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Abstract In brain MR images, the noise and low-contrast sig-
nificantly deteriorate the segmentation results. In this paper, we
propose an automatic unsupervised segmentation method inte-
grating dual-tree complex wavelet transform (DT-CWT) with K-
mean algorithm for brain MR image. Firstly, a multi-dimensional
feature vector is constructed based on the intensity, the low-
frequency subband of DT-CWTand spatial position information.
Then, a spatial constrained K-mean algorithm is presented as the
segmentation system. The proposed method is validated by ex-
tensive experiments using both simulated and real T1-weighted
MR images, and compared with the state-of-the-art algorithms.
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Introduction

Magnetic resonance imaging (MRI) is an important medical
imaging technique for the early detection of abnormal changes
in tissues and organs. In the analysis ofMR images, segmentation
of brain tissues plays a crucial role in three-dimensional volume
visualization, quantitative morphometric analysis and structure
function mapping for both scientific and clinical investigations.

However, automatic brain MR image segmentation is a complex
and challenge task due to the complicated structure of brain.

Various methods have been applied for medical image seg-
mentation, most notably thresholding [1], region-growing [2, 3],
graph based [4], level set based [5], snake [6], clustering [7–10],
and statistical methods. Clustering is the most popular method
in medical image segmentation for its simplicity and efficiency,
with expectation-maximization, K-mean, Fuzzy C-Means, and
neural network algorithms being the typical methods.

Generally, using multi-spectral images (T1-, T2-, PD-
weighted images) will usually generate segmentation results
superior to those using single modality images [11]. In fact,
extracting enough features from a single modality image, be-
yond simple pixel intensities, could make the segmentation
based on it potentially comparable to a multi-modal approach
[12]. In our work, we partition T1-weighted brain MR images
into three main tissue types: white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF), which is a topic of great
importance.

In image segmentation, effective feature presentation could
improve the final segmentation results. Wavelet theory provides
a powerful framework to decompose images into different scales
and orientations, and has been used inmedical image processing
[13]. The discrete wavelet transform (DWT) can provide multi-
ple features of brain MR images [12]. However, since DWT is
not shift invariant and has poor directional selectivity [14], a
pseudo-Gibbs phenomena is exhibited in the neighborhood of
singular points, alternating undershoot and overshoot of a spe-
cific target level [15].

In this paper, we introduce several features which are
robust to shift and noise variation. Firstly, we use the original
intensity-feature which retains the inherent information. Sec-
ondly, we exploit the dual-tree complex wavelet transform
(DT-CWT) [14] to construct DT-CWT-feature, which can
perfectly overcome the shortcoming of the discrete wavelet
transform (DWT). Thirdly, we adopt spatial position (X,Y) to
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generate the position-feature which can capture complicated
spatial layout of the individual tissues.

Based on the effective feature presentation, an automatic
unsupervised segmentation method is presented for T1-
weighted brain MR images with a high noise level and low
contrast. Although the spatial feature is exploited in our meth-
od, we don’t use any probability map to obtain the prior
information. Therefore, registration processes are not required
and the applicability of our method can be extended to dis-
eased brains and neonatal brains.

The rest of this paper is organized as follows. Section 2
briefly describes the dual-tree complex wavelet transform.
Our segmentation method is proposed in Section 3. In
Section 4, experimental results are presented, followed by
the conclusion in Section 5.

Preliminaries

In this section, we will briefly review the dual-tree complex
wavelet transform (DT-CWT). DT-CWT was developed to
overcome the shortcomings of DWT by Kingsbury [14]. It is
a particularly suitable tool for feature extraction, as it is
directionally selective, approximately shift invariant, limited
redundant. Moreover, DT-CWT is efficient to detect the line-
and curve-singularities (edges) which DWT is inefficient.

DT-CWT is implemented using two critically-sampled real
DWTs in parallel, which utilize two trees of real filters to
produce the real and imaginary parts of the complex coeffi-
cients. The odd and even length bi-orthogonal linear-phase
filters are placed as shown to achieve the correct relative
signal delays, so that the constructed complex wavelet is
approximately analytic, which brings approximately
magnitude/phase shift invariance of the wavelet coefficients.
The two set of filters are also designed to give perfect recon-
struction at each level and have some other good properties,
including finite support and vanishing moments.

Similar to 2-D separable DWT, 2-D DT-CWT is imple-
mented with the row-column implementation of 1-D DT-
CWT. Differently, 2-D DT-CWT associates with six 2-D
complex wavelet functions and produces six bandpass
subbands of complex coefficients at each level, which are
strongly oriented at angles of 75°,45°,15°,−15°,−45°,−75°
respectively, as shown in Fig. 1.

The DT-CWTexpansion of an image f(x) can be represent-
ed by the translations and dilations version of six complex

wavelet functions ψb
j;k

n ob∈B

j≤ J ;k∈Z2
and a complex scaling

function Φ J ;k

� �
k∈Z2 [16], that is,

f xð Þ ¼
X
k∈Z2

cJ ;kΦ J ;k xð Þ þ
X
b∈B

X
j≤ J

X
k∈Z2

dbj;kψ
b
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where x=(x1,x2) denotes 2-D variable, B={±75°,±45°,±15°}
denotes six subband directions, cJ,k and dj,k

b refer to corre-
sponding complex coefficients at the level- J low-frequency
subband and the level- j high-frequency subbands.

Our proposed segmentation method

In this section, a detailed description about our proposed
segmentation method is presented. In the preprocessing stage,
the brain region is extracted and intensity inhomogeneities are
corrected using the expectation-maximization segmentation
(EMS) software1 (based on [17]). Then, a multi-dimensional
feature vector is extracted for each pixel. Finally, the segmen-
tation system—spatial constrained K-mean algorithm is pro-
posed for automatic T1-weighted brain MR image
segmentation.

Features extraction

In this paper, we exploit T1-weightedMR images, and expand
each pixel into a multi-dimensional feature vector, character-
izing the image data beyond simple pixel intensities.

Spatial position-feature

The high complexity of spatial structure is an inherent part of
the brain image. For the brain image segmentation, more
features should be obtained from local spatial information.
Generally, the intra variability of the intensity feature within a
tissue (bias) is significantly less than the inter variability
among different tissues in a local region. Appending spatial
position-feature (X,Y) to a multi-dimensional feature vector
could capture the complicated spatial layout of the individual
tissues. In our method, we directly use spatial position infor-
mation as the features, which is different from other methods
[18] obtaining the spatial information from the templates or
probability maps. So registration method is not needed in our
method. In addition, incorporating with spatial position infor-
mation, our algorithm builds the corresponding relationship
between the cluster centroids and localized regions of brain
MR image.

DT-CWT-feature

In order to generate the feature which is robust to shift and
noise variation, we create the DT-CWT-feature from the low-
frequency subband of the one-level DT- CWT. Integrated with
the DT-CWT-feature, the segmentation result of our algorithm
is better than that of wavelet transformwith K-mean algorithm
(named as WTK-mean), due to its properties of approximate

1 http://www.medicalimagecomputing.com/EMS/
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shift invariance and good directional selectivity. The perfor-
mance of our algorithm outperforms that of WTK-mean par-
ticularly with a high noise level, and we will discuss their
comparison results in Section 4.2.

Hence, for each pixel p, a multi-dimensional feature vector
is constructed as the input vector of our algorithm. It has
several components: original intensity-feature Ip, DT-CWT-
feature Dp, and spatial position-feature Sp=[Xp,Yp], denoted
by fp=[Ip,Dp,Sp].

Segmentation system

Spatial constrained K-mean algorithm

K-Means algorithm is an unsupervised clustering algorithm
that classifies the input data points into multiple classes based
on their inherent distance from each other. The algorithm
assumes that the data features form a vector space and tries
to find natural clustering in them. The points are clustered
around centroids ci,i=1,…,Kwhich are obtained by minimiz-
ing the objective

D ¼
X
i¼1

K X
p j∈Ci

������ f p j
−ci

������2

where there are K clusters Ci,i=1,2,…,K. f p j
is the feature

vector of pixel pj, and ci is the centroid of all the pixels pj∈Ci.
K-mean algorithm is often suitable for biomedical image

segmentation since the number of clusters (K) is usually
known for images of particular regions of human anatomy.
In biomedical applications, the spatially varying intensity
change of a biomedical structure is usually caused by inho-
mogeneity in the process of image acquisition, such as the
inhomogeneous distribution of the magnetic field gradient in
MR imaging.

In our work, appending spatial position-feature to the
multi-dimensional feature vector could make pixels clus-
tered into the same centroid belonging to the same local
region. In experiments, we set K according to the size
of MR brain image. The algorithm is composed of the
following steps:

& Initial step: Initialize the centroids with K random vectors
ci
(1)=[ciI

(1),ciD
(1),ciS

(1)], i=1,2,…,K.
& Repeat the following steps until the clustering results of all

the pixels do not change anymore.

– Assignment step: Assign each pixel to the closest centroid

by c tð Þ
i ¼ pj : jj f p j

−c tð Þ
i jj2≤ jj f p j

−c tð Þ
m jj2∀m; 1≤m≤K

n o
, where t is the iterative time.

Fig. 1 A low-frequency subband and six high-frequency subbands which are oriented at 75°, 45°, 15°, −15°, −45°, −75° by the 3 level DT-CWTof the
simulated brain MR image slice (z=86) shown on the left

Fig. 2 A simulated schematic representation about spatial constrained K-
mean algorithm on simulated brain MR slice (z=59) with 3 % noise level
and 0 % intensity inhomogeneity. a Original image slice. b The result

after clustering with spatial constrained K-mean algorithm, where we
label the pixels clustered to same centroid with same intensity. c The
segmentation result with our method
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– Update step: Calculate the new centroids of the new

clusters by c tþ1ð Þ
i ¼ 1

Ct
ij j ∑
p j∈C

tð Þ
i

f p j

Figure 2 presents a simulated schematic representation
about spatial constrained K-mean algorithm on simulated brain
MR slice (z=59) with 3 % noise level and 0 % intensity
inhomogeneity, where we mark the pixels clustered to the same
centroid with the same random intensity in Fig. 2b. So, each
tissue is represented with multiple clusters, and each cluster
corresponds to a localized region of a certain brain tissue. In a

local region, the intra variability of the intensity feature with a
tissue (intensity inhomogeneities) is generally less than the inter
variability among different tissues. Therefore, intensity inho-
mogeneities to some extent could be overcome.

Labeling the clustering centers

After clustering with spatial constrained K-mean algorithm,
each tissue is represented with multiple clusters. A cluster i
(denoted byCi) has a centroid ci=[ciI,ciD,ciS] corresponding to
the input feature vector fp=[Ip,Dp,Sp], and the cluster related

Fig. 3 Comparing the segmentation results of simulated T1-weighted
MR slice 78 with different noise levels and 0 % intensity inhomogeneity
using WT-K-mean and our algorithm. Upper row: 3 % noise level.

Second row: 5 % noise level. Third row: 7 % noise level. Forth row:
9% noise level. Columns: a ground-truth, b original image, cWTK-mean
algorithm, d our algorithm

93, Page 4 of 6 J Med Syst (2014) 38:93



to the same tissue have approximate centroid values on ciI and
ciD. In our work, we adopt the centroid value ciD to estimate
the tissue label of cluster i, which could suppress the noise
effect compared with the value ciI.

To automatic labeling clusters with the tissue class, Bayesian
clustering method is used
label Cið Þ ¼ argmax j∈1;2;3 p tissue jjCið Þ , where p(tissue j|Ci)
is the posterior probability of cluster Ci belonging to tissue j
(CSF, GM and WM). So each cluster is labeled by one tissue
class, which provides the final segmentationmap.We apply the
expectation-maximization (EM) algorithm to calculate the pos-
terior probabilities of clusters belonging to each tissue class in
an unsupervised manner. Fig. 2c is the segmentation result of
the source image (Fig. 2a) with our method.

The EM algorithm iterates between computing the posteri-
or probabilities p(tissue j|Ci) and estimating the mean uj,
variance σj

2, prior probability πj as follows:

& Initialize the mean uj, variance σj
2, cardinal Nj of each

tissue j∈{1,2,3} by K-means clustering method and prior
probability πj=Nj/N (N is the total number of the clusters).

& E-step: compute the posterior probability of cluster i be-
longing to tissue j by Bayes formula

p tissue j
���Ci

� �
¼

π jp Ci

���tissue j
� �

X
k¼1

3

π jp Ci

���tissue k� �; j ¼ 1; 2; 3:

We assume that the probability density function fol-
lows Gaussian distribution, that is, p(Ci|tissue j) has the
form

p Ci

���tissue j ui; σ j

� �� �
¼ 1ffiffiffiffiffiffi

2π
p

σ j

exp −
ciD−uj

� �2
2σ2

j

" #
; j ¼ 1; 2; 3;

where uj and σj
2 are the mean and variance of the

clusters related to tissue j.

& M-step: Update the prior probability πi of tissue j, the
mean uj and variance σj

2:

π j ¼
X

i
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Experimental results

Database and similarity indices

Two brain MR image databases are used in our experiments.
One is simulated MR image database obtained from the
BrainWeb Simulated Brain Database.2 The other is the real
MR database taken from the Center for Morphometrics Anal-
ysis, Massachusetts General Hospital Repository (IBSR).3

These databases all provide the ground truth for quantitative
validation. The number of tissue classes for segmentation is
set to three, which corresponds to CSF, GM and WM. Back-
ground pixels are ignored in the segmentation, and extra-
cranial tissues are removed from all images prior to segmen-
tation with the ground truth. We correct the intensity inhomo-
geneity using the expectation-maximization segmentation
(EMS) software package (based on [17]). To quantify the
overlap between the segmentation results and the ground truth
for each tissue, Dice similarity index [19] and Tanimoto
similarity index [20] are adopted in our experiments.

The efficiency of DT-CWT-feature

To illustrate the efficiency of DT-CWT-feature, we compare
the segmentation results of WTK-mean (with db4 wavelet
transform feature), referring to the ground truth. Figure 3
demonstrates segmentation results on a single slice (z=78)
with varying noise levels and 0 % intensity inhomogeneity.

The segmentation results of WTK-mean are shown in the
third column of Fig. 3. Although the noise could be sup-
pressed by the db4 wavelet transform-feature in the low noise
level, there are still some boundary regions of different tissues
which are not partitioned accurately. Integrated with DT-

2 http://www.bic.mni.mcgill.ca/brainweb
3 http://www.cma.mgh.harvard.edu/ibsr

Table 1 Comparing the segmentation results of six different algorithms
provided by IBSR with our method using Tanimoto similarity index

Method Source GM WM

Mean Std.Dev. Mean Std.Dev.

Adaptive MAP IBSR 0.56 0.13 0.57 0.18

Biased MAP IBSR 0.56 0.17 0.56 0.21

Fuzzy c-means IBSR 0.47 0.12 0.58 0.20

MAP IBSR 0.55 0.16 0.55 0.21

Tree-structure k-means IBSR 0.48 0.12 0.57 0.20

Maximum-Likelihood IBSR 0.54 0.16 0.55 0.21

Our proposed method 0.70 0.04 0.63 0.05
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CWT-feature, our algorithm could suppress the noise effect
and obtain more robust segmentation results in the tissue
boundary regions. The segmentation results of our algorithm
are exhibited in the forth column of Fig. 3.

Comparing the performance of our algorithm with other
methods on real MR data

20 normal T1-weighted real data sets from IBSR are
taken to validate the efficiency of our proposed ap-
proach. These data sets contain varying levels of diffi-
culty, with worst scans consisting of low contrast and
large intensity inhomogeneities. Six different segmenta-
tion algorithms are provided as part of IBSR website for
comparison, which are adaptive Map (amap), biased
MAP (bmap), fuzzy c-means (fuzzy), maximum a
posteriori probability (map), tree-structure k-mean
(tskm), and maximum-likelihood (mlc) algorithm. The
overlap metric used by the IBSR repository is Tanimoto
coefficient. The comparison results using mean and
standard deviation are shown in Table 1. Our algorithm
produces better segmentation results than most of
others.

Conclusions

In this paper, an automatic unsupervised segmentation
method—spatial constrained K-mean algorithm is pre-
sented for T1-weighted brain MR images. Our algorithm
adopts a multi-dimensional feature vector which consists
of intensity-feature, DT-CWT-feature and spatial
position-feature as the input vector. The DT-CWT-
feature based on the low-frequency subband enhances
the robust of our method to the shift and noise varia-
tion. The spatial position-feature enables to capture the
complicated spatial layout of the individual tissues. It
should be noted that our method does not use an atlas
to obtain the prior information. Therefore, registration
processes are not required and the applicability of our
method can be extended to diseased brains and neonatal
brains in the further research.
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