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Abstract Breast cancer is one of the most common cause
of cancer mortality. Early detection through mammography
screening could significantly reduce mortality from breast
cancer. However, most of screening methods may consume
large amount of resources. We propose a computational
model, which is solely based on personal health informa-
tion, for breast cancer risk assessment. Our model can be
served as a pre-screening program in the low-cost setting.
In our study, the data set, consisting of 3976 records, is
collected from Taipei City Hospital starting from 2008.1.1
to 2008.12.31. Based on the dataset, we first apply the
sampling techniques and dimension reduction method to
preprocess the testing data. Then, we construct various
kinds of classifiers (including basic classifiers, ensemble
methods, and cost-sensitive methods) to predict the risk. The
cost-sensitive method with random forest classifier is able
to achieve recall (or sensitivity) as 100 %. At the recall of
100 %, the precision (positive predictive value, PPV), and
specificity of cost-sensitive method with random forest clas-
sifier was 2.9 % and 14.87 %, respectively. In our study,
we build a breast cancer risk assessment model by using the
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data mining techniques. Our model has the potential to be
served as an assisting tool in the breast cancer screening.
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Introduction

According to the report of World Health Statistics in 2013,
cancer is a leading cause of death [1]. In United States,
the breast cancer is the first woman cancer incidence and
the second caner mortality [1]. In Taiwan, according to the
“Statistics Report of Bureau of Health Promotion, Depart-
ment of Health 2012”, there were more than nine thousands
women suffering from breast cancer, and one thousand and
eight hundreds women of breast cancer death. Also in Tai-
wan, the breast cancer is the first woman cancer incidence
and the forth caner mortality. The cancer statistics reveals
that the breast cancer is one of the most serious threat to
women’s health.

Referring to Table 1, there are three most common
screening methods of breath cancer prediction, includ-
ing mammography, ultrasound, and MRI. These screening
methods may reduce breast cancer mortality and increase
breast cancer survival rate. In Taiwan, the BHP (Bureau of
Health Promotion) provides a bi-annual mammography in
women aged 45-69. In addition, there is an evidence that
early detection through mammography screening and ade-
quate follow-up of women could significantly reduce mor-
tality from breast cancer [2, 3]. However, these screening
methods demand a considerable cost. The mammography
screening may not be cost-effective. In the meanwhile, the
over-diagnosis of screening mammography to detect breast
cancer has been reported [4]. Bleyer and Welch estimated
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Table 1 Screening methods for breast cancer [5–7]

Method SPC [5] SEN [5] SEN [6] SPC [7] SEN [7]

Mammography 95.5 % 50.0 % 25 – 59 % 20 – 50 %

Ultrasound 91.8 % 50.0 %

Mammography plus Ultrasound 89.4 % 77.5 % 49 – 67 %

MRI 93 – 100 % 37 – 97 % 71 – 100 %

Note: Specificity (SPC); Sensitivity (SEN)

breast cancer was overdiagnosed in 1.3 million U.S. women
in the past 30 years. In 2008, the researches estimated breast
cancer was overdiagnosed in more than 70,000 women, and
this accounted for 31 % of breast cancers diagnosed.

In this paper, we would like to propose a computa-
tional model to evaluate the risk of breast cancer which is
only based on patient questionnaire information. In prior
to mammography screening, our computational method
can be served as a pre-diagnosis program in the low-cost
setting.

We make use of Weka (Waikato Environment for Knowl-
edge Analysis, a collection of machine learning algorithms
for data mining tasks) to build a computational predict
model for breast cancer risk assessment. There are various
kinds of classification methods implemented, in which we
conclude these methods into three categories: “basic classi-
fier”, “ensemble method”, and “cost-sensitive method”.

In the first category of “basic classifier”, we choose
the J48 (Trees), LMT (Trees), Naı̈veBayes (Bayes), Lib-
SVM (Functions), IBk (Lazy), RBFNetwork (Functions)
described as follows.

• J48 classifier: The J48 classifier is using the C4.5 algo-
rithm to generate a decision tree for prediction. Based
on the concept of information entropy, a tree-based
model is constructed in which the easily-interpreted
model may reach a reasonable precision.

• LMT (logistic model tree) classifier: The LMT classi-
fier is a classification model, which combines decision
tree and logistic regression learning.

• Naı̈ve Bayes (NB) classifier: The Naı̈ve Bayes classifier
is based on Bayes’ theorem of probabilistic statistical

Table 2 The cost matrix for cost-sensitive methods

Predicted Class

Class = + Class = −

Actual Class
Class = + CostTP CostFN

Class = − CostFP CostTN

classifier. Usually, the Naı̈ve Bayes classifier is robust
to isolated noise points and irrelevant attributes which
following the statistical principle for combining prior
knowledge of the classes gathered from data.

• LibSVM (support vector machines, SVM) classifier:
The LibSVM classifier constructs a hyperplane to sepa-
rate the different classes of data. The LibSVM classifier
maximize the margin around the separate hyperplane.

• IBk classifier: The IBk classifier is the k nearest-
neighbor algorithm. The k nearest-neighbor algorithm
is a type of lazy learning and instance-based learn-
ing. The IBk classifier has an advantage of constructing
arbitrary-surface boundaries. The IBk classifier is also
applicable for data in high variance distribution.

• RBFNetwork (RBF) classifier: The RBFNetwork clas-
sifier is an instance-based learning method which
implements a normalized Gaussian radial basis function
network to predict.

In the second category of “ensemble method”, we choose
VOTE (Meta), AdaBoostM1 (Meta), Bagging (Meta),
Stacking (Meta), RandomForest (Trees) described as fol-
lows. The “ensemble method” make use of multiple “basic
classifiers” to obtain better predict performance than that
could be obtained from any of the constituent classifiers.
In other words, an ensemble is a technique for combining
many weak classifiers in an attempt to produce a strong

classifiers.

• VOTE classifiers: The VOTE classifier is a common
theoretical framework for combining classifiers which
use distinct pattern representations to accomplish a
compound classification where all the pattern represen-
tations are used jointly to make a decision [8].

• AdaBoostM1 classifier: In the beginning, the
AdaBoostM1 classifier assigns weight to each training
instances. Then, the AdaBoostM1 works by repeatedly
running a given weak learning algorithm on various
distributions over the training data, and then com-
bining the classifiers produced by the weak learner
into a single composite classifier. The output of the
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Table 3 The attributes of BIRADS data set

i-th Attributes High risk Low risk Overall

N ( %) 76 (2.50 %) 2959 (97.50 %) 3035 (100 %)

NO.1 age 46.78 (9.63) 41.83 (7.28) 41.96 (7.39)

NO.2 body height (cm) 158.63 (5.00) 158.78 (5.08) 158.79 (5.08)

NO.3 body weight (kg) 56.90 (8.40) 56.76 (8.71) 56.76 (8.70)

NO.4 1st degree relatives cancer 0.08 (0.27) 0.03 (0.17) 0.03 (0.17)

NO.5 2nd degree relatives cancer 0.04 (0.20) 0.03 (0.19) 0.03 (0.19)

NO.6 3rd degree relatives cancer 0.07 (0.38) 0.04 (0.20) 0.04 (0.20)

NO.7 menstration period (days) 30.42 (5.74) 27.65(6.03) 27.72 (6.04)

NO.8 is mens regular

True 58 (76.32 %) 2160 (73.00 %) 2218 (73.08 %)

False 18 (23.68 %) 799 (27.00 %) 817 (26.92 %)

NO.9 contraceptive year 0.34 (1.50) 0.24 (1.31) 0.25 (1.31)

NO.10 hormone year 0.36 (1.42) 0.08 (0.76) 0.08 (0.79)

NO.11 parturition times 1.68 (1.09) 1.75 (1.59) 1.75 (1.58)

NO.12 breast feeding times 0.59 (1.00) 0.82 (0.96) 0.82 (0.96)

Data are presented as means (SD) or numbers (%)

weak learners is combined into a weighted sum that
represents the final output of the boosted classifier.

It reduces the bias of the weak learner by forcing
the weak learner to concentrate on different parts of the
instance space, and it also reduces the variance of the
weak learner by averaging several hypotheses that were
generated from different subsamples of the training set.

• Bagging classifier: The Bagging classifier is a special
case of the model averaging approach. The Bagging
classifier randomly create subsets of original data, then
aggregate each subsets predictions to determine a final
prediction.

• Stacking classifier: The Stacking classifier is a differ-
ent way of combining models, in which the Stacking

Fig. 1 The boxplot of numeric
attributes in BIRADS data set
(The ‘NO.i’ denotes the i-th
attribute in Table 3)
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classifier works by deducing the biases of the general-
izers with respect to a provided learning set [9].

• Random Forest (RF) classifier: The random forest
classifier combines a multiple of decision tree. Each
decision tree are independent predictions, the largest
number votes for the final result class.

Regarding the third category of “cost-sensitive meth-
ods” [10, 11], the cost-sensitive classification aims to reach
a minimal cost class results on a class imbalance dataset.
When applying the cost-sensitive method, we have to pre-
set the cost matrix shown in Table 2. The cost-sensitive
classifier is attempting to find prediction the class with

Fig. 2 Process flow of performing experiments



J Med Syst (2015) 39: 40 Page 5 of 13 40

minimum misclassification cost, by re-weighting training
data instances according cost matrix assigned to each class.
In our study, we will set a higher cost of false negative
(FN) case, since the FN misjudgment might be serious and
could result in delay seeking medical treatment for possible
patients.

Because the class imbalance nature of data source, in this
project, we first apply sampling approaches to obtain the
entire set of data of interest and to improve the detection of
rare cases.

In addition, since unequal penalty of making deci-
sion (including TP, FP, FN, and TN), we would like to
build a computation model to predict patient of high risk
with almost 100 % recall and reasonable high precision.
An alternative metric, which will be detailed in section
“Materials and methods”, is also introduced to describe the
performance of classification models.

Materials and methods

In this section, we will first introduce our computing
platform and describe our dataset. Then, we present the
approach, as well as the performance measure.

The BIRADS data is collected from Taipei City Hos-
pital, starting from 2008.01.01 to 2008.12.31. We enrolled
women who received breast cancer screening program with
sonography in Taipei City. Data were collected by filling
a questionnaire before examination. The assessment cate-
gory of sonography are used to determine the target attribute
as high risk or low risk in the “Breast Imaging-Reporting
and Data System”. There are 3,976 records in our BIRADS
dataset in which only 94 records are true (High risk). Since
some missing values in this data set, we exclude those
incomplete records, and there are 3,035 records left [12].
In reference to Table 3, there are thirteen attributes and
the “High risk” attribute is the target to be predicted.
The characteristic of BIRADS data set is illustrated in
Fig. 1.

To estimate the performance accuracy of computational
model, we use m-fold cross-validation in which the original
dataset is randomly divided into m equal size partitions. Of
the m partitions, a single partition is considered as the vali-
dation data for testing the model, and the remaining (m− 1)
partitions are used as the training data. In the experiments,
we repeated the cross-validation process m times, and report
the average results.

In reference to Fig. 2, we introduce the approach of
our study and illustrate the process flow of performing
experiments.

Given the BIRADS data set, in the preprocessing step,
those records containing missing values are excluded first.

Table 4 The confusion matrix

Predicted Class

Class = + Class = −

Actual Class
Class = + T P FN

Class = − FP T N

Then, all twelve attributes are normalized and replaced by
z-scores.

In the next step, we apply the stratified splitting proce-
dure in which 67 % records are the training set of containing
both “high risk” and “low risk” records. Similarly, in the
testing set, there are 33 % records of containing both “high
risk” and “low risk” records.

Since the data set is of imbalanced classes, we only
have limited “high risk” records (76 among 2959). We
apply sampling techniques in priori to the model con-
struction. In our study, we apply the under-sampling tech-
nique and the over-sampling technique for training data,
respectively.

In the under-sampling technique, the data set of major-
ity class will be shrunk. In the over-sampling technique, the
data set of minor class will be expanded. After the sam-
pling technique, the size of positive and negative classes
are comparable, and the class boundary could be more
clear.

Fig. 3 An illustration of ROC space [15]
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Table 5 Performance vs.
sampling technique (under-
sampling; training data size:
five percent of input data set)

Evaluation NB SVM IBk LMT J48 RBF RF

Accuracy 69.26 % 45.77 % 54.07 % 57.46 % 56.08 % 75.62 % 49.39 %

Recall/TPR/Sensitivity 0.395 0.658 0.632 0.579 0.553 0.329 0.658

Specificity/1−FPR 0.700 0.453 0.538 0.575 0.561 0.767 0.490

Precision 0.033 0.030 0.034 0.034 0.031 0.035 0.032

AUC 0.597 0.557 0.585 0.576 0.574 0.554 0.597

Table 6 Performance vs.
sampling technique (over-
sampling; training data size:
ten percent of input data set)

Evaluation NB SVM IBk LMT J48 RBF RF

Accuracy 68.96 % 87.91 % 58.29 % 58.39 % 54.33 % 75.55 % 54.07 %

Recall/TPR/Sensitivity 0.408 0.066 0.553 0.632 0.671 0.342 0.605

Specificity/1−FPR 0.697 0.900 0.584 0.583 0.540 0.766 0.539

Precision 0.033 0.017 0.033 0.037 0.036 0.036 0.033

AUC 0.599 0.483 0.572 0.616 0.622 0.553 0.608

Table 7 Performance vs.
ensemble method (AdaBoost
with various ‘base’ classifiers;
training data size: five percent
of input data set)

Evaluation NB SVM IBk LMT J48 RBF RF

Accuracy 59.11 % 42.47 % 54.07 % 56.67 % 55.85 % 61.55 % 53.64 %

Recall/TPR/Sensitivity 0.487 0.658 0.632 0.513 0.632 0.513 0.697

Specificity/1−FPR 0.594 0.419 0.538 0.568 0.557 0.618 0.532

Precision 0.030 0.028 0.034 0.030 0.035 0.033 0.037

AUC 0.571 0.543 0.585 0.583 0.613 0.569 0.655

Table 8 Performance vs.
ensemble method (Bagging
with various ‘base’ classifiers;
training data size: five percent
of input data set)

Evaluation NB SVM IBk LMT J48 RBF RF

Accuracy 65.63 % 47.94 % 54.60 % 50.51 % 52.59 % 69.29 % 55.72 %

Recall/TPR/Sensitivity 0.487 0.618 0.618 0.671 0.592 0.421 0.592

Specificity/1−FPR 0.661 0.476 0.544 0.501 0.524 0.700 0.565

Precision 0.036 0.029 0.034 0.033 0.031 0.035 0.033

AUC 0.597 0.515 0.615 0.629 0.601 0.572 0.599

Table 9 Performance vs.
ensemble method (Stacking
with various ‘base’ classifiers;
training data size: five percent
of input data set)

Base classifiers Recall/ Specificity/ Precision AUC

TPR/ 1−FPR

Sensitivity

T hree classifiers

J48 + NB + IBk 0.857 0.295 0.031 0.614

IBk + LMT + SVM 0.597 0.404 0.025 0.501

LMT + RBF + SVM 0.545 0.550 0.031 0.563

Four classifiers

LMT + SVM + NB + J48 0.714 0.431 0.032 0.611

LMT + SVM + IBk + RBF 0.519 0.573 0.031 0.551

IBk + RBF + NB + J48 0.935 0.238 0.031 0.602

Five classifiers

NB + SVM + IBk + LMT + J48 0.649 0.428 0.029 0.568

SVM + IBk + LMT + J48 + RF 0.513 0.438 0.023 0.612

IBk + LMT + J48 + RF + RBF 0.461 0.536 0.025 0.478
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Table 10 Performance vs.
ensemble method (VOTE with
various ‘base’ classifiers;
training data size: five percent
of input data set)

Base classifiers Recall/ Specificity/ Precision AUC

TPR/ 1−FPR

Sensitivity

T hree classifiers

J48 + NB + IBk 0.671 0.539 0.036 0.635

IBk + LMT + SVM 0.697 0.543 0.038 0.623

LMT + RBF + SVM 0.684 0.447 0.031 0.595

Four classifiers

LMT + SVM + NB + J48 0.553 0.562 0.031 0.622

LMT + SVM + IBk + RBF 0.632 0.562 0.036 0.619

IBk + RBF + NB + J48 0.618 0.564 0.035 0.641

Five classifiers

NB + SVM + IBk + LMT + J48 0.632 0.572 0.037 0.639

SVM + IBk + LMT + J48 + RF 0.697 0.542 0.038 0.636

IBk + LMT + J48 + RF + RBF 0.618 0.560 0.035 0.634

In our study, we also make use of the dimension reduc-
tion technique to further reduce the data size, but the data
characteristic still maintains. We consider the LSA for the
dimension reduction [13, 14].

The LSA (Latent Semantic Analysis) is a document
processing technique originated in the field of informa-
tion retrieval, in which we apply a series of operations
from linear algebra, known as matrix decomposition, to
construct a low-rank approximation to the term-document
matrix. Some typical applications of low-rank approxima-
tion is to index and retrieve documents, as well as to cluster
documents.

Given an m by n term-document matrix A, a SVD
(singular value decompostion) of A can be written as

A =
rank(A)∑

i=1

σiuivT
i = U�VT (1)

where σi is the ith singular value of A.

Usually, we choose the first k singular values to obtain
the rank k approximation, as follows.

A′
k = U′

k�
′
kV′T

k (2)

The low-rank approximation matrix A′ yields a new rep-
resentation for each document in the collection, which is
expected to combine and merge the dimensions associated
with terms that have similar meanings.

As a result, the original records represented as vec-
tors in the twelve dimensional space can be reduced as
the corresponding vectors in the k dimensional space.
The k dimension axes are also considered as the k

“concepts”.
Note that if we apply LSA on the training set, we have

to apply the folding-in process on the testing set to cast the
records into low-rank representation for the further process-
ing, such that the dimensionality of testing set match that of
training set.

Fig. 4 Cost-sensitive method
(RF classifier) use different cost
setting of false negative case
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Table 11 Performance vs.
cost-sensitive methods (various
‘base’ classifiers; training data
size: five percent of input data
set)

Evaluation NB SVM IBk LMT J48 RBF RF

Accuracy 9.98 % 11.70 % 28.63 % 16.14 % 14.66 % 7.28 % 17.00 %

Recall/TPR/Sensitivity 1 1 0.921 1 0.987 1 1

Specificity/1−FPR 0.077 0.094 0.270 0.140 0.125 0.049 0.149

Precision 0.027 0.028 0.031 0.029 0.028 0.026 0.029

AUC 0.620 0.547 0.606 0.606 0.579 0.581 0.593

Cost (TP,FN) −1,17 0,1 0,9 0,4 −1,9 0,4 −2,16

Cost (FP,TN) 1,0 1,0 1,0 1,0 1,0 1,0 1,−1

For each record �q in the testing set, the folding-in
process is

�qk = �−1
k UT

k �q (3)

Regarding the model construction for classification, in
our study, we apply “basic classifier”, “ensemble method”
and “cost-sensitive method” in search of the best practice of
risk assessment. The three kinds of approaches have been
described in section “Introduction”.

In the last step of validation, the classification perfor-
mance is measured by the common metrics presented as
follows.

Data with imbalanced class distribution are common in
some of real and medical applications. Only the accuracy
measure is not suitable for evaluating classification model
derived from imbalanced data set. In this study, the baseline
of classification could be as high as 97.64 %. Without care-
ful consideration, trivial applying of existing classification
algorithms may not effectively detect instances of the rare
class. That is, all instances are predicted to be low risk. As
a result, those derived models become useless even though
the accuracy is high enough.

In this subsection, we introduce some performance met-
rics, including accuracy, recall, precision, and ROC. In

reference to the confusion matrix shown in Table 4, the
metrics are convenient ways of comparing classifiers and
defined as follows.

Accuracy A correct classifier mean predicts the same class
as the original class of the test data. The accuracy of predic-
tion system is the degree of closeness between the predicted
class and actual class.

Accuracy = T P + T N

T P + FN + FP + T N
(4)

Recall and precision Recall is the fraction of relevant
instances that are retrieved, while precision the fraction
of retrieved instances that are relevant. Precision can be
thought of as a measure of exactness, whereas recall is a
measure of completeness.

Recall = T P

T P + FN
(5)

Precision = T P

T P + FP
(6)

ROC The ROC (Receiver Operating Characteristics) of
a classifier shows its performance as a relative trade-off

Fig. 5 The effectiveness of
applying LSA on BIRADS for
various k values



J Med Syst (2015) 39: 40 Page 9 of 13 40

Fig. 6 The visualization of BIRADS data by applying LSA, we only
show the first three concepts (i.e., y1, y2, y3); k = 7; The ‘circle’
denotes “high risk”; the ‘plus’ denoted “low risk”)

between sensitivity (true positive rate) and specificity (one
minus the false positive rate).

T PR = T P

T P + FN
(7)

FPR = FP

FP + T N
(8)

The TPR (true positive rate), which can be interpreted
as benefits, defines how many correct positive results occur
among all positive samples available during the test. On the
other hand, FPR (false positive rate), which can be inter-
preted as cost, defines how many incorrect positive results
occur among all negative samples available during the test.

As shown in Fig. 3, a ROC space is defined by FPR and
T PR as the x axis and the y axis, respectively. A single
point (i.e., the pair of values illustrated in the ROC space)
indicates a prediction result of a classifier.

The best possible prediction method would yield a point
in the upper left corner or coordinate (0, 1) of the ROC
space, representing 100 % sensitivity (no false negatives)
and 100 % specificity (no false positives). The (0, 1) point
is also called a perfect classification. A classifier of com-
pletely random guess would give a point which lies along
a diagonal line from the left bottom (0, 0) to the top right
(1, 1) corners.

In addition, the area under ROC curve, denoted by AUC,
is a single index for measuring the performance of classi-
fier. The larger the AUC, the better is overall performance
of classifier.

Results

Some key findings are summarized as follows.

Sampling technique (over-sampling vs. under-sampling) −
In reference to Tables 5 and 6, the average recall of classi-
fiers by using under-sampling is 54.3 %, while the average
recall by using over-sampling is 46.8 %. In general, we
conclude that the performance of under-sampling is bet-
ter than that of over-sampling. Note that, if not applying
sampling techniques, prediction would tend to majority
instances, and the high-accuracy classifiers still become
meaningless.

Ensemble method − We conclude that, in general, the per-
formance of ensemble method is better than that of basic
and single classifiers. For some ensemble classifiers, such
as Stacking, the high recall meets our goal of this study (in
reference to Table 9). The performance is summarized in
Tables 7, 8, 9 and 10.

Cost-sensitive classifier − The higher cost (high value) of
FN implies the high penalty of making wrong decisions.
The performance of cost-sensitive methods for various
assignments is illustrated in Fig. 4. With respect to various
base classifiers, the performance is summarized in Table 11.

Fig. 7 An illustration of three “concepts” derived by LSA (denoted by y1, y2 and y3, left to right)
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As applying the cost-sensitive classifier based on various
classifiers, the recall almost reach 100 %. In our study, the
cost-sensitive classifier with RF is the best setting.

Dimension reduction (LSA) − With respect to the BIRADS
data set consisting of twelve attributes, we apply LSA to
reduce the dimension of data set.

In our study shown in Fig. 5, the best assignment of k-
value of SVD is seven, which indicates that the original data
set in twelve dimensional space can be reduced in the seven
dimensional space. Meanwhile, the performance, in terms
of accuracy, recall/precision, and AUC, almost remain the
same (Fig. 6).

The energy concentration ratio is a measure of data set
information concentration range. The energy E(�x) of a
vector �x in n-dimensional space is defined as the sum of
energies at every point of the vector:

E(�x) =
n∑

i=1

|xi |2 (9)

where �x = (x1, x2, ...xn).
Given an original vector �x = (x1, x2,..., x12), and

the transformed vector �y = (y1, y2, ..., y12), the energy
concentration ratio of k (denoted, ratio-of-k) is a mea-
surement of top-k strongest coefficient of the transformed
vector.

ratio-of-k =
∑k

i=1y
2
i∑12

i=1y
2
i

, 1 ≤ k ≤ 12. (10)

The ratio is between 0 and 1. The higher ratio-of-k indi-
cates that choosing the first-k coefficient is better enough
to represent the whole vector and having less squared error
(sum of squares of omitted coefficient) between the reduced
vector and the original vector.

By applying LSA, the seven (k = 7)“concepts” (denoted
by y1, y2, y3, y4, y5, y6 and y7) are described as
follows.

For better illustration, these derived seven “concepts”
(i.e. (11) ∼ (17)) are visualized in Figs. 7 and 8.

Fig. 8 An illustration of four “concepts” derived by LSA (denoted by y4, y5, y6 and y7, left to right, up to down)
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Fig. 9 An illustration of overall performance in the ROC space
(under-sampling; basic classifiers)

For example, considering the ‘1-st concept’ (in reference
to (11) and Fig. 7), the concept is predominated by the first,
second, third, and seventh attributes.

y1 = (−0.2385)x1 + (−0.9019)x2 + (−0.3234)x3 + (−0.0002)x4

+(−0.0002)x5 + (−0.0002)x6 + (−0.1577)x7 + (−0.0015)x8

+(−0.0014)x9 + (−0.0005)x10+(−0.0099)x11+(−0.0046)x12

(11)

y2 = (0.7487)x1 + (−0.2770)x2 + (−0.0718)x3 + (−0.0004)x4

+(0.0009)x5 + (0.0010)x6 + (0.5961)x7 + (0.0036)x8

+(0.0028)x9 + (0.0105)x10 + (0.0449)x11 + (0.0015)x12 (12)

y3 = (0.0303)x1 + (0.3300)x2 + (−0.9434)x3 + (0.0000)x4

+(−0.0006)x5 + (0.0002)x6 + (0.0026)x7 + (−0.0046)x8

+(0.0015)x9+(−0.0002)x10+(−0.0104)x11+(−0.0030)x12

(13)

y4 = (0.6068)x1 + (−0.0274)x2 + (0.0067)x3 + (−0.0009)x4

+(−0.0005)x5 + (−0.0005)x6 + (−0.7814)x7 + (0.0192)x8

+(0.0082)x9 + (0.1076)x10 + (0.0688)x11 + (0.0603)x12 (14)

y5 = (−0.0823)x1 + (0.0082)x2 + (−0.0111)x3 + (−0.0042)x4

+(−0.0022)x5 + (−0.0038)x6 + (0.0330)x7 + (0.0041)x8

+(−0.0353)x9+(−0.0376)x10+(0.9684)x11+(0.2269)x12 (15)

y6 = (−0.0119)x1 + (−0.0001)x2 + (0.0008)x3 + (−0.0037)x4

+(−0.0010)x5 + (−0.0005)x6 + (0.0064)x7 + (0.0128)x8

+(0.9980)x9 + (0.0257)x10 + (0.0439)x11+(−0.0337)x12 (16)

y7 = (0.0153)x1 + (0.0035)x2 + (0.0019)x3 + (−0.0006)x4

+(0.0025)x5 + (−0.0009)x6 + (−0.0334)x7 + (0.0499)x8

+(−0.0447)x9+(0.0625)x10+(0.2299)x11 + (−0.9682)x12(17)

Fig. 10 An illustration of overall performance in the ROC space
(under-sampling; ensemble classifiers)

In summary, we illustrate the overall performance in the
ROC space and P-R diagram (precision-recall diagram) as
follows.

1. Performance in the ROC space: see Figs. 9, 10, and 11.

Fig. 11 An illustration of overall performance in the ROC space
(under-sampling; cost-sensitive classifiers)



40 Page 12 of 13 J Med Syst (2015) 39: 40

Fig. 12 An illustration of overall performance in the P-R diagram
(under-sampling; basic classifiers)

2. Performance in the P-R diagram: see Figs. 12, 13, and
14.

Discussion

In this section, we present the discussion based on the
experiment results.

Fig. 13 An illustration of overall performance in the P-R diagram
(under-sampling; ensemble classifiers)

Fig. 14 An illustration of overall performance in the P-R diagram
(under-sampling; cost-sensitive classifiers)

1. In our study, we apply the cost-sensitive method to con-
struct a computation model which meets our goal of
high recall and reasonable precision.

2. The higher cost setting of FN case (indicating the
penalty of misclassification), the better we are able to
approach our goal of “no false dismissals”.

3. As shown in Fig. 15, that is a trade-off between recall
and specificity. When the recall is 100 %, the specificity

Fig. 15 Cost-sensitive methods with random forest classifiers (recall
vs. specificity)
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is 14.87 %. If we slightly decrease the FN cost, the
recall will be down to 86 % and the specificity will be
up to 34.84 %.

4. When building classification model of imbalance data,
the sampling technique is crucial to reinforce the class
boundary.

5. In our study, we also apply the dimension reduction
technique (LSA) to reduce the size of data set for model
construction. To be more specific, the reduced data set
is about 58 % of the original data set. Meanwhile, the
performance almost remains the same.

Conclusion

In our paper, we make use of patient health information
to build a computational model for predicting the risk of
breast cancer. Our goal is to construct a low-cost pre-
diagnosis program which guarantees “no false dismissals”
(i.e., a 100 % recall/sensitivity). The system architecture
consists of four major components, including the pre-
processing module, the sampling modules, the dimension
reduction module, and classifiers. Based on our perfor-
mance evaluation, we conclude that: (1) apply the under-
sampling technology; (2) apply LSA dimensional reduction;
(3) choose cost-sensitive method in which the random for-
est is the base classifier. Our approach is able to achieve
the recall/sensitivity as 100 %. The precision and specificity
is 2.9 % and 14.87 %. As a result, before mammography
screening and early diagnosis, our model could be suc-
cessfully applied to predict the risk of breast cancer in the
clinical application.
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