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Abstract Searchable encryption is an important crypto-
graphic primitive that enables privacy-preserving keyword
search on encrypted electronic medical records (EMRs) in
cloud storage. Efficiency of such searchable encryption in a
medical cloud storage system is very crucial as it involves
client platforms such as smartphones or tablets that only
have constrained computing power and resources. In this
paper, we propose an efficient secure-channel free public
key encryption with keyword search (SCF-PEKS) scheme
that is proven secure in the standard model. We show that
our SCF-PEKS scheme is not only secure against chosen
keyword and ciphertext attacks (IND-SCF-CKCA), but also
secure against keyword guessing attacks (IND-KGA). Fur-
thermore, our proposed scheme is more efficient than other
recent SCF-PEKS schemes in the literature.
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Introduction

With the increasing popularity of adopting cloud technolo-
gies, many health care providers tend to store electronic
medical records (EMRs) in cloud storage [10–13, 18, 24].
Health care practitioners can enjoy the benefit of accessing
medical records from anywhere with internet connection.
To protect privacy of the data, health care practitioners
may need to encrypt their data before storing in cloud stor-
age. There should be a mechanism for them to search on
the encrypted data without compromising the privacy of
patients [9]. In 2004, Boneh et al. [4] introduced the notion
of public key encryption with keyword search (PEKS). A
PEKS allows one to perform encrypted keyword search
on ciphertexts without revealing the original message. This
notion has many useful applications, for example, email
routing [3, 4], cloud storage [22], electronic health record
systems [31, 32], etc.

A PEKS scheme requires a secure channel to transmit a
trapdoor from a receiver to a server. Otherwise, an attacker
may easily identify which encrypted messages are related
to the given trapdoor. Baek et al. [5] solved the secure
channel problem by proposing a secure-channel free PEKS
(SCF-PEKS) which encrypts keyword with both server’s
and receiver’s public keys. This ensures that only a des-
ignated server can perform the search and prevents other
party that is without server’s private key from determining
the relation between keyword ciphertexts and trapdoors. An
SCF-PEKS scheme is also known as a PEKS scheme with a
designated tester (dPEKS) [27–30]. Baek et al.’s SCF-PEKS
scheme [5] is proven secure in the random oracle model.
Fang et al. [19] later proposed an SCF-PEKS scheme which
is secure in the standard model.
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The problem of off-line keyword guessing attacks (KGA)
was first addressed by Byun et al. [7]. Subsequently, Yau
et al. [35] also showed KGA on Baek et al.’s SCF-PEKS
scheme [5]. This attack works as the keyword space of key-
words used in PEKS and SCF-PEKS schemes are small.
Attackers exploit this weakness by exhaustively guessing
some candidate keywords and check whether their guesses
are correct or not. Rhee et al. [28] enhanced the secu-
rity model of [5] as well as proposed the concept of
trapdoor indistinguishability. They showed that trapdoor
indistinguishability is a sufficient condition for ensuring the
security against off-line keyword guessing attacks.

Emura et al. [15, 16] showed a generic construction
of adaptive SCF-PEKS from anonymous identity-based
encryption (IBE) . Subsequently, Emura and Rahman
extended the work in [15] and constructed a more efficient
adaptive SCF-PEKS using IBE with partitioned ciphertext
structure [16, 17]. However, the schemes proposed in [15–
17] are not secure against keyword guessing attacks. Rhee
et al. [29] also proposed two generic transformations to con-
struct an SCF-PEKS scheme using two IBE schemes that
are either combined in parallel or in sequence. Very recently,
Fang et al. [20] proposed the strongest model in SCF-PEKS
that is secure against chosen keyword and ciphertext attack
(IND-SCF-CKCA) and against keyword guessing attack
(IND-KGA). At the same time, they constructed an SCF-
PEKS scheme which is proven secure in the standard model.
The construction of Fang et al.’s SCF-PEKS scheme [20] is
based on Gentry’s IBE scheme [21]. They used the method
of identity’s construction in Waters’s IBE scheme [34] in
order to achieve KGA resiliency. They also include the
test query in their security model which makes it stronger
than other SCF-PEKS’s security model in the literature. To
secure against this security model, they applied strongly
unforgeable one-time signatures on the ciphertext elements
of their SCF-PEKS scheme.

Our contributions In this paper, we propose a very effi-
cient SCF-PEKS scheme that is secure against chosen key-
word and ciphertext attack (IND-SCF-CKCA) and against
off-line keyword guessing attacks (IND-KGA) without
random oracles. Fang et al.’s SCF-PEKS scheme [20]
applied strongly unforgeable one-time signature to secure
against IND-SCF-CKCA. However, our proposed SCF-
PEKS scheme uses the technique of [23] to resist the same
attack but requires less computation overhead as well as
shorter ciphertext length as compared to the SCF-PEKS
scheme of [20]. The main technique used by Fang et al. [20]
to resist off-line keyword guessing attacks (IND-KGA) is to
use Waters’s hash function [34] to construct user’s key that
protects the anonymity of keyword in the trapdoor. This,

however, results large key size for user’s public and private
keys. In contrast, we adopt the method of generating ran-
domness for trapdoor to achieve IND-KGA secure as well
as greatly reduce the key size of the proposed SCF-PEKS
scheme. In terms of security proof, Fang et al.’s security
proof [20] depends on a stronger q-ABDHE assumption
which is related to the number of private key generation
queries made by the adversary. While, the security proof
of our proposed SCF-PEKS scheme is based on a weaker
QDBDH assumption which does not has this constraint.
This paper answers in the affirmative the question posed
by Fang et al. [20] on how to construct a more efficient
SCF-PEKS scheme without random oracles. Our proposed
efficient and secure SCF-PEKS scheme is suitable to be
used in medical cloud storage to protect the privacy of
patients’ medical records.

Paper organization The rest of this paper is organized
as follows: Section “Preliminaries” reviews the definitions
related to our proposed SCF-PEKS scheme, including the
definitions of bilinear maps, and the underlying assump-
tions. Section “Secure-channel free public key encryption
with keyword search (SCF-PEKS)” reviews the defini-
tion and security model of SCF-PEKS. Section “Proposed
efficient SCF-PEKS scheme” presents our proposed SCF-
PEKS scheme and gives the security proof in the standard
model. Section “Application of SCF-PEKS for EMRs in
medical cloud storage” describes the application of SCF-
PEKS for EMRs in medical cloud storage. We conclude the
paper in Section “Conclusion”.

Preliminaries

We first present some notations used throughout this paper.
For a prime p, let Zp denote the set {0, 1, · · · , p − 1},
and Z

∗
p denote Zp\{0}. For a finite set S, x ∈R S means

choosing an element x from S with a uniform distribution.

Bilinear forms

We write G1 = 〈g〉 to denote that g generates the group
G1. Let GlobalSetup be an algorithm that, on input the
security parameters k, outputs the parameters for a bilin-
ear map as (p, g,G1,G2, e), where G1,G2 have prime
order p and 〈g〉 = G1. The efficient mapping e : G1 ×
G1 −→ G2 is bilinear for all g ∈ G1 and a, b ∈ Zp,
e(ga, gb) = e(g, g)ab; and non-degenerate, if g generates
G1, then e(g, g) �= 1.
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Complexity assumption

Definition 1 (Quotient Decisional Bilinear Diffie-Hell-
man (QDBDH) [2]) Let GlobalSetup(1k) →
(p, g,G1,G2, e), where 〈g〉 = G1. For all PPT adver-
saries A, the following probability is strictly less than
1/2 + 1/poly(k) where poly(k) represents any polynomial
function in k:

|Pr[A(g, ga, gb, e(g, g)b/a) = 1|a, b ∈R Z
∗
p]

− Pr[A(g, ga, gb, e(g, g)z) = 1|a, b, z ∈R Z
∗
p]|.

Definition 2 (Decisional Bilinear Diffie-Hellman
(DBDH) Assumption) Let e : G1 × G1 −→ G2 be a
bilinear map. We define the advantage function

AdvDBDH
G1,A (1k)

of an adversary A as

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]
− Pr[A(g, ga, gb, gc, Q) = 1]|,

where a, b, c ∈ Z
∗
p, Q ∈ G

∗
2 are randomly chosen. We

say that the decisional bilinear Diffie Hellman assumption
holds if AdvDBDH

G1,A (1k) is negligible for all probabilistic
polynomial time (PPT) adversaries A.

Definition 3 (Hash Diffie-Hellman (HDH) Problem [1])
Let hLen be in N and H : {0, 1}∗ → {0, 1}hLen be a
hash function. The HDH problem in G is defined as fol-
lows: given (g, ga, gb, H(gc)) ∈ G

3 × {0, 1}hLen and H :
{0, 1}∗ → {0, 1}hLen as inputs, outputs “yes” if a · b = c

and “no” otherwise. An algorithm A that outputs b′ ∈ {0, 1}
has an advantage ε in solving the HDH problem in G if

|Pr[A(g, ga, gb, H(gab)) = “yes” : g ← G,

a, b ← Zp] − Pr
[
A(g, ga, gb, η) = “yes” :

g ← G, η ← {0, 1}hLen, a, b ← Zp

] | ≥ ε,

where the probability is taken over the random choice of
g ∈ G, the random choice of η ← {0, 1}hLen, the random
bits of A. We say that the HDH assumption holds in G if no
t-time algorithm has an advantage at least ε in solving the
HDH problem in G.

Secure-channel free public key encryption with
keyword search (SCF-PEKS)

In this section, we review the definition and security model
of SCF-PEKS as defined in [20].

Definition of SCF-PEKS

Definition 4 (SCF-PEKS) A secure-channel free public
key encryption with keyword search scheme consists of the
following algorithms:

– GlobalSetup(1k): The algorithm inputs a security
parameter k and outputs the global parameters params,
which includes a description of keyword space KS .

– KeyGenR(params): Given the global parameters
params, the key generation algorithm KeyGenR out-
puts a public/private key pair (pkR, skR) of a receiver
R.

– KeyGenS(params): Given the global parameters
params, the key generation algorithm KeyGenS out-
puts a public/private key pair (pks, sks) of a server
S.

– PEKS(params, pkR, pks, w): On input the global
parameters params, a receiver R’s public key pkR , a
server’s public key pks , a keyword w ∈ KS , outputs a
keyword ciphertext CT of w.

– dTrapdoor(params, skR, pks, w): Given the global
parameters params, a receiver R’s private key skR , a
server’s public key pks and a keyword w ∈ KS, the
trapdoor generation algorithm dTrapdoor outputs a
trapdoor Tw of the keyword w corresponding to the
receiver R. This algorithm is performed by the private
key’s owner, who will send the trapdoor to the server.
Our scheme does not use secure channel when the user
transmits the trapdoor to the server.

– dTest(params, CT , sks, pkR, Tw): Given the global
parameters params, a server’s private key sks , a
receiver’s public key pkR , a trapdoor Tw, and a PEKS
ciphertext CT = PEKS(params, pks, pkR, w′), the
test algorithm dTest outputs “yes” if w = w′ or “no”
otherwise.

Correctness For all (pkR, skR) output by KeyGenR and
(pks, sks) output by KeyGenS, the following equation
holds for a correctly generated SCF-PEKS ciphertext asso-
ciated with keyword w:

dTest (PEKS(params, pkR, pks, w), sks, pkR,

dTrapdoor(params, skR, pks, w)) = yes
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Consistency Suppose there exists an adversary A that wants
to make consistency fail. The consistency is formally
defined as follows [19]:

Experiment Expcons
A (1k)

(pkR, skR) ← KeyGenR(1
k); (pks, sks) ← KeyGenS(1

k);
(w,w′) ← A(pkR, pks);
CT ← PEKS(pks, pkR,w);
Tw′ ← dTrapdoor(pks, skR,w′);
ifw �= w′ anddTest(Tw′ , sks , pkR,CT ) = “yes”.

then return 1,

else return 0.

We define the advantage of A as:

Advcons
A (1k) = Pr[Expcons

A (1k) = 1].

The scheme is said to be computationally consistent if it
is negligible for polynomial time adversaries A to win the
above experiment.

Security model of SCF-PEKS

In an SCF-PEKS scheme, we consider two types of adver-
sary, namely, a malicious server and a malicious user. A
malicious server should not be able to distinguish which
keyword corresponds to a given keyword ciphertext without
the trapdoor from a receiver. A malicious user (including
the receiver) should not be able to distinguish which key-
word corresponds to a target ciphertext without the server’s
private key even s/he has the trapdoor of the keyword. We
review the security model as defined in [20].

Definition 5 (IND-SCF-CKCA game) Let k be the secu-
rity parameter and Ai (i = 1, 2) be the adversary. We
consider the following two games between the adversary
Ai (i = 1, 2) and the challenger B.

GameServer : A1 is assumed to be a malicious server.

– Setup. B generates public parameters and gives
A1. B also runs KeyGenR(params) → (pkR, skR),
KeyGenS(params) → (pks, sks) and returns pkR

and (pks, sks) to A1.
– Query Phase 1. A1 makes the following queries.

– dTrapdoor oracle OTw(w) : A1 can adap-
tively ask B for the trapdoor Tw for any key-
word w of his choice. B responds the trapdoor
Tw = dTrapdoor(params, skR, pks, w) to
A1.

– dTest oracle OT (CT , w): A1 can adaptively
asks B for the Test query for any keyword
w and any PEKS ciphertext CT of his choice.
B first makes a trapdoor query on w to get
the trapdoor Tw and responds the result of
dTest(params, Tw, pks, sks, CT ) to A1.

– Challenge. Once A1 decides that Query Phase
1 is over, it outputs two keywords (w0, w1) from
the keyword space that has not been queried in
Phase 1. B randomly chooses a bit δ ∈ {0, 1}
and returns the challenge PEKS ciphertext CT ∗ =
PEKS(params, pkR, pks, wδ) to A1.

– Query Phase 2. A1 issues a number of queries
from OTw and OT as in Phase 1. The restriction here is
that w0 and w1 are not allowed to be queried from OTw

and 〈CT, w〉 is not allowed to be queried from OT if
〈CT, w〉 = 〈CT ∗, w0〉 or 〈CT, w〉 = 〈CT ∗, w1〉.

– Guess.A1 outputs the guess δ′. The adversary wins if
δ′ = δ.

We define A1’s advantage in GameServer by

AdvGameServer

A1
(k) = |Pr[δ = δ′] − 1/2|.

GameReceiver : A2 is assumed to be an outsider adversary
(including a malicious receiver).

– Setup. B generates the server’s public and private key
pair (pks, sks) and the receiver’s public and private key
pair (pkR, skR) and gives pks , (pkR, skR) to A2.

– Query Phase 1. A2 makes the following query:

– dTest oracle OT (CT , w) : On input (CT , w)

by A2, B first makes a trapdoor query on w

to get trapdoor Tw and responds the result of
dTest(params, Tw, pks, sks, CT ) to A2.

– Challenge. A2 outputs a target keyword pair
(w0, w1) from the keyword space. B randomly chooses
a bit δ ∈ {0, 1} and returns the challenge PEKS
ciphertext CT ∗ = PEKS(params, pkR, pks, wδ) to
A2.

– Query Phase 2. A2 issues a number of queries
from OT as in Phase 1. The restriction here is that
〈CT, w〉 is not allowed to be queried from OT if
〈CT, w〉 = 〈CT ∗, w0〉 or 〈CT, w〉 = 〈CT ∗, w1〉.

– Guess.A2 outputs the guess δ′. The adversary wins if
δ′ = δ.

We define A2’s advantage in GameReceiver by

AdvGameReceiver

A2
(k) = |Pr[δ = δ′] − 1/2|.
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The SCF-PEKS scheme is said to be IND-SCF-CKCA
secure if Adv

Gamej

Ai
(k), is negligible, where ((i = 1 ∧ j =

Server) ∨ (i = 1 ∧ j = Receiver)).

SCF-PEKS secure against off-line keyword guessing
attacks

Rhee et al. introduced the concept of trapdoor indistin-
guishability and showed that if an SCF-PEKS scheme sat-
isfies trapdoor indistinguishability, the scheme can resist
off-line keyword-guessing attacks [28]. Fang et al. [20]
also proposed a similar notion of indistinguishability of
SCF-PEKS against keyword guessing attacks (IND-KGA).
In this subsection, we review the security against off-line
keyword guessing attacks of SCF-PEKS as defined in [20].

Definition 6 (IND-KGA game) Let A3 be an outsider
adversary (neither the server nor the receiver) that performs
the off-line keyword guessing attack. Let k be the security
parameter, the security game is defined as follows:

– Setup. The global parameter generation algorithm,
GlobalSetup(1k), the two key generation algo-
rithms, KeyGenR(params) and KeyGenS(params),
are run. params, pkR , pks are given to A3 while skR

and sks are kept secret from A3.
– Query Phase 1. A3 makes the following query:

– dTrapdoor oracle OTw(w) : A3 can adap-
tively ask B for the trapdoor Tw of any key-
word w of his choice. B responds the trapdoor
Tw = dTrapdoor(params, skR, pks, w) to
A3.

– Challenge. A3 gives B two keywords w0 and w1,
on which it wishes to be challenged. The restriction
is that the corresponding trapdoors Tw0 and Tw1 have
not been queried by the adversary in Phase 1. B picks
a random δ ∈ {0, 1} and returns the trapdoor Twδ =
dTrapdoor(params, pkR, pks, wδ) to A3.

– Query Phase 2. A3 issues a number of queries
from OTw as in Phase 1. The restriction here is that w0

and w1 are not allowed to be queried from OTw .
– Guess. A3 outputs the guess δ′ ∈ {0, 1} and wins in

the IND-KGA game, if δ′ = δ.

We define A3’s advantage in the IND-KGA game by

AdvIND−KGA
A3

(1k) = |Pr[δ = δ′] − 1/2|.

The SCF-PEKS scheme is said to be IND-KGA attack
secure if AdvIND−KGA

A3
(k) is negligible.

Proposed efficient SCF-PEKS scheme

Our construction

The description of our SCF-PEKS scheme is as follows.

– GlobalSetup(1k): Let k be the security parame-
ter and (p, g,G1,G2, e) be the bilinear map param-
eters. g1, u, v, d, h are random generators in G1.
Select collision-resistant hash functions H : G1 →
G1, H1 : G2 −→ {0, 1}k and H2 : G1 ×
{0, 1}k −→ Z

∗
p. Output the public parameters params =

(p,G1,G2, e, g, g1, u, v, d, h, H, H1, H2,KS), where
KS is a description of keyword space.

– KeyGenR(params): On input params, a receiver R

selects a random xR ∈ Z
∗
p and sets the public key as

pkR = gxR and private key as skR = xR .
– KeyGenS(params): A server S selects a random xs ∈

Z
∗
p and sets the public key as pks = gxs and private key

as sks = xs .
– PEKS(params, pkR, pks, w): On input a receiver R’s

public key pkR , a server S’s public key pks and a key-
word w, a sender computes the keyword ciphertext as
follows:

1. Pick r ∈R Z
∗
p and C1 = pkr

R . Compute T =
e(pks, g

w
1 h)r , C2 = H1(T ).

2. Pick s ∈R Z
∗
p , compute h′ = H2(C1, C2) and

C3 = (uh′
vsd)r .

3. Output the PEKS ciphertext CT = (s, C1, C2, C3).

– dTrapdoor(params, skR, pks, w): On input a
receiver R’s private key skR , a server’s public
key pks and a keyword w, the receiver R ran-
domly selects r ′ ∈R Z

∗
p, computes T1 = gr ′

and

T2 = (gw
1 h)1/skR · H(pkr ′

s ), outputs the trapdoor
associated with the keyword w as Tw = (T1, T2).

– dTest(params, CT , sks, pkR, Tw): On input a
server’s private key sks = xs , a trapdoor Tw = (T1, T2)

and a ciphertext CT = (s, C1, C2, C3), the server
perform the following computation:

Compute h′ = H2(C1, C2) and test if equation

e(C1, (u
h′

vsd)) = e(pkR, C3) (1)

is valid. If not, output ⊥. Otherwise, the server
computes T = T2/H(T

xs

1 ), and checks if C2 =
H1(e(C1, T xs )). If the equality is satisfied, then output
“yes”; otherwise, output “no”.

Correctness We show that a correctly generated PEKS
ciphertext can be correctly tested by the server who
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has the correct trapdoor. Let a PEKS ciphertext CT =
(s, C1, C2, C3) associated with keyword w under the pub-
lic key pks and pkR . Let the trapdoor Tw = (T1, T2), where
T1 = gr ′

and T2 = (gw
1 h)1/xR · H(pkr ′

s ). We have

T = T2/H(T
xs

1 ) = (gw
1 h)1/xR · H(pkr ′

s )

H(pkr ′
s )

= (gw
1 h)

1
xR ,

H1(e(C1, T xs )) = H1(e(pkr
R, (gw

1 h)
xs
xR ))

= H1(e(pks, g
w
1 h)r)

= C2.

Therefore, we have dTest(params,PEKS(params, pkR,

pks, w), skS, pkR,dTrapdoor(params, skR, pks, w)) = yes.

Consistency Let r, r ′ ∈R Z
∗
p denote two values chosen ran-

domly by the SCF-PEKS scheme. Let C1 = pkr
R , C2 =

H1(e(pks, g
w
1 h)r) be the partial ciphertext associated with

the keyword w. Let Tw′ = (T ′
1, T

′
2) be the trapdoor asso-

ciated with the keyword w′, where T ′
1 = gr ′

and T ′
2 =

(gw′
1 h)1/xR · H(pkr ′

s ).
If H1(e(C1, (T

′
2/H(T

′xs

1 ))xs )) = C2

⇔ H1(e(pkr
R, (

((gw′
1 h)1/xR · H(pkr ′

s ))

H(pkr ′
s )

)xs )) = H1(e(pks, g
w
1 h)r )

⇔ H1(e(pkr
R, (gw′

1 h)
xs
xR )) = H1(e(pks, g

w
1 h)r )

⇔ H1(e(pks, g
w′
1 h)r ) = H1(e(pks, g

w
1 h)r ).

But w �= w′, and H1 is a collision-resistant hash func-
tion. Therefore, it holds H1(e(C1, (T

′
2/H(T

′xs

1 ))xs ) �= C2

with a high probability.

Security of our SCF-PEKS scheme

In this subsection, we analyze the security of our SCF-PEKS
scheme in the standard model. The analysis of GameServer

and GameReceiver as follows.

Theorem 1 The above scheme is IND-SCF-CKCA secure
in the standard model assuming that QDBDH problem and
DBDH problem are intractable.

Lemma 1 Our scheme is semantically secure against a
chosen keyword and ciphertext attacks in GameServer in the
standard model assuming QDBDH problem is intractable.

Proof We assume that A1 is a malicious server with an
advantage ε in breaking the proposed scheme. We assume
that H , H1 and H2 are target collision resistant. Then sup-
pose that there exists an adversary A1 who can break the

(qTw , qT , ε)-IND-SCF-CKCA security of our SCF-PEKS
scheme, where qTw denotes the times of trapdoor queries
and qT denotes the times of test queries. We can construct
an algorithm B which can break the QDBDH assumption
with ε′ in (G1,G2) with ε′ ≥ ε

e·qTw
− AdvT CR

H .
Suppose algorithm B is given a QDBDH instance

(g, A = ga, B = gb, Q) ∈ (G1)
3 × G2 with unknown

a, b ∈R Z
∗
p. B′s goal is to decide whether Q = e(g, g)b/a .

In the GameServer B works by interacting with adversary
A1 as follows:

– Setup. B chooses random xu, xv ∈ Zp and sets
g1 = Bα0 , h = Bβ , u = (gxuAα1), v = (gxvAα2),

and d = Aα3 for random α0, β, α1, α2, α3 ∈R Z
∗
p

and provides them to A1. B picks xR ∈ Z
∗
p. Next,

using the Corons technique [8], it flips a biased coin
ci ∈ {0, 1} that yields 1 with probability θ and 0 other-
wise. If ci = 1, it sets pkR = gxR ; else pkR = AxR .
Next, B adds the tuple (pkR, xR, ci) to LList . B gener-
ates the server’s public and private key pair (pks, sks),
and returns pkR and (pks, sks) to A1.

– Query Phase 1. A1 issues a series of queries . B
maintains a list Llist and answers these queries for A1

as follows:

– dTrapdoor oracle OTw(w): B randomly
selects r ′ ∈ Z

∗
p. If ci = 1, it means that

skR = xR, B outputs Tw = (T1, T2), where
T1 = gr ′

, T2 = (gw
1 h)1/xR ·H(pkr ′

s ). If ci = 0,

B outputs a random bit in {0, 1} and aborts.
– dTest oracle OT (CT , w): A1 asks B for the

test query of keyword w and PEKS cipher-
text CT of his choice. B computes h′ =
H2(C1, C2) and then tests if e(C1, u

h′
vsd) =

e(pkR, C3) holds. Then B first query a trap-
door query on 〈w〉. If ci = 1, B gets the
trapdoor Tw and then responds by sending the
result of dTest(params, Tw, sks, pkR, CT )

to A1. If ci = 0, pkR = AxR . B have
C1 = pkr

R = AxR ·r , C3 = (uh′
vsd)r =

(gxuh′+xvsAα1h
′+α2s+α3)r . B can deduce

gr = (
C3

C

α1h′+α2s+α3
xR

1

)
1

xuh′+xvs . B checks if

H1(e(g
r , gw

1 h)xs ) = C2 (2)

is valid, because

H1(e(g
r , gw

1 h)xs ) = H1(e(pks, g
w
1 h)r) = C2.

Then B responds by sending the result of
dTest(params, Tw, sks, pkR, CT ) to A1.

• Challenge. When Phase 1 is over, A1 outputs a
challenge tuple (pkR∗ , w0, w1). B responds as follows:



J Med Syst (2015) 39: 11 Page 7 of 11 11

1. Recover tuple (pkR∗ , xR∗, ci∗) from Llist . If ci∗ =
1, B outputs a random bit in {0, 1} and aborts. Oth-
erwise, it means that pkR∗ = AxR∗ and B proceeds
to execute the rest of the steps.

2. Pick δ ∈R {0, 1}, define C∗
1 = gxR∗ and com-

pute T ∗ = Qxs(wδα0+β), C∗
2 = H1(T

∗). It sets

h′∗ = H2(C
∗
1 , C∗

2 ), s∗ = −xuh′∗
xv

and compute C∗
3 =

gα1h
′∗+α2s

∗+α3 . Finaly, B returns CT ∗ = (s∗, C∗
1 ,

C∗
2 , C∗

3 ) as the challenge ciphertext to A1.

If Q = e(g, g)
b
a , CT ∗ is indeed a valid chal-

lenge PEKS ciphertext under public key pkR∗ . To
see this, let r∗ = 1

a
, we have

C∗
1 = gxR∗ = (ga)xR∗ · 1

a = (AxR∗ )r
∗ = pkr∗

R∗ ,

C∗
2 = H1(Q

xs(wδα0 +β)) = H1(e(pks, g
(wδα0+β) )

b
a )

= H1(e(pks, B
(α0wδ+β))r

∗
) = H1(e(pks, (g

wδ

1 h))r
∗
),

C∗
3 = g(α1h′∗+α2s∗+α3) = (Aα1h′∗+α2s∗+α3 )r

∗ =
(gxuh′∗+xvs∗ · Aα1h′∗ · Aα2s∗ · Aα3 )r

∗ = ((gxuAα1 )h
′∗ ·

(gxv Aα2 )s
∗ · Aα3 )r

∗ = (uh′∗
vs∗

d)r
∗
.

On the other hand, when Q is uniform and indepen-
dent in G2, the challenge ciphertext ciphertext CT ∗ is
independent of δ in the adversary’s view.

– Query Phase 2. A1 continues making queries as
in the Query Phase 1. The restriction is that w0 and w1

are not allowed to be queried from OTw and 〈CT, w〉
are not queried from OT if 〈CT, w〉 = 〈CT ∗, w0〉 or
〈CT, w〉 = 〈CT ∗, w1〉. otherwise, B returns ⊥ which
is not in the trapdoor space.

– Guess. Eventually, A1 returns a guess δ′ ∈ {0, 1}. If

δ′ = δ, B outputs 1 meaning Q = e(g, g)
b
a ; else, B

outputs 0 meaning Q = e(g, g)r .

Now we begin to analyze the probability. Let Abort
denotes the event of B’s aborting during the simulation
of oracles OTw , OT or in challenge phase. We have
Pr[¬Abort] ≥ θqTw (1 − θ) which is maximized at θopt =

qTw

1+qTw
. Using θopt , the probability Pr[¬Abort] is at least

1
e·qTw

. Therefore, we have ε′ ≥ ε
e·qTw

− AdvT CR
H , where e

denotes the base of the natural algorithm. This completes
the proof of lemma 1.

Lemma 2 Our scheme is semantically secure against a
chosen keyword attack in GameReceiver in the standard
model assuming DBDH problem is intractable.

Proof We assume that A2 is an outsider adversary (includ-
ing the receiver) with an advantage ε in breaking the
proposed scheme. We assume that H , H1 and H2 are target
collision resistant. Then suppose that there exists an adver-
sary A2 who can break the ε-IND-CKA security of our
PEKS scheme. We can construct an algorithm B which can

break the DBDH assumption with ε′ = (ε − AdvT CR
H ) in

(G1,G2).
Suppose algorithm B is given a DBDH instance (g, A =

ga, B = gb, C = gc, Q) ∈ (G1)
3 × G2 with unknown

a, b, c ∈R Z
∗
p. B′s goal is to decide whether Q =

e(g, g)abc. B works by interacting with adversary A2 in the
IND-CKA game as follows:

– Setup. B provides A2 with public parameters g1 =
B = gb, h = Bβ , u = Aα1 , v = Aα2 , and d = gα3 for
random α1, α2, α3, β ∈R Z

∗
p. Let pks = A = ga be the

server’s public key. B randomly chooses xR ∈ Z
∗
p and

sets pkR = gxR and skR = xR as the receiver’s public
and private key respectively. B sends (pkR, skR) to A2.

– Query Phase 1. A2 queries the dTest oracle as
follows:

– dTest oracle OT (CT , w): A2 can adaptively
ask B for the test query of any keyword w and
any PEKS ciphertext CT = (s, C1, C2, C3)

of his choice. B computes h′ = H2(C1, C2)

and then tests if e(C1, u
h′

vsd) = e(pkR, C3)

holds. Since C1 = pkr
R = (gr)xR , C3 =

(uh′
vsd)r = (Aα1h

′+α2sgα3)r , we have gr =
C

1
xR

1 and Ar = (
C3

C

α3
xR

1

)
1

α1h′+α2s . B checks if

H1(e(g
w
1 h, Ar)) = C2,

because H1(e(g
w
1 h, Ar)) =

H1(e(g
w
1 h, pks)

r ) = C2. B then ran-
domly selects r ′ ∈ Z

∗
p, and computes

Tw = (T1, T2), where T1 = gr ′
,

T2 = (gw
1 h)1/xR · H(pkr ′

s ). B returns the result
of dTest(params, Tw, sks, pkR, CT ) to A2.

– Challenge. When Phase 1 is over, A2 outputs a
challenge tuple (pkR∗ , w0, w1). B responds by choos-
ing a random δ ∈ {0, 1}. Let the challenge keyword
be w∗ = wδ , B computes C∗

1 = (gc)x
∗
R , T ∗ =

H1(Q
w∗+β), h′∗ = H2(C

∗
1 , C∗

2 ), s∗ = −α1h
′∗

α2
, and

C∗
3 = Cα3 . B sends the challenge PEKS ciphertext

C∗ = (s∗, C∗
1 , C∗

2 , C∗
3 ) to A2.

If Q = e(g, g)abc, CT ∗ is indeed a valid challenge
ciphertext under public key pkR∗ . To see this, let r∗ =
c, we have

C∗
1 = (gc)xR∗ == (gxR∗ )r

∗ = pkr∗
R∗ ,

C∗
2 = H1(Q

(w∗+β)) = H1(e(g, g)abc(w∗+β))

= H1(e(g
a, gb(w∗+β))c) = H1(e(pks, g

w∗
1 h)r

∗
),

C∗
3 = (gc)α3 = (gα3)c = (Aα1h

′∗ · Aα2(
−α1h′∗

α2
) ·

gα3)c = (Aα1h
′∗ · Aα2s

∗ · gα3)c = (uh′∗
vs∗

d)r
∗
.
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– Query Phase 2. A2 issues a number of queries
from OT as in Phase 1. The restriction here is that
〈CT, w〉 is not allowed to be queried from OT if
〈CT, w〉 = 〈CT ∗, w0〉 or 〈CT, w〉 = 〈CT ∗, w1〉.
Otherwise, B returns ⊥.

– Guess. Eventually, A2 returns a guess δ′ ∈ {0, 1}. If
δ′ = δ, B outputs 1 meaning Q = e(g, g)abc; else, B
outputs 0 meaning Q = e(g, g)r .

Off-line keyword guessing attack resiliency

Theorem 2 Our SCF-PEKS scheme is IND-KGA secure in
the standard model, under the assumption that Hash Diffie-
Hellman (HDH) is intractable.

Proof Let A3 be an outsider adversary who makes at most
qTw trapdoor queries. Assume that A3 has an advantage ε

in breaking IND-KGA Game of the proposed scheme, we
build an algorithm B which has an advantage ε′ = ε in
solving the HDH problem in G1. B takes as input a random
HDH instance (g, A = ga, B = gb, η) ∈ G1, and H :
{0, 1}∗ → G1, where H is a hash function and η is either
H(gab) or a random element of G1.

– Setup. Algorithm B randomly chooses g1 ∈ G1,
xR ∈ Z

∗
p and sets the receiver R’s private key skR = xR

and public key pkR = gxR . It chooses a random value
l ∈R Z

∗
p and sets the server’s public key pks = Al =

(ga)l , where the private key of the server is implicitly
defined as sks = al. B sends (pkR, pks) to A3.

– Query Phase 1.

– dTrapdoor oracle OTw(w): When A3 issues
a query for a trapdoor that corresponds to the
keyword wj , B responds as follows:

• B randomly chooses r ′ ∈ Z
∗
p and

computes T1 = gr ′
, T2 = (g

wj

1 h)
1

xR ·
H(pkr ′

s ).
• B responds to A3 with the trapdoor,

Twj
= (T1, T2) of wj .

– Challenge. A3 outputs two keywords w0 and w1

that she wishes to be challenged on. B generates the
challenge trapdoor Twδ = (T ∗

1 , T ∗
2 ) as follows.

– B picks a random bit δ ∈ {0, 1} and sets T ∗
1 =

B
1
l , T ∗

2 = (g
wδ

1 h)
1

xR · η where l ∈R Z
∗
p is the

value that is selected in the setup phase and η

is a component of the HDH challenge.
– B responds with the challenge trapdoor T ∗

wδ
=

(T ∗
1 , T ∗

2 ).

If η = H(gab), T ∗
wδ

= (T ∗
1 , T ∗

2 ) is a valid

trapdoor under public key pkR . Let r ′∗ = b
l
,

we have T ∗
1 = B

1
l = gr ′∗

, T ∗
2 = (g

wδ

1 h)
1

xR ·
η = (g

wδ

1 h)
1

skR · H(gab) = (g
wδ

1 h)
1

skR ·
H(gal· b

l ) = (g
wδ

1 h)
1

skR · H(pkr ′∗
s ).

– Query Phase 2. A3 can issue trapdoor queries for
the keyword wj . The restriction is that wj �= w0, w1.
Algorithm B responds to these queries as before.

– Guess. Eventually, A3 outputs the guess
δ′ ∈ {0, 1}, which indicates whether the chal-
lenge T ∗

wδ
is dTrapdoor(params, skR, pks, w0)

or dTrapdoor(params, skR, pks, w1). If δ = δ′,
then B outputs 1, meaning η = H(gab); otherwise, it
outputs 0, meaning η ∈R G1.

Performance evaluation

In Table 1, we compare our scheme with Fang et al. [20]
(denoted by FS13) and Rhee et al. [28] (denoted by RP10)
schemes. We use tp, te, ts , tv to represent the computational
cost of a bilinear pairing operation, an exponentiation, sign-
ing and verifying operations of a one-time signature respec-
tively. “Length of pk” and “Length of sk” denote the length
of a public key and a private key, respectively. n denotes the
length of keyword space. “Without RO?” denotes whether
or not the scheme uses random oracle model in the security
proof.

To the best of our knowledge, our SCF-PEKS scheme
and the one proposed by Fang et al. in [20] are the only
two SCF-PEKS schemes which are proven secure with-
out random oracles. However, our SCF-PEKS scheme only
requires a very short key size as compared to Fang et al.
scheme [20]. For example, the length of a public key is |G1|
and the length of a secret key is p in our scheme but the
length of a public key is 2|G1|+(n+1)|G1| and a secret key
is 2p + (n + 1)p in [20]. Here n = 160, p = 2160, |G1| =
2512. Therefore, the key size of our proposed SCF-PEKS
scheme is 99.4% shorter than the Fang et al.’s scheme [20].

We implemented our proposed SCF-PEKS scheme using
JAVA programming language on a Dell Inspiron laptop that
operates on Windows 8 (64-bit) with CPU of Intel Core
i7-4500U, 1.8GHz and memory of 8GB DDR3L. We run
each algorithm for 100 rounds to get an average run time
as shown in Table 2. To further show that the SCF-PEKS
scheme is feasible to run on a client platform with con-
strained resources, such as a tablet, we also conducted a
preliminary experiment by running the dTrapdoor and
PEKS algorithms on ASUS VivoTab Smart ME400C that
operates on Windows 8 with processor of Intel Atom Z2760
Dual-core 1.8GHz and memory of 2GB. The average run
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Table 1 Comparisons between FS13, RP10 and our SCF-PEKS scheme

Schemes FS13 [20] RP10 [28] Our scheme

PEKS 3tp + 6.5te + ts 1tp + 2te 1tp + 4te

dTest 4tp + 3te + tv 1tp + 2te 3tp + 3te

Length of pk 2|G1| + (n + 1)|G1| 2|G1| |G1|
Length of sk 2p + (n + 1)p 2|G1| p

IND-CKCA Yes No Yes

IND-KGA Yes Yes Yes

Without RO? Yes No Yes

Test query Yes No Yes

time of dTrapdoor and PEKS is recorded as 0.38s and
0.48s, respectively.

Application of SCF-PEKS for EMRs in medical cloud
storage

With the rapid development of cloud computing and mobile
networking technologies, health care practitioners are able
to access electronic medical records that stored on a medical
cloud storage with mobile devices (e.g., tablets). Confiden-
tiality of the stored contents is one of the major concerns of
the patients [25, 26]. The property of confidentiality should
also be maintained even if health care practitioners desig-
nate the storage provider to search and retrieve patients’
records associated with certain keywords.

Consider a medical cloud application that consists of a
cloud service provider (CSP) and health care providers that
store EMRs on the cloud storage. The health care practition-
ers encrypt all the stored EMRs to ensure the confidentiality
of the contents. To retrieve encrypted EMRs related to a
specific keyword by using the conventional approach, the
health care practitioners have to download all the stored
EMRs, decrypt, and perform their search on local systems.
For example, if the medical cloud storage contains 1 giga-
byte of EMRs, but only 1 megabyte of data is related to the

Table 2 Average run time (ms) of each algorithm for our SCF-PEKS
scheme

Algorithms Time (ms)

GlobalSetup 218.65

KeyGenR 6.57

KeyGenS 6.42

PEKS 58.10

dTrapdoor 51.30

dTest 113.70

specific keyword. It is required to retrieve all the 1 gigabyte
of data which is inefficient.

To solve this problem, we consider the applica-
tion of SCF-PEKS schemes for many-writer/single-reader
(MWSR) setting [22], where a health care practitioner S

(sender) who generates and stores the encrypted EMRs is
different from another health care practitioner R (receiver)
that requests CSP to search and retrieves it from the stor-
age. As shown in Fig. 1, the health care practitioner S

who uploads EMRs to the medical cloud storage will first
encrypt EMRs with a conventional public key encryption
scheme under the public key of the health care practitioner
R. In addition, a keyword w associated with the EMRs is
encrypted with SCF-PEKS scheme under the public key of
both R and the CSP. The health care practitioner R who
wants to selectively download certain EMRs that are only
related to the keyword w will generate a trapdoor under
his/her private key. This trapdoor is then sent to the CSP.
Upon receiving this trapdoor, the CSP run the dTest algo-
rithm to test the received trapdoor and keyword ciphertexts
that stored in the medical cloud storage. It will then return
those encrypted EMRs that are associated with w to R.

A complete implementation of such medical cloud appli-
cation may incorporate other cryptographic primitives and
techniques to either enhance its efficiency or functionalities.
The complexity of search time for our proposed SCF-PEKS
is O(n), where n is the number of encrypted EMRs stored
in the medical cloud for a particular medical practitioner.
To improve the search efficiency, we may incorporate the
hybrid-indexed search method proposed in [33]. The hybrid
index consists of a static index and a dynamic index. If
a keyword is queried for the fist time, the hybrid-indexed
search refers to the static index for searching the encrypted
EMRs. While, the dynamic index is used for searching
EMRS associated with a keyword that has been queried
before. We note that the trapdoor which used as the dynamic
index in [33] is deterministic. Therefore, the hybrid-indexed
search method in [33] cannot be directly applied to our
SCF-PEKS scheme that generates a probabilistic trapdoor.
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Cloud Service Provider 
(CSP)

Health Care Practitioner R
(Receiver)

Health Care Practitioner S
(Senders)

2. Send trapdoor associated 
with keyword ‘w’

1. Encrypt EMRs and 
keyword

4. Return encrypted EMRs 
associated with keyword ‘w’

3. Test on trapdoor and 
keyword ciphertexts

Fig. 1 Applying SCF-PEKS for EMRs in medical cloud storage

In addition, we may consider to apply the techniques pro-
posed in [6, 14, 36, 37] to combine the public key encryption
(PKE) of the EMRs with our SCF-PEKS. We plan to inves-
tigate on how to tweak all these techniques to suit our
proposed SCF-PEKS scheme for implementing a real-life
application in future.

Conclusion

In this paper, we proposed a very efficient SCF-PEKS
scheme that is secure against chosen keyword and cipher-
text attacks, and keyword guessing attacks based on the
QDBDH, DBDH, and HDH assumptions in the standard
model. Our proposed SCF-PEKS scheme is suitable to be
used for searching encrypted EMRs in a medical cloud envi-
ronment which involves mobile devices or client platforms
with constrained system resources.

There are several open problems related to this research.
First, the construction of both Fang et al. [20] and our
proposed SCF-PEKS schemes require pairing operations, it
would be good if an IND-KGA secure SCF-PEKS scheme
can be constructed without using pairing operations. Sec-
ond, it is worth to investigate on constructing an efficient
SCF-PEKS scheme in a stronger security model, such as the
malicious server generates her public key and secret key by
herself in the security model.
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