
EDUCATION & TRAINING

HMM for Classification of Parkinson’s Disease Based
on the Raw Gait Data

Abed Khorasani & Mohammad Reza Daliri

Received: 14 January 2014 /Accepted: 22 October 2014 /Published online: 30 October 2014
# Springer Science+Business Media New York 2014

Abstract The central nervous system (CNS) plays an impor-
tant role in regulation of human gait. Parkinson’s disease (PD)
is a common neurodegenerative disease that may cause neu-
rophysiologic change in the CNS and as a result change the
gait cycle duration (stride interval). This article used the
Hidden Markov Model (HMM) with Gaussian Mixtures to
separate the patients with PD from healthy subjects. The
results showed that the performance of the HMM classifier
in classifying the gait data corresponding to 16 healthy and 15
PD subjects is comparable to the results obtained from the
least squares support vector machine (LS-SVM) classifier. In
this study, the leave-one-out cross-validation method was used
to evaluate the performance of each classifier. The HMM
method could effectively separate the gait data in terms of stride
interval obtained from healthy subjects and PD patients with an
accuracy rate of 90.3 % . All in all, the results showed that the
proposed method can be used for distinguishing PD patients
from healthy subjects based on the gait data classification.
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Introduction

Parkinson’s disease (PD) is the most common neurodegener-
ative movement disorder. This type of disease is caused by
both despair of motor control and malfunction of rhythm
generation in the basal ganglia which has a strong effect on

voluntary movement control [1]. Typical motor symptoms of
PD known as movement disorders are tremor, bradykinesia,
rigidity, and postural instability [2]. By progression of this
disease, not only postural instability but also gait disturbances
can be commonly seen in many cases. Some gait disturbances
such as festination, short gait step and freezing gait can make
diagnosis of PD easier and so investigation of parameters of
gait would be a very useful method for both understanding of
the mechanism of motor control and recognizing of the neu-
rological disease progression [3,4].

Many different methods have been proposed in recent
years for the diagnosis of PD [5–7]. Furthermore, in order to
measure the parameters of the gait in PD and also investigate
its characteristics, the computer-based methods have been
widely utilized in the previous studies [8–14]. In [15], the
coefficient of variation as a criterion for stride-to-stride fluc-
tuations was used for analyzing of the gait data of both healthy
control subjects and PD patients. They showed that this coef-
ficient is larger in the gait data of PD patients and also can be
used as the degree for disease severity. In addition, in [16] gait
data in terms of acceleration signals corresponding to PD and
healthy subjects were analyzed and the results showed that
fractal dimensions of the body in PD patients is higher than
that of healthy subjects. The same study also recommended
that the acceleration signal during locomotion in both old and
PD subjects alter with a complex pattern [15 17]. Although in
these methods the stride-to-stride variability has been seen and
analyzed, representing a powerful model for characterizing
the gait variability has been remained an open problem.

In [18], in order to evaluate the gait variability in PD
patients, two features were extracted and used for classifica-
tion of gait data derived from healthy and PD subjects. They
showed that by using a nonlinear support vector machine, it is
possible to distinguish these gait data with an appropriate rate
of accuracy. However, in this method most of temporal infor-
mation of gait data has been neglected and only two features
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used for classification task. In this paper, Hidden Morkov
Models (HMM) is used for modeling of the raw gait data
instead of the extracted features. HMMs have been widely
investigated and applied for past several years in the automatic
speech recognition applications [19]. Recently, this method
have been successfully used for both medical diagnosis and
system monitoring applications such as EEG classification,
ECG classification, character recognition and fault diagnosis
system [20–23]. Especially, this method would be useful for
the classification of signals in terms of time sequences. In this
article, we used HMM to classify the gait data derived from
healthy and PD subjects and compared its performance
against a sophisticated nonlinear classifier.

This paper is organized based on the following sections.
Section II describes gait data and preprocessing procedures
and reviews HMM formulation. Section III presents our re-
sults on the gait data classification problem. Finally, section
IV concludes this paper.

Methods

Data description

The gait data provided by Hausdorff et al. were used in this
study [10,15], and also can be downloaded from web page of
physioNet (http://www.physionet.org) [24]. These gait data
were recorded from 16 healthy subjects (2 men and 14
women) with age of 20–74 years and 15 PD subjects (10
men and 5 women) with age of 44–80 years as they walked
at their normal pace in a 77 m long hallway for 5 min. The
mean age (standard deviation) of the healthy, PD subjects
were 39 (18.5), 67 (10.9)years, respectively. In the healthy
group, any mental problems or motion disorders was not
reported. The ages of the two groups were not noticeably
different. From the recorded force applied to the ground
during walking, 5 min of recording, consisting of stride,

swing, and stand times for each leg and double support
signals for both groups were derived.

Preprocessing

In the current study, the gait data from the right foot of both
PD and healthy subjects in terms of stride interval (time from
the contact of a foot to the ground to the following contact of
same foot) were used. In order to remove the effect of un-
wanted artifacts in the start of recording, the first 20s of each
gait data samples were removed before analysis of the gait
data [10,15]. Based on the gait experiment described in [10],
the subjects were requested to walk through a hallway during
recording of gait signals and turn around at the end of the hall
way and then continue walking. Because of this reason, the
extracted gait signals represent large values in these points and
so should be removed before processing. For removing these
outliers, according to “sigma rule”method, the samples in the
gait data with amplitude greater or less than 2 SDs of median
value of whole signal were replaced by median value [25]. In
Fig. 1 the typical results of removing of outliers from stride
interval time sequence of a PD patient and a healthy subject
are shown.

Hidden marko model

A hidden Markov model (HMM) is a state machine with two
layers including state and observation layers in which a
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Fig. 1 Typical result of outlier removal from the raw gait data in terms of
stride interval: (a) of a 74-year-old male healthy subject; (b) of a female
subject with PD disease. The gait signal with outliers is shown with blue

color. The gait data samples with 2 SDs larger or less than the median
value were substituted with the median value of the related gait signals
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Fig. 2 Representing an HMM. The states in each time are hidden but
only outputs can be observed
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Marcovian process controls the selection of the state in each
time. In standard HMMs, by using a discrete hidden state at
time (t) all of the needed information before this timewould be
known and so the observation at any time depends only on its
current hidden state. In each time, the HMM system is located
in one state and transition between these states are defined
based on an associated probability. Furthermore, each state is
related to the output observation with its associated probabil-
ity. The graphic representation of the HMM is illustrated in
Fig. 2. The states of the Markov chain are hidden, but the
outputs from the Markov chain are observable.

An HMM for continuous data processing is represented by
three matrix, λ=(π, A, B), consisting of a vector of initial
probabilities π, a matrix of transition probabilities A, and a
vector of probabilistic output functions B. Each element of
mentioned matrixes is represented based on the following
equations:

πi ¼ Pr si at t ¼ 0ð Þ ð1Þ

ai j ¼ Pr siat t þ 1 siat tjð Þ ð2Þ

bi xð Þ ¼ Pr Ot ¼ x siat tjð Þ ð3Þ

where x is an observed signal value and s is the state of the
HMM model. In the current study, the output function B is a
Gaussian density function which is shown in the following
equation:

n O;μ ;σð Þ ¼ 1
ffiffiffiffiffiffiffiffi

2πσ
p e

−1
2

O−μ
σ½ �2 ð4Þ

where O, μ and σ represents sequence of observation,
average and standard deviation, respectively. In order to utilize
an HMM model in the real- world applications, three main
problems should be solved:

Problem one Given the observation sequence O = (o1, o2,
…,oT) and the model λ=(π, A, B), what is the
best way for computing P(O|λ), the probabil-
ity of the observation sequence. This problem
is known as Evaluating.
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Fig. 3 Log-likelihood increase
during increasing of iterations of
the training process for both PD
and healthy gait data
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Recognition rates and number of
Gaussian mixtures for PD and
healthy subjects during training
phase
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Problem two Given the observation sequence O = (o1, o2,
…,oT) and the model λ=(π, A, B), what is the
best way for finding corresponding sequence
of states S = (s1, s2,…,sT). This problem is
known as Decoding.

Problem three what is the best way for adjustment of HMM
model parameter (λ) to maximize P(O|λ).
This problem is known as Training.

The significance of solving the third problem is ob-
vious because the model parameters must first be esti-
mated before the models can be used for classification
purposes. For solving this problem, Baum-Welch algo-
rithm has been introduced in the literature [19]. Further-
more, Forward backward recursive and Viterbi algo-
rithms can be used for solving first and second prob-
lems, respectively [19].

In the following, the summary of HMM method in both
training and test phases has been presented. For further infor-
mation about the Hidden Markov Model refer to [19].

1. The number of states (N) and also the structure of transi-
tion matrix are identified.

2. The sequence of observation containing all of the training
samples which belong to a specific class are calculated
and then these samples are divided into the same segments
equal to the number of state using K-means algorithm.

3. The initial values of average and standard deviation cor-
responding to Gaussian model are calculated using K-
means algorithm,

4. Two separated HMM model for classification of PD and
Healthy subjects are trained using the Baum–Welch
algorithm.

5. The parameters of eachmodel corresponding to each class
are saved and used for the test phase.

6. In the test phase, Forward-backward algorithm is used and
by comparison the calculated log-likelihood probability
of test data the class of each data is identified.

Results

As it was told in previous section, the structure of HMM
model is described by three matrix λ=(π, A, B) and so
determining the parameters of this model such as the number
of states and the number of Gaussian mixture is very impor-
tant for training of the HMM model. In addition to these
parameters, iteration numbers can be regarded as an important
factor in training phase that should be considered for training
of the model. In order to determine these parameters, the effect
of each one on the performance of classifier has been inves-
tigated separately when all of the subjects are used for both the
training and test phase. As it was told previously, the Baum–
Welch algorithm is used to optimize the parameters of HMM
model. By using this algorithm through iteration a maximum
of the likelihood would be obtained. In Fig. 3 the relationship
between number of iterations and log-likelihood for both PD
and healthy subjects is shown. As can be seen in this figure,
the log-likelihood maximization begins during about 20 iter-
ations for both PD and healthy gait data. Therefore, an HMM
classifier with twenty iterations can be used for classification.

In order to investigate the effect of the number of states on
the performance of classifier, the relationship between perfor-
mance of classifier and the parameter of number of states has
been investigated. Fig. 4 shows the recognition rates for PD
and healthy subjects for different number of states. These
results show that the best classification performance is obtain-
ed when the number of state is 5.
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Fig. 5 The relationship between
Recognition rates and number of
states for PD and healthy subject
during training phase

Table. 1 HMM structure

Evaluating problem Forward backward

Decoding problem Viterbi algorithm

Training problem Baum-Welch

Number of iteration 20

Number of mixtures 4

Number of states 5

147, Page 4 of 6 J Med Syst (2014) 38:147



The same procedures have been used to investigate the
effect of number of Gaussian mixtures on the performance
of HMM classifier. Figure. 5 shows the recognition rates for
PD and healthy subjects for different number of Gaussian
mixtures. These results show that, the best classification per-
formance is obtained when the number of mixture is 4.

By investigation the effect of aforementioned parameters
on the performance of classifier, the number of states, the
number of Gaussian mixture and maximum number of itera-
tions are chosen 5, 4 and 20, respectively. The final structure
of HMM model with selected parameters for the final evalu-
ation of performance of HMM model in gait data classifica-
tion is shown in Table 1.

In Table 2 the result of classification of PD and healthy
subjects based on the stride-interval gait data using HMM
method has been shown. The leave-one-out (LOO) cross-
validation method was used for evaluation of performance
of the proposed classifier [26]. In this method, one gait pattern
is used for the test of validation and the remaining patterns are
used for the training of the classifier. According to Table 2,
one PD and two healthy subjects were classified incorrectly by
HMM. Two statistical parameters including sensitivity and
specificity are used for evaluation of the accuracy of classifier
in detection of PD and healthy subjects separately. These
parameters are defined as follows:

Sensitivity: the percentage of PD patients who are correctly
recognized as PD ones.

Specificity: the percentage of healthy subjects who are
correctly recognized as healthy ones.

In Table 2 the performance of HMM classifier is compared
to LS-SVM method based on the obtained result from [18].
The comparison of results show that the HMMmethod result-
ed in higher sensitivity rates. However, higher specificity rates
are obtained by using LS-SVM algorithm. The overall accu-
racy rate of both methods is similar with accuracy of 90.3 %.

Conclusions

Signal processing methods can help engineers to achieve
diagnostic information through analysis of walking patterns
in the patients suffering from neurological diseases. This
information can be used to separate persons with specific
neurodegenerative diseases from healthy ones. In the current

study, we have tried to introduce a method to distinguish the
PD persons from healthy ones. The current study is consisted
of three main steps; raw gait data obtaining, preprocessing and
classification using HMM. The gait rhythms of both PD and
healthy subjects in terms of stride interval are used as the input
of HMM classifier. In the preprocessing step, the samples of
gait data recognized as outliers are simply substituted with the
median value of whole time series of gait data. In the final
step, the gait data are classified using HMM classifier. The
investigation of results shows that the proposed method is
efficient for interpretation of PD. The proposed classifier
based on the raw gait data can correctly identify more than
90 % of the 31 subjects. These results are comparable to the
results corresponding to the nonlinear SVM classifier based
on the two feature extracted from the same gait data [18]. The
same gait dataset was also used in several studies. In [27] a
linear model was proposed to investigate the stride interval
time series in PD, but the results showed that such a linear
model is only useful for interpretation of the gait signals
during walking at a constant speed.

In this article because of lack of match between age and
gender of the subjects in PD and healthy subjects, we could
not investigate the effect of these two factors on the perfor-
mance of proposed classifier. However, it was shown that the
effect of gender on usual locomotion patterns is not consider-
able [28]. In another study, It was reported that the effect of
age factor on walking is extremely complex [29]. However,
studies show that the factor of neurological disease is more
effective in changing the rhythm of gait than the factor of age
[3]. In the current study, the size of gait dataset was low and so
this limited us to test the generality of the proposed method on
recognition of PD. In the future studies we hope to construct a
larger gait dataset to evaluate the performance of current
classifier on recognizing PD.
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