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Abstract Interstitial Lung Disease (ILD) encompasses a wide
array of diseases that share some common radiologic charac-
teristics. When diagnosing such diseases, radiologists can be
affected by heavy workload and fatigue thus decreasing diag-
nostic accuracy. Automatic segmentation is the first step in
implementing a Computer Aided Diagnosis (CAD) that will
help radiologists to improve diagnostic accuracy thereby re-
ducing manual interpretation. Automatic segmentation pro-
posed uses an initial thresholding and morphology based seg-
mentation coupled with feedback that detects large deviations

with a corrective segmentation. This feedback is analogous to
a control systemwhich allows detection of abnormal or severe
lung disease and provides a feedback to an online segmenta-
tion improving the overall performance of the system. This
feedback system encompasses a texture paradigm. In this
study we studied 48 males and 48 female patients consisting
of 15 normal and 81 abnormal patients. A senior radiologist
chose the five levels needed for ILD diagnosis. The results of
segmentation were displayed by showing the comparison of
the automated and ground truth boundaries (courtesy of
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ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA).
The left lung’s performance of segmentation was 96.52 % for
Jaccard Index and 98.21 % for Dice Similarity, 0.61 mm for
Polyline Distance Metric (PDM), −1.15 % for Relative Area
Error and 4.09 % Area Overlap Error. The right lung’s perfor-
mance of segmentation was 97.24 % for Jaccard Index,
98.58 % for Dice Similarity, 0.61 mm for PDM, −0.03 % for
Relative Area Error and 3.53 % for Area Overlap Error. The
segmentation overall has an overall similarity of 98.4 %. The
segmentation proposed is an accurate and fully automated
system.

Keyword Lung segmentation . High resolution computed
tomography thorax (HRCT) . Interstitial lung disease

Introduction

Interstitial lung disease (ILD) encompasses a wide group of
disorders [1]. Although ILD has a large array of diseases,
these diseases share some common features in terms of clini-
cal, radiologic and physiologic features. These disorders most-
ly have a common trait of progressive scarring or fibrosis of
the lung tissue. These scaring alter oxygen gas exchange at the
lungs thus affecting a person’s ability to breathe normally. ILD
affects the alveolar structures, pulmonary interstitum, and
small terminal airways [2]. ILD also has many possible causes
which will not be discussed in detail [3–5]. In ILD, lung vol-
umes are reduced resulting in restrictive physiology. In addi-
tion to reductions in lung volumes diffusing capacity is also
reduced [2].

High Resolution Computed Tomography (HRCT) of the
lung is used in the diagnosis of Interstitial Lung Diseases
(ILD). HRCTs are often interpreted by qualified radiologists
and pulmonologists. The calculation of lung mass from CT
scans is an accepted non-invasive method for determining
lung tissue mass [6]. ILD can be analyzed using limited thin
sections of HRCT slices called levels which are located based
on anatomical landmarks, hence all our processing is based on
these five levels as marked by radiologists.

Due to large number of CT images, radiologists have an
interest in adapting Computer Aided Diagnosis (CAD)-based
systems which can assist them in diagnostic evaluations [7–9].
There is a need for computer assistance for clinicians and
radiologists arise. In a study by Beyer et al. [10], concluded
that a CAD system could expedite the reading of chest CT
cases for pulmonary nodules without relevant loss of sensitiv-
ity when used as a Concurrent Reader (CR) with a radiologist.
Segmentation is one of the preliminary and crucial steps in the
development of a CAD system to help radiologists [11].

Segmentation of structures in medical images is challeng-
ing due to several factors which include anatomical

differences, abnormalities in lung tissue, image noise, and
differences in acquisition parameters [12]. In abnormal lung
images the inconsistencies can be in the form of ground glass
opacities where there is increased attenuation of signal in the
lung, which is caused by partial filling of lung parenchyma. In
some advanced stages of the disease there can also be
Bhoneycombing^ where lung tissue is destroyed, fibrotic and
contains multiple cystic airspaces with thick fibrous walls. The-
se inconsistencies may affect the outcome of a segmentation
algorithm causing low performance. Other efforts combat these
problems were developed with specific diseases in mind and
may not actually be effective on a wider database [13]. Thus
lung segmentation specifically designed for abnormal lungs
seems to be the solution that others have approached [14].

Thus our study aims to propose a system to segment lungs
accurately and consistently over five levels of the lung for
both healthy and diseased lungs. The novelty of this study lies
in the development of the feedback systemwhich is analogous
to a control systemwhich allows detecting abnormal or severe
lung disease and provides feedback that encompasses texture
paradigm to an online segmentation improving the overall
performance of the system. The segmentation system uses
an initial segmentation based on statistical threshold and
mathematical morphology. The segmentation was compared
with tracings obtained from a trained individual with knowl-
edge of lungs. This comparison or feedback and corrective
segmentation will help deal with the challenges of segmenta-
tion mentioned earlier. The large deviations obtained from the
feedback would indicate severe cases of lung disease. These
deviations would then be corrected using segmentation based
on texture where the entropy of each pixel is used. The robust-
ness and effectiveness of the segmentation is seen when it is
applied to both normal and abnormal lungs and across five
different levels representing the entire lung.

Data acquisition

Ninety-six patients’ HRCT Thorax images were obtained ret-
rospectively from the Department of Diagnostic Imaging of
Kuala Lumpur Hospital with ethical consent. These images
consist of 15 healthy individuals (normal cases), 28 ILD
cases and 53 other lung related diseases cases termed as
non-ILD. In this study, the 28 ILD cases and 53 other lung
related diseases were also combined together as one category
termed as diseased cases. There were 48 males and 48 female
samples. Images from all 96 patients were studied and evalu-
ated for automatic lung segmentation. The HRCT scanner
used was the Siemens SomatomPlus4 CT scanner. Each slice
was obtained at 10 mm intervals in supine position will full
suspended inspiration of the lung. This resulted approximately
30 HRCT Thorax image slices per patient. All the images are
in DICOM format. A radiologist was assigned to view the

22 Page 2 of 18 J Med Syst (2015) 39: 22



slices using SyngoFastView version VX57G27. The senior
radiologist then individually determined the five slices of the
HRCT Thorax image at five predetermined levels for each
patient by viewing all the slices available and filling up a
survey to determine the fulfillment of the criteria of five slices.
The criteria of choosing these five predetermined levels of the
HRCT are based on anatomic landmarks and represent the
entire lung area from top area to the bottom. The levels and
their corresponding landmarks are; level 1: aortic arch, level 2:
trachea carina, level 3: pulmonary hilar, level 4: pulmonary
venous confluence and level 5: 1 to 2 cm above the dome of
right hemi-diaphragm. The five predetermined slices per pa-
tient will decreases the amount of slices being analyzed be-
cause it is able to represent the entire lung from top to bottom
with five predetermined slices by the radiologist as shown in
Figs. 1 and 2. The black arrows show the lungs.

Methodology

Our primary goal is to establish an automated system for left
and right lung segmentation in HRCT images. Automated
systems are always susceptible to errors due to large variations
in image data sets such as contrast, resolution, disease type,
voluminous data size, different tissue types and variations in
scanning protocols are some to name [15]. In such challenges,
interactive paradigms play a vital role. Commercial regulatory
systems these days require that the system be semi-interactive
or semi-automated [16]. Interactive systems can correct, but
cannot spot automatically cases which have high errors. We
have designed an automated online systemwhich can not only
just automatically correct, but automatically spot large devia-
tions. Such deviations are like a feedback control system
where the online outputs are automatically compared against
the ideal scenario which is the manual tracing by an expert and
then undergo correction thereby improving the overall perfor-
mance of the system. Our automated system is crude and fast
based on global class separation infrastructure, while feedback
control analogous system is more refined and follows local
processing such as texture paradigm.

Overall system

Figure 3 shows the overall system in a flowchart. The HRCT
input undergoes global processing which involves the

automatic segmentation based on tissue class segregation
using regional statistics in global space. Using the analogy
of control system theory, the comparator allows identification
of the deviation between the intermediate output and trained
system which already has information about the goal state.
The comparator allows spotting of the large deviations in the
intermediate output which is then fed to the feedback loop for
local processing system to correct them. Thus our overall sys-
tem has unique characteristics that not only spots large devia-
tions but also corrects them. Another advantage of such a
system is ensuring that the automated system does not reach
the state of failures in real life and has a trained system ready
for mitigation. Due to the iterative nature of the feedback
system, the comparator has criteria to establish the refined
output if the error control is below the defined threshold ΔTh.

The overall novelty of such a system is a combination of fast
global processing utilizing the global parameters and refined
local processing in local space using a feedback control sys-
tem. The complexity of system is low since the local process-
ing is limited to only cases which have large deviations. The
system is finally robust due to the knowledge derived from the
trained system.

Global system

The idea behind the global system is to capture the shape of
the lung by differentiating the lung from its background. The
regional information has statistics associated with it which is
based on Hounsfield units (HU) generated from the X-ray
attenuation. These HU values have specific ranges for the lung
region on a global scale. These HU can be well captured by
considering a two-class paradigm. Thus, our objective is to
develop a class segregation systemwhich can pick up regional
statistics considering the two-class problem. A simple ap-
proach can be a threshold criteria embedded with statistical
means and standard deviations. A fast and robust method such
as classical Otsu threshold paradigm can be adapted for our
model development [17].

Even though, such a threshold scheme has not be a novel
contribution in the proposed work, but it adds as a component
to fetch the global lung shape incorporating deviations which
are corrected by our novel feedback system leading to final
estimated accurate borders. Using such a framework, if ωi

represents the probability that the two classes are separated
by threshold (t), σi

2 represents the variance of the classes,

Fig. 1 Five levels of HRCTwith
left lung and right lung (normal)
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the Otsu paradigm can lead to the formation of equation for
optimal threshold computation and mathematically given as:

σω
2 ¼ ω1 tð Þ σ1

2 tð Þ þ ω2 tð Þ σ2
2 tð Þ ð1Þ

Thus we can get the optimum threshold given by Toptwhen
it fits the criteria of the minimum variance of the classes in the
Eq. 2. With a given input image as Fig. 4a, using Topt, it is
possible to the separate the non-body represented by black
pixels from the body represented by white pixels in Fig. 4b.

σ2
ω ¼ ω1 Topt

� �
σ2
1 Topt

� �þ ω2 Topt

� �
σ2
2 Topt

� � ð2Þ

To completely remove the background tissues, the global
system requires an iterative process to establish a complete
isolation of lung region in the CT lung image. This iterative
threshold is empirically determined based on bias of the global
Otsu threshold. Such a refinement will ensure that all regions
not relevant to the lung region are eradicated for quantifica-
tion. We call this threshold as Temp and it was defined for our
database as 324 for our dynamic range. Temp is applied and the
lung region is represented in the body as shown in Fig. 4c. The
last stage of the global shape extraction system consists of
smoothing and cleaning using binary morphology which con-
sists of dilation followed by erosion. This morphological
cleaning results in Fig. 4d. This consists of fundamental
dilation and erosion equation expressed as Eqs. 3 and 4
respectively:

I⊕H ¼ z∈E
��� HS
� �

Z
∩ I≠∅

n o
ð3Þ

I⊖H ¼ z∈E
���HZ ⊆ I

n o
ð4Þ

where E is a Euclidean space or an integer grid, and I a
binary image in E. HS is the symmetric of H. (HS)Z is the
translation of HS by the vector z. H is the square structuring
element 3×3 size. HZ is the translation of H by the vector z.

Connected component analysis is used to detect the lung
region in the binary image shown in Fig. 4e. There should be
two large regions, one larger than the other. In some cases
where the lungs are in close proximity, they will be grouped
as one. The region where the two lungs connect is usually the
lowest pixel width of lung region. To solve this, dynamic
programming is done by calculating the lowest pixel width
of each column to locate the region of separation. Pixels with
the highest contrast are selected to be region of splitting be-
tween two lungs. Once two lungs are detected, erosion and
dilation with the same structure element are again done to
smoothen the boundary of the lungs and the boundaries are
labelled in green boundaries for right and left lung in Fig. 4f.

Local system

As discussed in introduction, segmentation of structures in
medical images is challenging due to several factors which
include anatomical differences, abnormalities, image noise,
and differences in acquisition parameters [12]. As a result of
the above challenges, it is always advisable to have a human
trained systemwhich can act as a tool to provide the correction
to the global system challenges. Such a system was presented
in Fig. 3 using the control system analogy by providing the
feedback to correct the global challenges using the local
system. The local system we provided uses the local

Fig. 2 Five levels of HRCTwith
left lung and right lung
(abnormal)

Fig. 3 System design using
control system analogy
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characteristics of the lung region. Such characteristics had two
motives: (a) to classify the normal vs. diseased lungs and (b)
able to automatically track the borders of the left and right
lungs so deviations can be traced against the human trained
system. Since the nature of the tissues in the diseased lung and
normal lung could better be represented by aggressiveness of
the tissue, we used the fundamental property of surface ran-
domness to segregate the normal vs. disease lung. Thus we
adapted a texture paradigm which had the property of tracing
the tissues of diseased lung compared to normal lung. This
texture was best adapted using the textured or entropy of the
pixels in lung regions. We thus modelled this using entropy of
the image as and defined as:

Entropy ¼ −
X

i

Pilog2Pi ð5Þ

where Pi is the probability that the difference between two
adjacent pixels is equal to i, and Log2 is the base 2 logarithm.

This was the distinguishing feature which leads to the cor-
rection of global weakness. To bring back in the classical
framework of morphology, we have to compute the regional
characteristics of the lung region followed by binarization. It
was empirically computed threshold on the texture image
leading to the clinical binary paradigm (ϑUnder - Binary thresh-
old for lung region texture under segmentation) and (ϑOver -
Binary threshold for lung region texture over segmentation)
followed by same clinical noise reduction and CCA. Though
the feedback system offered the advantage of correction, it did
require the automated spotting of the global system weakness.
This can be done by the comparator system which provides
the human trained system, in which consisted of the database
of human trained borders from the human intervention system.

The effect of the local system is showed in the shift of lung
region symbolised by the green borders and arrow in Fig. 5,
when compared to the global system.

Results

The process of segmentation involves computing the borders
of left and right lung during global processing, local process-
ing using feedback system and combined effect of global and
local processing. Such a paradigm can be depicted visually
and quantitatively evaluated. The main benefit for visually
examination is to share the accuracy of automated method
vs. manual tracings. Further, the clinical value of the quanti-
fication is to primarily compare normal vs. diseased subjects
and understand the distribution.We use the variable Barea^ for
our quantitative evaluation. We demonstrate the relationship
between the automated lung area computed by the algorithm
against the area computed by manually tracing the lungs using
ImgTacer™, Global Biomedical Technologies, Inc., Rose-
ville, CA, USA.

System’s segmentation results

Figure 6 demonstrates the segmentation results for the right
lung, where automated output (green) can be displayed with
the manual lung borders (red). It shows 4x5 matrix represen-
tation, where the column represents five levels and four rows
corresponds to four different subjects. Qualitatively, Fig. 6
shows encouraging results representing the close precision
and accuracy between automated method and manual trac-
ings. A similar display can be seen in Fig. 7 for the left lung.
It is interesting to note that the automated segmentation fol-
lows the groves (like a jaw) shown by black arrows. On the

Fig. 4 Overview of global
processing: (a) Input image (b)
Mask image (c) Iterative
threshold output (d)
Morphological cleaning (e)
Connected component analysis
(f) Labelled image
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other side, the outer borders (like a fat belly) are also well
followed between the automated system and the manual
tracings.

An important observation of the results is that the segmen-
tation method was able to yield high accuracy segmentation

for all five levels showing the consistency as well as the ac-
curacy of the method. In the expanded view in Fig. 8, a closer
look is taken to see the high performance of the segmentation
method proposed. The green arrows point to the segmentation
boundary (green). The red arrows point to the ground truth

Fig. 5 Feedback control system
showing the segmentation
correction using local system

Fig. 6 Overlays of right lung
with automatic segmentation
border (green color) and ground
truth border (red color)
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boundary (red). The arrows show that the green and red bor-
ders are closely overlapping suggesting the high performance
of the global and local segmentation system.

Global processing vs. local processing

The global processing or the initial segmentation which is
based on a morphological approach can be inadequate espe-
cially when the lung region contains various or multiple tis-
sues that are healthy and scarred which causes the information
of each pixel to vary. The inadequacy of the initial segmenta-
tion as seen in Fig. 9 (under-segmentation) and Fig. 11 (over-
segmentation) is due to the tissue’s contrast inconsistency in
the lung. To overcome this shortcoming of the global system,
the local system utilizes the texture-based paradigm which is
used for correction of large deviations using the feedback
system. The results of this strategy are shown in Fig. 10 (for
under-segmentation) and Fig. 12 (for over-segmentation).
This approach was successfully implemented for both over

and under-segmentation cases. The local system managed to
bring the green border much closer to the red boundary as seen
by the arrows in Figs. 10 and 12. This is because the local
system uses texture filter which probes locally into the pixel
value to enable proper segregation between lung and non-lung
regions especially when the lung pixels are inconsistent. The
arrows in Figs. 9, 10, 11 and 12 show the borders of the lung.

Segmentation results: Normal vs. diseased lungs

One of the objectives is to understand how feedback dynam-
ically behaves if the lung is normal vs. diseased. At the same
time, it is important to understand the behavior of the system
for the left and right lungs. In the diseased lungs, the lung
regional intensities have large variability and inconsistencies.
This poses a threat to global segmentation system causing
under-segmentation.

Figure 14a and b represent such examples, where green
color shows under-segmentation while red color shows the

Fig. 7 Overlays of left lung with
automatic segmentation border
(green color) and ground truth
border (red color)
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manual tracings. Due to this under-segmentation, the lung area
is likely to be smaller, unlike in normal healthy subjects
(Fig. 13a and b). Though, this behavior is spotted in certain
levels, but is not always true at all levels of the lung due to the
nature of the cancerous growth of cells. For example in Level
1 of Fig. 14, the lung region segmented using automated
method (green) is still very close to that of the ground truth
(red) for right lung and left lung but on moving to higher
levels such as 2 to 5, the under-segmentation feature is more
apparent using the output of the global system. The arrows in
the figures show the lung borders.

Quantitative evaluation of normal vs. disease lungs

Table 1 shows the areas of the left and right lungs for all the
five levels. The corresponding bar charts are shown in
Fig. 15a and b for the right and left lungs. The difference in
the overall areas for the healthy and diseased lung is not very

pronounced for the right lung, while more pronounced for the
left lung indicated by the black arrows. Also note carefully
that the bar chart shows the comparison between the automat-
ed method (grey color) and manual methods (black color).
They show very close resemblance. Area is counted using
information obtained from the pixel spacing in DICOM head-
er and is counted as below:

A ¼ h� l ð6Þ

where h=height of the pixel (mm) and l=length in (mm).
Area (A) is in mm2.

As seen in Table 1, following observations were seen:

(i) The average normal lung area of the right lung (RL) (as
shown in Column 1, labeled as Col 1) totaling
10098.85 mm2 is higher than the average area of the left
lung (LL) (as shown in Column 4, labeled as Col 4)

A B

C D

Fig. 8 Splitting the lung into four
quadrants to understand the level
of accuracy

Fig. 9 Under-segmentation error
by global system (green border)
and ground truth border (red
border) for right lung
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totaling to 8546.21 mm2. The area of the left lung is
slightly smaller than the right lung because left lung has
to accommodate the heart [18].

(ii) The same behavior is observed for the diseased lungs.
This can be seen in the Column 2 (labeled as Col 2) and
Column 5 (labeled as Col 5). The average area for dis-
eased right lung (RL) is 10462.46 mm2 while the dis-
eased left lung (LL) is 7765.02 mm2.

(iii) For the right lung (RL), the difference between the nor-
mal and abnormal was larger for Level 1 and Level 2
(12.04 and 11.83 %) compared to Level 3, 4 and 5 as
(2.29, 0.38 and 3.42 %). The clinical interpretation and
justification is the more aggressive disease in Level 1
and Level 2 compared to Level 3, Level 4 and Level 5.

(iv) For the left lung (LL), the difference in the normal and
abnormal was larger for Level 1, 3, 4 and 5 showing the
values of 10.37, 10.68, 24.29 and 28.54%.Only Level 2
showed a small difference between normal and abnor-
mal patients (3.51 %). This also means that the left lung
is more diseased compared to the right lung for these 81
patients.

(v) Overall statistics shows that the average difference be-
tween the normal and abnormal for the left lung (LL)
(10.06 %) is higher compared to right lung (RL)
(3.48 %). The clinical interpretation of such statistics
shows that the left lung is more diseased compared to
the right lung. We also validated the above statistics
using our manual tracings and our observations show
the same general trend. This validates our clinical infer-
ence and interpretations.

Qualitative classification of normal vs. diseased lungs

The difference of normal and diseased lungs is seen also in the
scatter plot in Fig. 16. The deviations from the trend

contributed by abnormal cases labeled by ‘x’ are mostly above
the trend. This signifies that the segmented region is mostly
smaller than the ground truth region for abnormal cases in
right and left lung which is detected by the local system. This
is a feature of detecting the lung is abnormal or not which is
determined by the drop in area due to the ineffectiveness to
segment based on the lung irregularities. There are also dis-
eased lung areas closer to the trendline because the disease as
shown before in Table 1 is not evident in all slices. Thus the
results in this section show the ability of the feedback and
corrective segmentation ability to handle high deviations of
the segmentation where under and over-segmentation was
present.

Performance evaluation

Performance evaluation was done to evaluate the quality of
the segmentation and the performance of the segmentation
system proposed. Several similarity coefficients are used in-
cluding the Dice Similarity, Jaccard Index, relative area error,
area overlap error and polyline distance metric. The consisten-
cy and accuracy of the segmentation is shown with the scatter
plot and Bland Altman plot. Lastly, the precision of merit is
presented.

Validation of segmentation system

Dice Similarity Coefficient (DSC) also known as Soren-Dice
similarity coefficient gives an indication of similarity between
two regions. Region A represents the area of the automated
segmentation and region B represents the area enveloped
using manual tracings. DSC is the ratio of area in common
to both region A and region B to the average size of region A
and region B.

Fig. 11 Over-segmentation error
by global system (green border)
and ground truth border (red
border) for right lung

Fig. 10 Corrected cases of
under-segmentation by local
system (green border) and ground
truth border (red border) for right
lung
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DSC ¼ 200� A∩B
Aþ B

� �
ð7Þ

Jaccard Similarity is shown below where region A repre-
sents the area of the automated segmentation and region B
represents the area of the ground truth. Although very similar
to Dice, Jaccard in the case of this study shows the ratio of area
in common to both region A and B to the total size of region A
and B available.

Jaccard ¼ A∩B
Aþ Bð Þ − A∩Bð Þ

� �
� 100 ð8Þ

Tables 2 and 3 show the DSC and Jaccard Index percent-
ages for global and combined global and local systems. By
adding the local feedback system, the DSC and Jaccard index
increases the system performance. It is interesting to note that
for all levels the DSC increased using feedback system (with
local processing) compared to without feedback system (glob-
al system alone). The similar pattern was obtained for the
Jaccard index. There was 4.89 % increase in DSC by adding
the local feedback system. Jaccard increased by 0.79 % by
adding the local feedback system. Corresponding behavior

was observed for the left lung also. DCS increased by
0.37 %, while Jaccard increased by 0.05 %. Thus, the right
lung had more pronounced effect due to the local feedback
system.

Automated system against manual

The performance of the automated system was evaluated by
comparing against the manual tracings. The manual tracings
were accomplished using ImgTracer™ 1.0 (AtheroPoint™
LLC, Roseville, CA, USA). Figure 17 shows the performance
of the automated system for the left and right lung. This per-
formance curve is shown to have area comparison of the au-
tomated system against the manual area computed from the
manual tracings. As can be seen, the trend of the regression
curve is nearly linear. This shows that the automated segmen-
tation shows very promising results. It is however interesting
to note that right lung has a longer regression line compared to
left lung.

As part of the performance evaluation of the automated
system, we compute the Bland-Altman Plot. The observation
from the scatter plots is echoed in the Bland-Altman (BA)
plots in Fig. 18. The vertical axis represents the difference

Fig. 12 Corrected cases of over-
segmentation by local system
(green border) and ground truth
border (red border) for right lung

Fig. 13 Five levels for right lung
and left lung after segmentation
using combined global and local
processing for normal cases
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between the ground truth area and the segmented area. There
are three horizontal lines present in the plot, first the mean
difference between the two regions and then the positive and
negative 2 Standard Deviation (2SD) also known as the prod-
uct of the mean difference by ±1.96.

Both BA plots for right and left lung show that large ma-
jority of the samples have a level of agreement between the
automatic segmentation and manual segmentation. This is ob-
served from the closely packed samples below the positive
and negative 1.96 mean differences. This character of being
closely packed is seen even along the horizontal axis which
signifies the increase in mean area of lung regions. The obser-
vation ofmost samples within the ranges of 2 SD also signifies
agreement between the segmented lung area and manual read-
ing suggesting accuracy of segmentation. This further
strengthens the observation of the robustness of the method
when dealing with varying sizes of lungs.

Precision-of-merit

Relative area and overlap area error

Area plays an important role in evaluating the overall perfor-
mance metric of the system. We define two different catego-
ries of overall performance evaluation precision-of-merit.
They are information depending upon the region and bound-
ary. The information using the region is defined in terms of
relative area error and overlap error, while the boundary infor-
mation is characterized using the polyline distance metric.
Using the definition of area as region and defined A and B
for automated and manual, the relative area error is given as:

Relative Area Error %ð Þ ¼ A−B
B

� �
� 100 ð9Þ

Correspondingly, the Overlap error in terms of area is given
as:

Area Overlap Error %ð Þ ¼ 1−
A∩B

Aþ Bð Þ− A∩Bð Þ
� �� �

� 100 ð10Þ

From levels one to five, the area of segmented and ground
truth increases gradually for the right lung. The right lung is
also larger than the left lung for all five levels from Tables 4
and 5. It is noticeable that the Relative Area in right lung is
lower than that of the left lung for overall and most levels
except Level 1 where large deviations are detected. However
the low overall value of relative area error which −0.03 %
suggests that the segmentation is accurate. The left lung has

Table 1 Area of normal and abnormal for abnormal and normal cases
for right lung (RL) and left lung (LL)

Level Area (mm2)

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6
Normal
(RL)

Abnormal
(RL)

% Diff
(RL)

Normal
(LL)

Abnormal
(LL)

% Diff
(LL)

L1 7152.30 8130.88 12.04 6452.36 7198.70 10.37

L2 8610.58 9766.06 11.83 7887.46 8174.07 3.51

L3 10406.22 10649.57 2.29 9333.13 8432.83 10.68

L4 11566.03 11522.22 0.38 9654.61 7767.53 24.29

L5 12574.97 12158.58 3.42 9272.64 7214.07 28.54

Average 10098.85 10462.46 3.48 8546.21 7765.02 10.06

Fig. 14 Five levels for right lung
and left lung after segmentation
using combined global and local
processing for abnormal cases

J Med Syst (2015) 39: 22 Page 11 of 18 22



an overall of −1.15 % error also suggesting that the segmen-
tation is accurate. Positive values of the Relative Area Error
indicate that the area of segmentation is larger than manual
area. Negative values of the Relative Area Error indicate the
area of segmentation is smaller than manual area as seen in
Levels 2, 4 and 5 for the right lung in Table 4 and all levels for
the left lung in Table 5. For both right and left lung the seg-
mentation is smaller than the manual area. The low errors for
consistently over five levels also suggest the consistency and
accuracy of the segmentation over all the samples of increas-
ing area.

The Area Overlap Error is more sensitive to errors that are
outside the region of intersection between the segmented area
and the ground truth. Therefore there is an increase of error for
both right and left lung. Both lungs show low error of 3.53 and
4.09 % for right and left lung respectively. Again, the low
errors over five levels suggest the consistency and accuracy
of the segmentation regardless of the level. The level can be an
indicator of area or slice. Thus the segmentation errors suggest
that the segmentation method is effective and consistent re-
gardless of area or increased height of the slice taken.

Polyline distance metric

Polyline Distance Metric (PDM) used in this study measures
the changes of the contours of the two regions. The reference

contour used is the ground truth and is denoted by B1. A point
on the reference contour B1 is chosen as the reference point
(x0,y0). Next, the nearest point at the automated segmentation
contour, B2 was found using Euclidian distance. This is the 1st
point (x1, y1) to be evaluated. Then the 2nd point (x2, y2) is
established as the point next to the 1st point on the automated
contour. The two points actually form a line segment, s. Next
d(v,s) was obtained which is the distance between the refer-
ence point, v (x0,y0) and the line segment formed by 1st point
and 2nd point.

The distance between the 1st point to the reference point is
called d1 whereas the 2nd point to the reference point is called
d2. Another term used in the process towards finding d(v,s) is
Lambda, λ which is the distance of the reference point, v
towards the line segment, s. The perpendicular distance be-
tween the line segment and the reference point, v, is given by
d⊥. The formulas to calculate λ and d⊥are below;

λ ¼ y2−y1ð Þ y0−y1ð Þ þ x2−x1ð Þ x0−x1ð Þ
x2−x1ð Þ2 þ y2−y1ð Þ2 ð11Þ

d⊥ ¼ y2−y1ð Þ y0−y1ð Þ þ x2−x1ð Þ x0−x1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1ð Þ2 þ y2−y1ð Þ2

q ð12Þ

Fig. 15 Bar chart of mean area of
right lung and left lung of normal
and abnormal cases for
segmented (grey) and ground
truth (black)

Fig. 16 Scatter plot of abnormal
case (x) vs. normal case (o) for
right lung and left lung area
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Therefore d(v,s) is obtained using the following equation.

d v; sð Þ ¼ min d1; d2f g; if λ < 0;λ > 1
d⊥j j if 0≤λ≤1

�
ð13Þ

The process to obtain d(v,s) is then repeated for the rest of
the points of the contour B1 and this is given by;

d B1;B2ð Þ ¼
X n

i¼1
d vi; sB2ð Þ ð14Þ

where n, is the number of points in contour, B1 and sB2 is
the segment on contour B2. Secondly the algorithm above is
repeated where B2 now becomes the reference contour and B1

becomes the segment contour sB1 The reverse can be repre-
sented by d(B2,B1). Lastly combining both d(B1,B2) and d(B2,
B1) will yield the equation below which is the polyline dis-
tance metric;

DS B1 : B2ð Þ ¼ d B1;B2ð Þ þ d B2;B1ð Þ
#vertices∈B1 þ #vertices∈B2ð Þ ð15Þ

Polyline Distance Metric (PDM) yields a low average dif-
ference of less than 1 mm difference. The right lung has an
average of 0.68 mm difference and the left lung has 0.61 mm
difference. Again the PDM are consistently low for all five
levels for both lungs. This supports the observation that the
segmentation seems to have a high precision and consistent
over a large varying area and height at which the slice was
taken. Overall, the performance evaluation suggests that the
segmentation method provides results which are consistent
and have acceptable error ranges.

Discussion

The objective of this research was to develop a pilot study
which can automatically detect and quantify the normal versus
diseased lung using a combination of a global system embed-
ded with a feedback system characterized by the local system.
Using the analogy of control system theory, the comparator
was developed that allowed to identify the deviation between
the intermediate output (global system) and trained system
which already had information about the goal state which is
the tracing from the lung expert. The comparator allowed
spotting the large deviations in the intermediate output (global
state) which was then fed to the feedback loop for local pro-
cessing system to correct them. Thus our overall system has
unique characteristics which permitted not only spotting large
deviations but also corrected them using a texture-based par-
adigm. The system was demonstrated in Fig. 3. We took 96
patients consisting of classified patient population of 15
healthy individuals (normal cases), 28 ILD cases and 53 other
lung related diseases cases termed as non-ILD. There were 48
males and 48 female samples. The HRCT scanner used was
the Siemens SomatomPlus4 CT scanner. For left lung, the
performance of segmentation was 96.52 % using Jaccard In-
dex, and 98.21 % using Dice Similarity, 0.61 mm using
Polyline Distance Metric (PDM), −1.15 % using Relative Ar-
ea Error, and 4.09 % using Area Overlap Error. The right
lung’s performance of segmentation was 97.24 %, using
Jaccard Index, 98.58 % using Dice Similarity, 0.61 using
PDM, −0.03 % using Relative Area Error, and 3.53 % using

Table 2 Dice similarity and Jaccard index for the right lung

Level DSC Jaccard

Mean ±SD Mean ±SD

(a) Global System Alone

L1 97.73 6.53 96.11 8.95

L2 98.28 2.05 96.70 3.69

L3 98.27 1.64 96.65 3.02

L4 98.06 2.38 96.28 4.14

L5 98.16 3.71 96.60 6.17

Average 98.10 3.66 96.47 5.56

(b) Combined Global+Local System

L1 98.55 1.90 97.20 3.44

L2 98.66 0.87 97.37 1.67

L3 98.43 1.18 97.02 2.07

L4 98.39 1.21 96.86 2.25

L5 98.87 0.95 97.78 1.78

Average 98.58 1.28 97.24 2.33

Table 3 Dice similarity and Jaccard index for the left lung

Level DSC Jaccard

Mean ±SD Mean ±SD

(a) Global System Alone

1 98.64 1.42 96.11 8.95

2 98.33 1.53 96.70 3.69

3 98.16 1.36 96.64 3.01

4 97.20 2.78 96.28 4.14

5 96.89 5.24 96.60 6.17

Average 97.84 2.94 96.47 5.56

(b) Combined Global+Local System

L1 98.71 1.06 97.47 1.99

L2 98.48 0.83 97.01 1.60

L3 98.30 0.89 96.67 1.70

L4 97.64 2.84 95.44 3.25

L5 97.96 1.63 96.06 2.96

Average 98.21 1.35 96.52 2.49
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Area Overlap Error. The segmentation overall has an overall
similarity of 98.4 %. This feedback control system was fully
automated keep regulatory constraints and meeting the objec-
tive and goals for precision and stability.

The attempt of classification of abnormal lungs compared
to normal lungs was shown in Table 1 and Fig. 16. The at-
tempt showed that there was difference between the normal
and abnormal lungs in some levels (L1 to L5). The difference
of area feature of abnormal lungs to normal lungs may be one
of the indicators but cannot be used alone for classification.
Classification needs higher level efforts such as machine
learning [19], expert systems and neural networks[20, 21],
and texture based strategies for classification into abnormal
lungs and normal lungs. Higher level classification methods
offer longer and wider assessment of the decisions, higher
consistency in decision making, and a shorter decision-
making process.

Generally, there are two main types of segmentation. The
first type is region-based segmentation. Region-based
methods utilize on information within a region of interest
rather than the boundaries noticeable. This method focuses
on initializing a seed points within the region of interest to
help the segmentation to progress. Neighboring pixels or
voxels are evaluated and compared to the region or seed point

that has been initialized. This method’s downside is that it
tends to over-segment and gives a bigger region than sup-
posed. The boundaries become blur and usually inaccurate.
Region-based methods include but are not limited to texture
analysis, threshold-based, region growing and deformable
models. A study by Hu et al. was among the first to present
a fully automatic method for identifying lungs in 3-D pulmo-
nary X-Ray CT images [22]. The method is divided into three
main steps. First, the lung region is extracted from CT scan
image by gray level threshold. Secondly the left and right
lungs are separated by identifying the anterior and posterior
junctions by dynamic programming. Lastly morphological
operations are utilized to smooth the irregular boundary along
the mediastinum in order to obtain results consistent with
those obtained by manual analysis, in which only most central
pulmonary arteries are excluded from the lung region.

The second category is boundary-based techniques. This
category utilizes the contours or boundaries of a certain region
to segment out an image. It is usually implemented in 2-D
images but restrictions are present especially for 3-D images.
It is generally faster than region-based techniques because no
seed points are required. Contour-based techniques include
but are not limited to active contours or snakes. Tobata and
Hospital in 2007 showed the application of snakes for

Fig. 17 Scatter plots of left lung
and right lung area

Fig. 18 Bland Altman plots of
left lung and right lung area
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segmentation. Snake method is part of edge-based segmenta-
tion. The study was among the first to present an automatic
approach using snakes or active contour model without man-
ual input. It was able to deal with abnormal contrasting areas
of the image which included the ground-glass opacity of the
lung image [23].

There is a hybrid category that involves both region- and
contour-based techniques. This category arose because of the
limitations of both categories. Graph cut is an example that is a
hybrid. This method successfully utilized by Boykov and Jol-
ly for segmenting organs. The study utilized graphs by
forming lines connecting all pairs of neighboring image pixels
which can be called voxels by weighted edges. The study’s
objective was to separate an object of interest from the back-
ground based on graph cuts. The study offers a globally opti-
mal efficient solution in a general N-dimensional setting. This
allows images 2-D, 3-D and even 4-D images to be processed.
It utilises both boundary and region information to form the
segmentation. The region-based technique used in graph cut
allows natural propagation of information throughout the vol-
ume of an N-dimensional image whereas contour-based tech-
nique help deals with the over-segmentation problem [24].
Limitations of vague lung borders, acquisition artifacts, low
contrast and variability of objects add complexity to the seg-
mentation task and require more complex methods. Osareh
and Shadgar did a study to combat these problems and

proposed a method combining fuzzy c means segmentation
and region aided geometry snakes segmentation method [25].
Again this method is a hybrid method that combines both
local and global methods which actually was found to have
higher accuracy in segmentation compared to the convention-
al region aided geometry snake segmentation method.

Table 6 shows the latest methods and their accuracies as
part of the benchmarking protocol. The comparable error mea-
sures used were Dice Similarity Coefficient (DSC) and Area
Overlap Error [26–32]. Ideally for image segmentation eval-
uation to be meaningful for comparison it should display two
characters. The first character is objectivity which means that
all the ground truths tracings are clear and unambiguous. Sec-
ondly is generality which means large variability in the num-
ber of images used [33]. The images used in this study fulfil
both criterion with carefully traced manual borders and im-
ages consisting of normal and abnormal (both ILD and Non-
ILD). The usage of five slices ensures generality as well when
all these five levels present distinct properties compared to one
another. In summary the proposed method of this study with
local processing yielded the second best similarity of 98.4 %
average for both left and right lungs. Comparing a high
amount of cases segmentation to a low amount cases may
not be fair to the large database segmentation. However it is
important to take note if there are large variations, for example
surface overlap difference of 2 or 3 % is quite significant [31].

Table 4 Relative area error, overlap area error and boundary error for right lung

Level Area Segmented (mm2) Area Ground Truth (mm2) Relative Area Error (%) Area Overlap Error (%) Boundary Error
(PDM, mm)

Mean ±SD Mean ±SD Mean ±SD Mean ±SD Mean ±SD

1 7965.95 2719.70 7890.10 2709.32 2.34 26.92 3.89 8.95 0.72 2.04

2 9567.27 2584.53 9563.67 2561.04 −0.09 4.07 3.30 3.69 0.62 0.64

3 10608.15 2438.29 10575.67 2407.39 0.26 3.79 3.35 3.02 0.62 0.58

4 11529.68 2533.59 11627.82 2435.93 −1.03 4.43 3.72 4.14 0.74 0.78

5 12230.99 3029.90 12374.57 2836.69 −1.52 6.40 3.40 6.17 0.72 1.34

Mean 10400.29 3045.21 10426.90 3018.80 −0.03 12.58 3.53 5.56 0.68 1.19

Table 5 Relative area error, overlap area error and boundary error for the left lung

Level Area Segmented (mm2) Area Ground Truth (mm2) Relative Area Error (%) Area Overlap Error (%) Boundary Error
(PDM, mm)

Mean ±SD Mean ±SD Mean ±SD Mean ±SD Mean ±SD

1 7072.91 2382.24 7066.06 2354.94 −0.03 2.60 2.65 2.60 0.49 0.81

2 8124.76 2260.27 8196.53 2218.08 −1.07 2.79 3.25 2.79 0.50 0.33

3 8586.07 2133.26 8581.31 2106.02 −0.04 2.52 3.58 2.52 0.55 0.43

4 8088.73 2498.35 8183.89 2376.86 −1.76 4.93 5.31 4.93 0.75 0.65

5 7572.08 2595.34 7693.77 2436.90 −2.80 8.28 5.62 8.28 0.75 0.97

Mean 7898.60 2424.19 7954.35 2348.57 −1.15 4.89 4.09 4.89 0.61 0.68
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Zhou et al. yielded the third best DSC of these works which
is 98.26 % was achieved by using threshold-based segmenta-
tion technique implemented with seed points [29]. However
Zhou only utilized 7 patients in their study. This high percent-
age of similarity is debatable due to the limited database used.
Massoptier et al. ranked fourth with 97.42 % similarity using
graph cut method, with 11 patients [31]. The other have in-
creasing amount of patients and the most comparable was Van
Rikxoort using active contours with 100 patients yielding sim-
ilarity percentage of 95 % [27]. Though the proposed method
uses the basic method of thresholding, morphology, it is
coupled with texture filter to increase segmentation to provide
accurate segmentation that outperforms other higher level
methods. Abbas et al. proposed a method based on particle
swarm optimization with overlap area errors of 8.3 % for right
lung and 9.12 % for left lung [27]. There is a large significant
difference where the proposed method yields an average of
3.82 % for both lungs. This supports the use of the basic
method coupled with texture filter for local processing.

A study done by Wang et al. utilises a similar approach of
thresholding and texture which yields a performance accuracy
of 98.5 % agreement which is similar to 98.4 % of the pro-
posed method [30].Wang’s study uses 31 normal cases and 45
abnormal cases with moderate or severe Interstitial Lung Dis-
ease (ILD). Wang’s study utilized three levels for one patient
which were first manually selected by a medical physicist-
based on three criteria; L1: aortic arch, L2: main bronchi and
L3: lower lobar bronchi. Manual tracings are done by the
medical physicist and then confirmed by an expert chest radi-
ologist. Wang’s study segmentation is divided into three sec-
tions, removal of airways, initial segmentation using thresh-
old, repairing of severe ILD cases using calculation co-
occurrence matrix and threshold. For the removal of airways

the study used seed points to remove airways that are not part
of the lung lobe. The second stage of segmentation in the
study involves the empirically selected a threshold of −300
HU to estimate initial lungs and used connected component
analysis to separate the lung from outer regions. The third
stage of the segmentation involves the usage of analysis tex-
ture characteristics of several components energy, entropy,
maximum probability, and inverse difference moment tomake
up a co-occurrence matrix. The matrix is evaluated for severe
ILD cases. With the matrix made enhancement on the original
image to exhibit the high entropy. A fixed threshold of 600
was applied on the enhanced image and missing components
that were left out from first segmentation is added in.

Unlike Wang, the proposed method uses five levels select-
ed by a radiologist based on five levels based on five anatomy
landmark which are level L1: aortic arch, L2: trachea carina,
L3: pulmonary hilar, L4: pulmonary venous confluence and
L5: 1 to 2 cm above the dome of right hemi-diaphragm. The
result representation by Wang was a general mean of left and
right and three levels. Wang’s study used 31 normal and 45
abnormal patients. This ratio of normal to abnormal is rela-
tively higher compared to the study of 15 normal cases and 81
abnormal cases. The higher ratio by Wang of total normal
patients to total abnormal patients will give a more positive
bias to the results. Our study, on the other hand, displays the
results and performance of all five levels in its entirety and is
split to left and right to show specificity and consistency of the
segmentation method. Thus this study has more in depth rep-
resentation of the lung with five levels compared to three
levels. The threshold used in this study is also empirically
selected at −324 HU. Unlike Wang who uses a co-
occurrence for severe ILD, this study uses a feedback based
on the manual tracings which detects deviations not just based

Table 6 Benchmarking our proposed method against previous methods

First Author Year Method No. of Cases Dice Similarity Coefficient Overlap Area Error

KorfIatiiset al.[26] 2008 Texture classification-based 30 94.60 % –

Rikxoortet al.[27] 2009 Active Contours 100 95.00 % –

Kakaret al.[28] 2009 Fuzzy C Means clustering 41 94.19 % –

Zhou et al.[29] 2006 Threshold Based 7 98.26 % –

Wang et al.[30] 2009 Threshold Based 76 98.40 %

Massoptieret al.[31] 2009 Graph Cut Based 11 97.42 % –

Abbas et al. [32](RL) 2013 Particle Swarm Optimizer 48 – 8.30 %

Abbas et al. [32](LL) 2013 Particle Swarm Optimizer 48 – 9.12 %

Proposed Method (RL) - Morphology 96 98.10 3.53 %

Proposed Method (LL) - Morphology 96 97.84 4.10 %

Proposed Method (RL & LL Combined) - Morphology 96 97.97 3.82 %

Proposed Method (RL) -Rejection Analysis with Texture Filter 96 98.58

Proposed Method (LL) - Rejection Analysis with Texture Filter 96 98.21

Proposed Method (RL & LL Combined) Rejection Analysis with Texture Filter 96 98.40
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on the case type. The major disadvantage ofWang’s method is
that it requires the analysis of the all 30 slices of a patient
before segmentation on 3 slices is done for one patient.

The parameters used in this study are listed in Table 7 to
ensure repeatability. The first dynamic threshold ϑBody, was
Otsu Threshold to separate the body from the background of
HRCT image. The second threshold used was an empirical
threshold ϑLung, of 700 pixel intensity or −324 HU for binary
conversion. Erosion and Dilation was done using a structure
element of square sized 3×3 pixels. The texture filter usedwas
that of entropy. The empirical threshold used for local process-
ing segmentation in under segmentation ϑUnder, was 0.5 and
for empirical over segmentation ϑOver was 0.2.

The proposed study has the following strengths: (i) this
study utilizes a trained human interaction help or an expert
which makes it a complete study. This interaction comes from
the comparator of the system that allows spotting large devi-
ations and correcting via feedback system leading to an accu-
racy of 99%. Further, this meets the regulatory requirements a
market needs for CAD systems. Secondly, (ii) the system con-
sists of a global and local system that compliments each other
offering the best of both worlds using local and general pa-
rameters. Next, (iii) the segmentation system has the ability to
spot large deviations using a comparator. Thus (iv) the system
proposed is also able to correct large deviations from the
ground truth decreasing error of segmentation based on the
local system. The system proposed also has (v) the ability to
classify diseased and normal lungs. Lastly (vi) the system uses
five levels compared to three levels other studies utilized for
ILD patients giving a more complete and larger coverage of
the lung increasing diversity on lung shape. The system has no
restrictions on the type of lung disease such as obstructive
diseases, as long as the segmentation paradigm is adapted.

The limitation of our study is that since this is a pilot study
with limited resources, (i) it lacks validation from multiple
observers even though the segmentation proposed is accurate.
This can yield a positive or even negative bias of the ground

truth if the tracer enlisted in not consistent. Therefore, having
multiple tracers will provide a relatively non-biased segmen-
tation. ii) The study also lacks intra-observer variability, where
the same observer does the tracing more than once to validate
the accuracy of the segmentation. This will give a more com-
plete performance evaluation. With the current time con-
straints, we did evaluate the performance of all five levels of
the lung when compared to an observer. (iii) Is that the study
did not evaluate the segmentation on other images than the
one obtain. However, given set of the parameters in the
Table 7, we believe that with the exact same acquisition pro-
tocol used that the system is reproducible since the system is
fully automatic. Lastly, (iv) the study only uses five levels per
patient for evaluation which is a small number. Having more
slices to be evaluated will further validate the segmentations
accuracy.

As part of cost-benefit analysis, we highlight that such a
segmentation system has benefits towards stability and reli-
ability due to the role of the human observer, but it introduces
an extra cost which is needed during the initial setup. Even
though our system requires this cost of training of the human
observer, but in normal circumstances, such a trained radiol-
ogist is normally present in the CT laboratory, over-looking
the CT readings. Thus, the cost is not truly over-burden to the
radiological CT lung laboratory. In future works with larger
resources available, the authors would like to evaluate the
significance of using more than one tracer to give inter-
observer analysis to the accuracy of the segmentation. The
variations from other tracers would give a more complete
analysis. Secondly the intra-observer analysis can be done
when a trained person to do lung tracing does the tracing
repeatedly on the same image. The difference can be studied
and documented and give further validation of the segmenta-
tion. Third, in the future, the study will move towards the
extension from five levels in two dimensional to complete
slices in three dimensional to compare normal and diseased
which offers a more complete and also real time medical ap-
plication since this is just a pilot study.

Conclusion

As a conclusion the study is a pilot study that has fulfilled the
aim to propose an automatic segmentation based on global and
local system. The global system is based on morphology and
the local system is based on texture with an embedded control
feedback that detects and corrects large deviations and failures
of segmentation. It was able to segment the lung accurately
and highly similar to the ground truth for all five levels of the
lung. Exhaustive data analysis was performed demonstrating
three kinds of accuracy measures such as Jaccard index, Dice
similarity and Polyline distance metrics. The results were con-
sistent and show a promising accuracymeasure. The system is

Table 7 System parameters adapted for global and local processing

Global parameters for global processing Values

ϑBody(Global system, threshold type) Otsu

ϑLung( Binary threshold for lung region (morphology)) −324 HU

S (Structure element) square

nxn(size of S in erosion) 3×3

mxm(size of S in dilation) 3×3

Local parameters for local processing Values

Type of texture filter (Local system) Entropy

ϑUnder,(Binary threshold for lung region
texture under-segmentation)

0.5

ϑOver,(Binary threshold for lung region
texture over-segmentation)

0.2
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able to segregate normal and diseased lungs for the left and
right sides. Since this was a pilot study, there is a potential and
scope of improving data size and exhaustive inter- and intra-
observer variability analysis. Inspite of the above challenges,
our system shows comparable accuracy measures with attempt
to model towards the respiratory standard of care.
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