.87
ADTree 0.83 0.3849 0.83 0.67 0.87
MultilayerPerceptron 0.83 0.3968 0.83 0.67 0.87
SimpleLogistic 0.83 0.4039 0.83 0.67 0.87
KStar 0.83 0.4082 0.83 0.67 0.87
VFI 0.83 0.4082 0.83 0.67 0.87
Methods (Classifiers) Accuracy RMSE Sensitivity Specificity Precision
IBK 0.83 0.3786 0.83 0.92 0.89
IB1 0.83 0.4082 0.83 0.92 0.89
MultilayerPerceptron 0.83 0.4135 0.83 0.92 0.89
RandomForest 0.67 0.4528 0.67 0.83 0.83
VFI 0.67 0.5387 0.67 0.83 0.83
Logistic 0.67 0.5438 0.67 0.83 0.83
SMO 0.67 0.5774 0.67 0.83 0.83
RBFNetwork 0.67 0.5774 0.67 0.83 0.83
RandomTree 0.67 0.5774 0.67 0.58 0.67
NaiveBayes 0.67 0.5775 0.67 0.83 0.83
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support that the cortex becomes more inactive as the sleep
stage goes through from one stage to the next one in
non REM sleep periods (stage.1-4), however, the cortex
becomes much more active. It means that more neurons will
be active in processing the information transmission during
REM sleep in REM sleep periods. The higher order statistics
of time series can be represented by nonlinear approaches,
regarding as the information theory [7]. Therefore, the MI
provided the most useful estimations.

The MI can give information in the context of functional
connectivity such that its value highly depends on the accu-
racy of estimated JE derived from probability distribution.
The results revealed that temporal dependency of cerebral
hemispheres by means of MI can provide a very efficient
tool for detection of PPI from sleep EEG recordings. The MI
is a measure of statistical dependence between two random
time series without making any assumption on the nature of
these signals. Since, the duration of each single epoch was
long enough, MI estimations gave stable estimates. Another
factor making the MI be successful in detecting hemi-
spheric functional changes between controls and PPI is that
sleep EEG series are narrow band signals as stated in
reference [4].

In the further study, the relationship between sleep stages
and information transmission of multi-channel EEG mea-
surements in controls will be investigated. Additionally,
MI will be used to analyze sleep EEG series in detect-
ing the effects of mood disorder depending on functional
disorganization of the brain.
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