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Abstract In this research an algorithm was developed to
classify muscle fatigue content from dynamic contractions,
by using a genetic algorithm (GA) and a pseudo-wavelet
function. Fatiguing dynamic contractions of the biceps
brachii were recorded using Surface Electromyography
(sEMG) from thirteen subjects. Labelling the signal into two
classes (Fatigue and Non-Fatigue) aided in the training and
testing phase. The genetic algorithm was used to develop
a pseudo-wavelet function that can optimally decompose
the sEMG signal and classify the fatigue content of the
signal. The evolved pseudo wavelet was tuned using the
decomposition of 70 % of the sEMG trials. 28 independent
pseudo-wavelet evolution were run, after which the best
run was selected and then tested on the remaining 30 % of
the trials to measure the classification performance. Results
show that the evolved pseudo-wavelet improved the classi-
fication rate of muscle fatigue by 4.45 percentage points to
14.95 percentage points when compared to other standard
wavelet functions (p < 0.05), giving an average correct
classification of 87.90 %.

Keywords Genetic algorithms · Localised muscle
fatiguen · EMG · Wavelet analysis · Pseudo wavelets

This article is part of the Topical Collection on Mobile Systems

M. R. Al-Mulla (�)
Department of Computing Sciences and Engineering,
Kuwait University, Kuwait, Kuwait
e-mail: mrhalm@sci.kuniv.edu.kw

F. Sepulveda
School of Computer Science and Electronic Engineering,
University of Essex, Colchester, Essex, UK

Introduction

Electrical signal detected during muscle contraction is
called the myoelectric signal. Some properties of this sig-
nal represent myoelectrical manifestation of muscle fatigue
[1]. Surface electromyography (sEMG) signals give useful
information about transformations in the muscle, which is
used for localised muscle fatigue analysis [2–4]. Manifes-
tation of muscle fatigue is usually investigated in terms of
signal amplitude, muscle fibre conduction velocity (MFCV)
and the frequency content of the signal. During non-
isometric contractions (muscle length and tension change)
the characteristic of the signal amplitude and the frequency
content of the signal are affected by several factors [5], such
as the position of active detectable motor units with respect
to the electrodes, different limb states (e.g., joint angles)
and the non-stationary nature of sEMG signal. These factors
directly affect sEMG signal properties and may interfere
with the detection of localised muscle fatigue.

Research on sEMG signals found that the onset of mus-
cle fatigue correlate with changes in amplitude and median
frequency (Med F) [6]. One study detected that a signifi-
cant decline in the signal’s Instantaneous Median Frequency
(IMDF) is the manifestation of fatigue occurrence [7].

The discrete wavelet transform (DWT) is a joint time-
frequency technique. This method has been applied in
research on dynamic contractions to analyze muscle fatigue
[8], and to estimate the power spectrum of sEMG sig-
nals [9, 10]. Analysis of the sEMG spectrum in dynamic
contractions demonstrate a strong correlation between the
onset of fatigue and the reduction of the Med F [11] and
that a decline in CV reflects muscle fatigue [12]. Dimitrov
et al. presented a new spectral index with a much higher
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sensitivity than traditional EMG parameters for isometric
and dynamic contractions [13] that will aid in the analysis
of sEMG signals.

Guglielminotti and Merletti hypothesised that if the
wavelet analysis is selected to fit with the shape of the motor
unit action potential (MUAP), the WT would give the best
energy location in a time-scale [14]. Kumar et al. stated that
the STFT does not give an optimal time or frequency reso-
lution for the non-stationary signal, although the relatively
short time windows may trace spectral variations with time
[15]. The WT, comprised of numerous WFs, can be used to
decompose the sEMG signal. The output of the power trans-
form domain is calculated and thus functions as a deciding
parameter in selecting the most appropriate WF to give the
highest contrast between sEMG cases. It has been shown
that it is possible to detect muscle fatigue status by deter-
mining the Sym4 or Sym5 WFs and decomposing the signal
at levels 8 and 9 (out of 10 levels). Kumar et al. discussed the
effectiveness of decomposing the EMG signal to measure
its power in order to identify muscle fatigue as an automated
process [15].

There are numerous ways to classify the sEMG sig-
nals, although the non-stationary nature of the signals make
classification more complicated [16]. Common classifica-
tion methods are Principal Component Analsis (PCA) [17]
and support vector machine (SVM) [18]. Another common
method for sEMG classification is to measure the Euclidean
distance between the MUAPs waveform; where a shim-
mer is generated in the representation of time-triggered
and non-overlapping MUAPs [19]. The shimmer is influ-
enced by external factors, such as background noise and
noise from offsets. In addition, the shimmer of the MUAP
is affected by the variance within a class as well as the
distance between the classes. A recent study developed
a classification method for sEMG signals based on dis-
crete harmonic wavelet packet transform (DHWPT) [20].
Firstly, the relative energy of sEMG signals in each fre-
quency band was extracted using DHWPT, and, secondly,
a GA selected appropriate features that reduced the fea-
ture dimensionality. Various research has used different
classification techniques for SEMG signals in localised
muscle fatigue, such as genetic programming and genetic
algorithms [21–25], statistical analysis [26–28], as well
as classification methods to predict and detect fatigue by
using neural networks [29, 30] or linear discriminant anal-
ysis (LDA) [31]. A variation of these techniques have
been adapted in this research where the genetic algorithm
utilises a pseudo-wavelet as the feature extraction method
for classifying (using LDA) fatigue content in the sEMG
signal.

Methods

This study used wavelet analysis to overcome the stochastic
and transitory nature of the sEMG signals emanating from
dynamic contractions. A genetic algorithm was selected to
evolve an optimal solution by tuning a pseudo-wavelet func-
tion for its optimal decomposition of sEMG targeted in
extracting muscle fatigue content. In addition, the evolved
pseudo-wavelet was validated and compared with other
common wavelet transforms. The term ’pseudo-wavelet’ is
used here to indicate that the evolved wavelet-like func-
tion is not required to meet the necessary conditions (e.g.,
admissibility and regularity) to be formally described as a
wavelet [24]. Pseudo-wavelets are thus a convenient joint
time-frequency tool aimed specifically at pattern recogni-
tion.

Data recording and pre-processing

Thirteen athletic, healthy male subjects (mean age 27.5
+/- 3.6 yr) volunteered for this research. The study was
approved by the University of Essex’s Ethical Committee
and all subjects signed an informed consent form prior to
taking part in the study.

The participants, all non-smokers, were seated on a
’preacher’ biceps curl machine to ensure stability and biceps
isolation while performing biceps curl tasks. The partic-
ipants reached physiological fatigue and was encouraged
during the trial to reach the complete fatigue stage (unable
to continue the exercise).

To evaluate the Maximum Dynamic Strength (MDS) per-
centage for each participant we used the average of three
100 % MDS measurements on three different days to ensure
correct estimation. The 100 % MDS measurements for each
subject were determined by the one-repetition maximum
(1RM), where the subjects managed to keep the correct
technique while executing the repetition with the heaviest
possible load on a preacher biceps curl machine. In other
words 100 % MDS is equal to 1RM. Determining each sub-
ject’s 100 % MDS allowed estimating the correct loading
MDS (40 % MDS and 70 % MDS) across subjects when
conducting the trials.

After establishing the MDS for each subject the trials
where carried out. After the warm-up period, all the thirteen
participants carried out 3 trials of non-isometric exercises
with 40 % Maximum Dynamic Strength (MDS) and 3 trials
of 70 % MDS with a one week resting period between tri-
als to ensure full recovery from the biceps fatigue, giving a
total of 104 trials. Only one trial was performed per day for
each subject in order to avoid injury.
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sEMG electrodes (Biometrics Ltd., Model SX230W)
were placed on the participant’s biceps brachii’s lower
belly, avoiding the estimated innervation zone and toward
the distal tendon to acquire sEMG reading. These elec-
trodes were chosen due to their high quality, designed
with an input impedance of more than 1015 ohms. A
goniometer (Biometrics Ltd.) was placed on the lateral
side of the arm to measure the elbow angle and arm
oscillation.

The myoelectric signal was recorded using one two-
channel Single Differential (SD) electrodes (Biometrics
Ltd.), (both placed on the biceps brachii with a distance of 2
cm [3]) with A/D conversion at 2000 samples/s. The sEMG
signals underwent a rectification and filtering process. The
signals were filtered with a dual pass Butterworth filter of
order 5, with the pass band being between 10 and 500 Hz.
All movement aspects were recorded simultaneously and
are described in the subsection below.

The test bed set up for one of the conducted trials is
shown in Fig. 1.

Labelling the signals

The acquired sEMG signals were divided into Fatigue and
Non-Fatigue epochs. The first few repetitions were consid-
ered as Non-Fatigue as the subject felt “fresh”, while the
last few repetitions before the subject could not continue
the sustained task, were labelled as Fatigue epoch [15]. This
meant that for the signal analysis the first rep was labelled as

Non-Fatigue and the last full repetition was labelled as
Fatigue. The labelling of the sEMG signal was utilised to
tune the evolved pseudo-wavelet as well as for training and
testing the classifier.

Wavelet decomposition

In a wavelet transform there are various standard mother
wavelet functions utilised for decomposing a signal, such
as Daubechies, Symmlet, Mexican Hat, Morlet etc. The
wavelets can be used for different signals, but previous
research has recommended guidelines to select the most
suited wavelet [32], such as Db4 is appropriate for sig-
nals using feature extractions and linear approximation with
more than four samples, but Db6 is more suited for a
signal approximated by a quadratic function over the sup-
port of six; coiflet6 is used for data compression results
[32]. To select the most appropriate wavelet, the proper-
ties of the wavelet function and the characteristic of the
signal should be analysed and matched for specific data
sets.

The pseudo-wavelet evolved in this study utilises scal-
ing function (phi) coefficients that are the most suitable to
find the optimal shape for our application. The goal was to
evolve a custom-made wavelet-like shape suitable for join-
time frequency decomposition for muscle fatigue detection
in the sEMG signal. The GA first evolved random values
for the scaling function coefficients, then ten coefficients for
phi was chosen.

Fig. 1 Experimental set-up
showing one of the trials
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Genetic algorithms

Genetic Algorithms (GA) can be used for solving linear
and nonlinear problems by utilising different operators, e.g.
crossover, mutation and selection operations applied to each
individual in the population to explore the optimal solu-
tion is the state space [33]. Presumably, by using a GA to
adapt a standard wavelet, or to evolve a pseudo-wavelet, an
optimal solution will be generated that finds the shape of a
(pseudo)wavelet for improved, data-specific joint-time fre-
quency decomposition that detects muscle fatigue within the
sEMG signal.

The steps taken for the initialisation and running of the
GA are displayed as a flow chart in Fig. 2, while the
parameter settings for the GA runs are shown in Table 1.

Solution representation

The solution representation was utilised to determine the
optimal wavelet by using standard wavelet functions,
including Symlet, Mexican hat and Daubechies. In this
research we selected a scaling function (phi) coefficients
from 1 to 19 for the evolved pseudo-wavelet, while it is com-
mon to chose a scaling function from 1–10. According to
Kumar et al.the muscle fatigue content lays between scale 9
and 10 [15], while in this study it was chosen for the GA to
have a wide scaling function (1–19) to find the most optimal
scale for class discrimination.

Fig. 2 Flowchart of the pseudo-wavelet evolution

Table 1 Parameter settings for the GA runs

Parameter Value

Independent runs 28

Population size 5000

Maximum number of generations 20

Mutation probability 10 %

Crossover probability 90 %

Selection type Tournament, size 5

Termination criterion Maximum number of generations

Fitness function

A fitness function in the GA is used to find the optimal solu-
tion in the search space. The modified Davies Bouldin Index
(DBI) was selected in this study in the fitness function as it
is a simple and effective index. Data cluster linear overlap
was calculated applying the modified DBI [34] by deceding
the propotion of intracluster spread to intercluster centroid
distance. A good class separation was expressed by smaller
DBI values.

The joint-time frequency decomposition by the pseudo-
wavelet was achieved for every scale (1–19) and extracted
in one second intervals to calculate the DBI between the two
classes (i.e., Fatigue and Non-Fatigue). This resulted in min-
imising the DBI, which aided the evolutionary processes.
Furthermore, it permitted the fitness function to increase
the separation between the two classes. Normally the fit-
ness function works by maximisation, using a hill climbing
method; however, in this research the DBI was changed into
negative numbers, letting the fitness function use the hill
climbing method by trying to bring the (now) negative DBI
closer to zero.

Validation/ classification

Linear Discriminant Analysis (LDA) classifier was used as
this method is simple, well established and requires few
computational resources. The input for the training and test-
ing of the LDA classifier utilised the decomposed sEMG
signal from the pseudo-wavelet. Similar to the evolutionary
process, the classifier was trained utilising 70 % the trials
and tested with the remaining 30 % of the trials.

The performance of the evolved pseudo-wavelet was
compared with other common wavelet functions. In order
to obtain a meaningful comparison, the decomposition scale
value of the eight compared standard wavelet functions (see
Wavelet Decomposition above) matched the decomposition
scale value of the evolved pseudo-wavelet function.
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Fig. 3 Pseudo-wavelet before
and after evolution

Results

There are three main interesting findings in this research.
Firstly, the GA selected the optimal wavelet for sEMG clas-
sification and secondly, the optimal scale for decomposing
the sEMG signal was selected. Thirdly, the classification
performance of the evolved pseudo-wavelet proved to be
better than traditional wavelet functions for sEMG classifi-
cation.

The GA chose the optimal wavelet dependent upon the
solution representation, in which it detects improvements
based on the fitness function of the final evolved popula-
tion with the best DBI scoring. This is shown in Fig. 3,

where superimposed shapes of original randomly produced
pseudo-wavelets with the final pseudo-wavelet at the end of
a typical evolutionary process.

An interesting finding of these results was the relation-
ship between the shape of the wavelet and the optimal scale.
The shape of the wavelet affects the choice of the opti-
mal scale that gives the best discrimination between Fatigue
and Non-Fatigue content of the sEMG signal. This result
is similar to Kumar et al.’s [15] finding that some wavelet
functions at various scales better contrast between Fatigue
and Non-fatigue.

In this research, the GA selected the optimal scale
according to the wavelet function, which eliminated human

Fig. 4 Generation fitness
during the GA
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subjective choice of the most suited wavelet functions for
fatigue content analysis. By using the DBI, the GA choose
the optimal scale for decomposing the sEMG signals. The
highest separability between the fatigue classes (Fatigue
and Non-Fatigue) is found by the optimal scale. Figure 4
displays the improvements in the pseudo-wavelet popula-
tion fitness (values closer to zero indicate improved fitness)
attained by one of the GA runs in optimising the pseudo-
wavelet function and the most optimal scale.

The GA was initialised using 5000 individuals with ran-
domly seeded coefficients. In the first generation the GA
run was generated with relatively good solutions averaging

a transformed DBI of -1.547. When continuing with the
evolutionary process the fitness enhanced for this particular
scenario and obtained its optimal range of -0.4730 DBI,
around the 14th generation.

The GA initialisation and GA run were completed 28
times utilising a variation of epochs each time to safeguard
optimal coverage of the GA search space. In Table 2 all
the 28 independent GA runs are presented. The table shows
that there is a consistency in the results from each GA
run.

The optimal scale for the best GA run is 11, which gives
an exceptional separability of -0.4730. This shows that the

Table 2 Twenty eight independent runs, showing the best individual

Best Coef 1 Coef 2 Coef 3 Coef 4 Coef 5 Coef 6 Coef 7 Coef 8 Coef 9 Coef 10 Scale DBI

Indiv.

1 -0.864242 -0.242692 -0.931535 0.970248 0.246149 0.307375 -0.482074 -0.236434 0.983014 -0.760280 13 -0.491357

2 -0.236883 -0.502742 -0.194891 0.133722 0.676452 -0.797571 0.282683 0.256545 -0.416643 -0.067256 12 -0.483028

3 -0.082564 -0.543043 -0.836032 -0.544158 0.712949 0.930792 -0.180848 -0.584468 -0.016217 -0.476172 9 -0.485659

4 -0.923337 -0.063500 -0.122325 -0.185331 0.457136 0.347545 -0.788585 0.084199 0.351236 -0.810014 12 -0.485556

5 0.753819 0.917448 -0.176081 0.272940 -0.762004 -0.139448 0.435891 0.561613 -0.876146 -0.186043 10 -0.487483

6 -0.631399 -0.172173 -0.404954 -0.980757 0.943872 0.424935 -0.651820 0.293014 0.424031 0.617494 10 -0.491348

7 -0.876100 0.369932 -0.986108 0.656329 0.975698 -0.278396 -0.325693 -0.431663 0.530142 -0.443914 18 -0.493658

8 -0.446154 0.664486 -0.120145 -0.582775 0.830775 -0.493821 -0.395023 0.727275 -0.483121 -0.169820 16 -0.482704

9 0.773883 -0.518824 0.302386 -0.009532 -0.102918 -0.864620 0.388080 0.879412 0.801164 0.687968 13 -0.481972

10 0.227648 0.657091 0.707375 -0.158750 -0.625373 -0.114292 -0.719970 -0.766579 0.052077 -0.268672 3 -0.491937

11 -0.027224 0.928522 -0.729980 -0.240958 0.397727 -0.933038 0.543298 0.407653 0.669037 -0.462206 13 -0.475065

12 -0.618332 -0.080158 -0.730077 -0.375686 -0.909700 0.741772 0.144389 -0.655820 -0.135600 0.503826 1 -0.502978

13 0.588203 -0.814357 -0.359604 -0.763271 0.988322 0.157596 -0.284911 0.628369 0.224851 0.715838 4 -0.473747

14 0.547887 0.094344 -0.379070 -0.390996 0.628189 -0.567994 -0.797560 0.925749 0.439768 0.621294 10 -0.477569

15 -0.844267 0.866437 0.966678 0.049007 -0.674025 0.554753 -0.490083 -0.846132 0.175440 0.499542 4 -0.503437

16 0.346696 -0.503485 0.846013 0.507443 -0.933680 -0.102870 -0.294352 0.716410 0.331767 0.088780 16 -0.490912

17 0.356000 -0.224109 0.177374 0.316610 -0.530817 -0.347085 -0.178003 -0.082243 -0.347782 0.424249 3 -0.497717

18 0.309638 -0.434519 0.123595 -0.211702 0.689527 -0.651123 0.619346 -0.512927 0.852247 -0.306339 5 -0.481241

19 -0.971619 -0.210740 0.925958 0.756288 -0.779561 -0.358697 -0.429445 0.503069 0.145364 0.850787 16 -0.477890

20 0.111428 -0.235536 0.037306 -0.280862 -0.148421 0.670382 0.715589 -0.297703 0.847876 0.378478 6 -0.499018

21 -0.666214 -0.075309 0.903201 -0.183658 0.118085 0.365698 -0.111721 -0.853810 -0.312184 -0.315055 11 -0.473083

22 0.179040 -0.569012 0.700382 0.364073 -0.515999 0.076844 -0.051081 -0.441670 -0.984128 -0.840472 3 -0.504836

23 0.335504 -0.777735 0.328649 0.079035 0.611148 -0.638632 -0.528389 0.742692 0.919256 -0.892442 10 -0.490000

24 0.251042 0.613452 -0.652309 -0.732583 0.562082 0.171122 -0.101100 0.914875 -0.852659 0.785641 12 -0.498207

25 -0.695683 0.722936 -0.241893 0.337429 -0.014934 -0.846905 0.645762 -0.280293 0.614628 0.640743 20 -0.494014

26 0.774403 0.261807 -0.414799 -0.458481 -0.878473 -0.678152 -0.973922 -0.499812 0.922923 0.341972 1 -0.491499

27 -0.286343 -0.132542 0.972987 -0.917948 0.067086 0.286025 0.727677 0.045059 -0.797328 0.611004 3 -0.499535

28 -0.511974 -0.621935 0.499750 0.983238 -0.597065 0.787013 -0.101725 0.081020 0.882579 -0.185861 5 -0.505663

Average -0.111684 -0.022355 0.007566 -0.056824 0.051151 -0.071100 -0.120842 0.045621 0.176628 0.056538 9 -0.489683

Std. 0.577925 0.542192 0.625187 0.539702 0.662496 0.561823 0.501322 0.584623 0.615143 0.560494 5 0.009648

Coef = Coefficient
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GA is capable of separating the sEMG signals from the two
different classes (Fatigue and No-Fatigue) while using an
optimal wavelet..

In the classification of the sEMG signals, both the
optimal wavelet and the optimal scale were used. The
classification performance with the developed pseudo-
wavelet was 87.905 %. In comparison to other commonly
used wavelet functions, the pseudo-wavelet could better
classify the sEMG signal, with an average of 81.61 %
(p < 0.05) vs. 83.67 % for DB4, which was the second best
wavelet function.

Table 3 presents a classification comparison of the
evolved wavelet with eight traditional wavelet functions in
decomposing the sEMG signal, which shows the classifi-
cation capabilities of the evolved pseudo-wavelet. Classifi-
cation performance of all thirteen subjects with the unseen
test data sets indicates that the evolved pseudo-wavelet func-
tion has outperformed all of the other wavelets, with an
improvement ranging from 4.45 percentage points (P-W
and DB4) to 14.95 percentage points (P-W and Mexican
Hat) between the pseudo-wavelet and the highest and low-
est average percent for the other wavelets. This is giving
an average of 87.90 %. In addition, the average for all the
other wavelets combined gives 81.61 % with significance
of (p < 0.05). By studying the standard deviation across
the classification averages, the evolved wavelet produced
the lowest values, which may be due to its consistency in
classification across subjects. To ensure consistency in the
comparison all the wavelet functions, including the pseudo-
wavelet, used scale 11. Figure 5 displays graphically the
classification performance (in %) seen in Table 3.

Discussion

In this paper a pseudo-wavelet function was created and
an optimal scale was found by the genetic algorithm that
specifically improves the classification of localised muscle
fatigue using sEMG signals. The evolved pseudo-wavelet
improved the classification of muscle fatigue when com-
pared to other wavelet functions. Results show that using
the GA to evolve a pseudo-wavelet can produce exceptional
classification performance, when specifically optimised to
decompose the sEMG signal, retaining the fatigue content
in the signal.

Using sEMG as a signal acquisition technique has been
warned against for localised muscle fatigue on dynamic
contractions [5], yet several studies have used it and found
that sEMG signal detection is still a reliable technique for
fatiguing dynamic contractions [11–13, 35]. Wavelets are a
suited method for signal analysis as it takes into account the
non-stationary nature of the sEMG signals from dynamic
contractions [36]. Several studies has utilised wavelets to
decompose the sEMG signal in muscle fatigue research
[8, 14, 15]. The results in this study adds to this find-
ing, as it shows that the pseudo-wavelet outperformed other
common wavelets when it comes to the classification of
sEMG signals. Additionally, all the other wavelets used
for comparison purposes gives high classification perfor-
mance, which shows that utilising wavelets are an appropri-
ate method for sEMG signal classification from fatiguing
dynamic contractions.

The optimal scale for decomposing the fatigue content
of the sEMG signal was 11. This is a higher level than

Table 3 Classification Results (P-W = Pseudo-wavelet)

Subjects Db5 % Db4 % Db3 % Db2 % Sym5 % Sym4 % Sym3 % Mexican Hat % P-W %

Subject 1 85.821 86.567 84.328 85.075 83.582 83.582 84.328 17.164 90.991

Subject 2 93.431 93.431 94.891 94.161 92.701 92.701 94.891 90.511 94.161

Subject 3 85.156 85.156 82.813 79.688 87.500 85.156 82.813 69.531 85.938

Subject 4 83.951 83.951 84.568 83.333 85.185 84.568 84.568 80.247 88.272

Subject 5 82.895 83.772 81.579 80.263 82.018 82.456 81.579 79.386 81.579

Subject 6 91.509 90.566 91.509 91.509 91.509 91.509 91.509 84.906 93.396

Subject 7 78.523 77.181 78.523 78.523 77.852 77.852 78.523 83.893 82.550

Subject 8 76.296 79.259 78.519 74.815 75.556 73.333 78.519 71.111 87.407

Subject 9 94.118 94.118 94.118 94.118 95.588 95.588 94.118 89.706 92.647

Subject 10 83.898 85.593 85.593 83.051 82.203 84.746 85.593 77.966 86.441

Subject 11 81.081 81.982 74.775 71.171 82.883 81.982 74.775 67.568 93.694

Subject 12 66.031 64.122 62.595 62.214 61.832 62.595 62.595 53.053 83.588

Subject 13 82.099 82.099 82.716 80.864 79.630 81.481 82.716 83.333 82.099

Average 83.447 83.677 82.810 81.445 82.926 82.889 82.810 72.952 87.905

Std. 7.494 7.721 8.535 9.017 8.628 8.540 8.535 19.646 4.675
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Fig. 5 Graphical representation
of the Classification
performance (in %) (P-W =
Pseudo-wavelet)

Kumar et al.’s finding, where the fatigue content was found
at scale 8 and 9, out of 10 levels, for Sym4. The rea-
son the optimal scale is different in this research is due
to the GA utilising a scale of 1-19 in selecting the most
optimal scale, while Kumar et al’s research only used 10 lev-
els. Another factor influencing the selection of the scale is
the wavelet function utilised. The GA selected the pseudo-
wavelet, which is a wavelet-like function that is a joint
time-frequency tool, while Kumar et al.’s research utilised
Sym4. There are no specific rules for which wavelet is
most suited for classifying fatigue content of the sEMG
signal, but a selection needs to take into consideration the
properties of the WF and the sEMG signal characteris-
tics for the data sets. In this research it was the GA that
selected the most suited wavelet function, and hence, the
pseudo-wavelet was selected. The performance of the GA in
finding the optimal scale is worth noting for future research,
where the sEMG signals emanate from fatiguing dynamic
contractions.

Classifying sEMG signals from fatiguing dynamic con-
traction is more complicated due to the non-stationary
nature of the signal [16]. Various classification methods
can be applied, but as mentioned above, wavelets take the
stochastic nature of the sEMG signal into consideration.
A similar study was carried out by Wang et al. where
DHWPT was used to classify the sEMG signals. He used
the GA to select the feature that would reduce dimensional-
ity That research used a similar method applied to this study

where the GA selected the feature that would best clas-
sify the fatigue content from the sEMG signal. The results
here proved similarities to a previous study by Almulla et
al., where this classification technique proved successful in
classifying the sEMG signal emananting from fatiguing iso-
metric contractions [24]. This shows that the methodology
developed in this paper, as in the previous research, gives
excellent classification results.

Conclusion

This study was able to classify the fatigue content using
sEMG signals from fatiguing dynamic contractions. The
classification results of the pseudo-wavelet proved to be bet-
ter than other traditional wavelet functions, which would
indicate that this methodology is useful for future research
on sEMG signal classification for localised muscle fattigue
from dynamic contractions.
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