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Abstract Different approaches have been applied for quanti-
tative analysis of EMG signals. This study introduces the
effect of Multiscale Principal Component Analysis
(MSPCA) denoising method in ElectroMyoGram (EMG) sig-
nal classification. The effect of the MSPCA denoising method
discussed on EMG signal classification. In addition, effect of
Multiple Single Classification (MUSIC) feature extraction
method presented and compared for the classification of
EMG signals. The results were accomplished on the basis of
EMG signal data to classify into normal, ALS or myopathic.
Furthermore, total accuracy of classifiers such as k-Nearest
Neighbor (k-NN), Artificial Neural Network (ANN) and Sup-
port Vector Machines (SVMs) were discussed. Significant
results were found by using MSPCA denoising method. The
comparisons between the developed classifiers were based on
a number of scalar performances such as sensitivity, specific-
ity, accuracy, F-measure and area under ROC curve (AUC).
The results show that MSPCA de-noising has considerably
increased the accuracy as compared to EMG data without
MSPCA de-noising.
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Introduction

Electromyography (EMG) signal is a biomedical signal that
measures electrical currents generated in muscles during con-
traction. The nervous system controls the muscle activity both
contraction and relaxation. Muscles are being managed by the
nervous system and dependent on the anatomical and physi-
ological structure. EMG signals contain noise while traveling
on different tissues. Moreover, the EMG signal acquisition
collects signals from motor units at a time which may be
effected by different signals. That is what makes EMG signal
more complex. Motor Unit Action Potentials (MUAPs) in
EMG signals provides an important source of information
for the diagnosis of neuromuscular disorders [1]. The nature
and characteristics of the signal can be understood and hard-
ware integrations can be made for various EMG signal appli-
cations [2]. Recent improvements in technologies of signal
processing have made it practical and reliable to develop
advanced EMG signal analysis [3–5]. Analysis of EMG sig-
nals using powerful and advance methodologies is becoming
new trend in biomedical signal processing. Because EMG
signal analysis is crucial in clinical diagnosis of neuromuscu-
lar disorders.

Recently signal processing techniques and machine learn-
ing methods have received extensive attention in EMG signal
analysis and classification for diagnosis of neuromuscular
disorders. Frequently used signal processing techniques are
Fourier transform, autoregressive modeling, wavelet trans-
form, time-frequency approaches [6–8]. ANN used to classify
motor unit action potentials (MUAP) of muscles [9]. SVM
and ANN are utilized together to diagnose neuromuscular
disorders [10, 11]. Neuro-Fuzzy systems are also used for
diagnosis of neuromuscular diseases [12]. Tuning and
upgrading of regularization and the kernel parameters increas-
ing classification accuracy [13, 14]. Machine learning tech-
niques including Artificial Neural Networks (ANN), dynamic
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recurrent neural networks (DRNN), support vector machines
(SVM) and fuzzy logic systems used for diagnosis of neuro-
muscular diagnosis. EMG signal decomposition has been
done by wavelet spectrum matching and principle component
analysis of wavelet coefficients with reasonable accuracy rates
[15]. Multilayer perceptron neural networks (MLPNN), dy-
namic fuzzy neural network (DFNN), adaptive neuro-fuzzy
inference system (ANFIS) and combined feature extraction
methods (Autoregressive, discrete wavelet transform and
wavelet packed energy) presented according to their effect
on accuracy in the classification of EMG signals [16]. PSO
optimized SVM classification technique improves accuracy of
EMG signal classification [17]. Subasi et al. [18] developed
feed forward error back propagation artificial neural networks
(FEBANN) and wavelet neural networks (WNN) based clas-
sifiers and compared according to their accuracy in classifica-
tion of EMG signals. They used an autoregressive (AR) model
feature extraction as an input to classification system. The
success rate for the WNN technique was 90.7 % and for the
FEBANN technique 88 %.

One of the major problems in the development of an
automatic EMG signal classification systems is the
noise problem. During the recording process, noise se-
riously distorts the signal. Noise can be baseline wan-
dering, motion artifact, power-line interference and elec-
trode pop or contact noise. In this research, noise was
removed with Multiscale Principal Component Analysis
(MSPCA) technique. MSPCA is employed to generate a
helpful representation of EMG signals that removes
noise from the signal waveform. Besides denoising
methods, the feature extraction methods are also very
important for higher classification performance. This
paper investigates classification performance of different
machine learning methods with Multiscale Principal
Component Analysis (MSPCA) de-noising technique
using intramuscular EMG signals. In this study, EMG
data is taken from different subjects and then MUSIC
signal processing techniques and machine learning
methods applied to classify EMG signal for diagnosis
of neuromuscular disorders. EMG signal classification
accuracy improved by utilizing MSPCA. The effects of
MSPCA de-noising and MUSIC feature extraction
methods are compared and discussed using different
performance measures.

The rest of the paper is organized as follows: in the next
section, we explained the subjects and present the methods
MSPCA, MUSIC, ANN, k-NN, SVM methods. In Section 3
complete experimental results in respect to different classifi-
cation accuracy measurements such as area under ROC curve,
F-measure and classification accuracy is presented. In
Section 4, discussion is given on the impact of used denoising
and classification methods. Finally, the conclusions are sum-
marized briefly in Section 5.

Materials and methods

EMG data

The EMG signals were recorded and analyzed under usual
conditions for MUAP analysis. The recordings were made at
low (just above threshold) voluntary and constant level of
contraction. Visual and audio feedback was used to monitor
the signal quality. A standard concentric needle electrode was
used. The EMG signals were recorded from five places in the
muscle at three levels of insertion (deep, medium, low). The
high and low pass filters of the EMG amplifier were set at
2 Hz and 10 kHz. The material consisted of a normal control
group, a group of patients with myopathy and a group of
patients with ALS. The control group consisted of 10 normal
subjects aged 21–37 years, 4 females and 6 males. 6 out of 10
were in very good physical shape, and the remaining except
one was in general good shape. None in the control group had
signs or history of neuromuscular disorders. The myopathy
group includes 7 patients; 2 females and 5 males aged 19–
63 years. All 7 had clinical and electrophysiological signs of
myopathy15. The ALS group consisted of 8 patients; 4 fe-
males and 4 males between 35 and 67 years old. In the
meantime, clinical and electrophysiological signs compatible
with ALS, 5 of them died in a couple years after beginning of
the disorder, supporting the diagnosis of ALS. The brachial
biceps and medial vastus muscles where used in this study
because they were the most frequently investigated in the two
patient groups [19].

MSPCA denoising method

Multiscale Principal Component Analysis (MSPCA) com-
bines the features and capability of Principal Components
Analysis (PCA) to decorrelate the variables by obtaining a
linear relationship. MSPCA decorrelate autocorrelated mea-
surements by using wavelet analysis to get significant fea-
tures. MSPCA evaluates the PCA of the wavelet coefficients
at each scale and merge the results at related scales. Due to its
multiscale manner, MSPCA is convenient for modeling of
data for signals whose behavior changes over time and fre-
quency [20].

Signal processing by PCA is extensively used as a classical
multiscale signal processing tool [21–23]. PCA has been
applied in different fields of science and engineering to better
utilize its ability [20, 24, 25]. For biomedical signals like
EMG, a robust extension of classical PCA by analyzing
shorter signal segments is suggested [26]. It may be used in
data reduction, beat detection, classification, signal separation
and feature extraction [27]. The desired quality of processed
signals is achieved by selecting the principal components (PC)
based on energy features in selected wavelet subset matrices.
The number of PC selection is based on cumulative
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percentage of total variation of variances to control the quality
of denoised signals. PCA is performed on these matrices for
signal denoising. PCA denoising follows the idea that
retaining only the principal components with highest variance
to reconstruct the decomposed signal. The choice of
multiscale matrices and selection of eigenvalues preserve the
desired energy in the processed signals [20, 24, 25]. PCA
transforms the data matrix statistically diagonalizing method
by the covariance matrix. The process is obtaining the corre-
lation between variables in the data. If the measured and
evaluated variables are related, the first few entities present
the relationship between the variables. The MSPCA method-
ology decomposes each variable on a selected type of wave-
lets. The PCA model is determined one by one for the coef-
ficients at each scale [20].

PCA transforms n x p data matrix as X. The variables
calculated as a linear weighted sum obtained as,

X ¼ TPT ð1Þ

where, P represents the principal component loadings,T is the
principal component scores, n and p are represents number of
dimensions and variables. The principal component loadings
represent direction and position of the hyperplane which
evaluate the highest probability of residual variance referred
measured variables. Multiscale PCA (MSPCA) combines the
capability of PCA to extract the crosscorrelation or relation-
ship between the variables with orthonormal wavelets. The
measurements for each variable (column) are decomposed to
its wavelet coefficients using the same orthonormal wavelet
for each variable in order to combine the benefits of PCA and
wavelets. This results in transformation of the data matrix, X
into a matrix, WX, where W is an n x n orthonormal matrix
representing the orthonormal wavelet transformation operator
containing the filter coefficients. The matrix, WX is as big as
the original data matrix size, X, but related to the wavelet
decomposition, the deterministic component for each variable
inX is compressed in a relatively small number of coefficients
in WX, when the stochastic supplement in each variable is
approximately decorrelated in WX, and propagate over all
components according to its power spectrum. To make use the
multiscale components of the data, PCA of the covariance
matrix coefficients at every scale is calculated separately from
the other scales. The outcoming scores at every scale are not
cross correlated because of PCA, and their autocorrelation is
roughly decorrelated because of the wavelet decomposition.
Being dependent on the character of the application, a lesser
subset of the principal component scores and wavelet coeffi-
cients can be chosen at every scale. The amount of principal
components, to be absorbed at every scale is not altered by the
wavelet decomposition because it does not influence the core
relationship connecting the variables at any scale. As a result,

existing techniques like, cross validation, screen test, or par-
allel analysis may be used for the data matrix in the time
domain or to every wavelet coefficient to choose the appro-
priate amount of components. For choosing the relevant
wavelet coefficients, distinct methods may be applied accord-
ing to the application. Using split thresholds at every scale
permits MSPCA to bemore responsive to scale-varying signal
characteristics like autocorrelated measurements. Limiting of
the coefficients at every scale points the area of the time-
frequency space. Details are given in [20].

Feature extraction using multiple signal classification
(MUSIC) method

EMG signal includes its own signal components. Raw EMG
data need to be extracted to define the composed features.
Signal should be preprocessed in order to feed classification
algorithms to classify efficiently [15]. The frequency content
of the signal extracted from raw EMG signal by MUSIC
method.

The multiple signal classification is a frequency estimation
method as a development of Pisarenko harmonic decomposi-
tion which is both first frequency estimation method and
based on eigen decomposition [28–30]. The dimensional
space is divided into signal and noise components using the
eigenvectors of the correlation matrix [31].

Qs ¼ q1q2⋯qP
i
;Qw ¼

h
qPþ1⋯qM

h i
ð2Þ

Length of the time window M = P + 1 that means number
of complex exponentials are 1 greater than the number of
complex exponentials to allow the size of the time window
likeM> P + 1. Hence, dimension of noise subspace is greater
than 1. Advantage of larger dimension is procuring an im-
proved and stronger frequency estimation method. Due to the
orthogonality between the noise and signal subspaces, all time
window frequency vectors of the complex exponentials are
orthogonal to the noise subspace from

Psv f p

� �
¼ v f p

� �
Pwv f p

� �
¼ 0: ð3Þ

Thus, for each eigenvector (P < m ≤ M)

vH f p

� �
qm ¼

XM

k¼1
qm kð Þe− j2π f p k−1ð Þ ¼ 0 ð4Þ

for all the P frequencies fp of the complex exponentials.
Therefore, if we compute a pseudospectrum for each noise
eigenvector as

Rm ej2πf
� � ¼ 1

vH fð Þqmj j2 ¼ 1

Qm ej2πfð Þj j2 ð5Þ
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the polynomial Qm has M − 1 roots. These roots produce P
peaks in the pseudospectrum from Eq. (5) [31].

The pseudospectra of M − P noise eigenvectors shares its
roots with the signal subspace. The remaining roots of the
noise eigenvectors procure at different frequencies. There are
no restrictions on the range of roots. If there is some near the
group circle, can produce extra peaks in the pseudospectrum.

Rmusic e j2πf
� � ¼ 1XM

m¼pþ1
vH fð Þqmj j2

¼ 1XM

m¼pþ1
Qm ej2πfð Þj j2

ð6Þ

The P complex exponentials’ frequency estimation taken
as the P peaks in pseudospectrum. Since in the Eq. (6) does
not include information about the powers of the complex
exponentials or the background noise level, pseudospectrum
term is used [31].

The presumption in the MUSIC pseudospectrum is the
noise eigenvalues equal to λm=σ

2 w, which means the noise
is white. But in practice the noise eigenvalues will not be equal
when prediction method used instead of correlation matrix.
The variations become more obvious when the correlation
matrix is predicted by small samples of data. Therefore, a little
variation on the MUSIC algorithm, known as the eigenvector
(ev) method, was intended to define potentially different noise
eigenvalues [32]. The pseudospectrum is

Rev ejω
� � ¼ 1XM

m¼pþ1

1

λm
vH fð Þqm�� ��2 ¼ 1XM

m¼pþ1

1

λm
Qm ej2πf

� ��� ��2 ð7Þ

where λm is the eigenvalue corresponding to the eigenvector
qm, for the method. The pseudospectrum is normalized by its
corresponding eigenvalue for each eigenvector. The eigenvec-
tor and MUSIC methods are identical in case of equal noise
eigenvalues (λm=σ

2
w) for P+1≤m ≤ M [31].

The peaks in the MUSIC pseudospectrum corresponds
approaches to zero in Eq. (7). As a matter of fact, we may
prefer z-transform instead of this denominator which is sum of
the z-transforms and formulated as [31].

Pmusic zð Þ ¼ ∑M
m¼pþ1Qm zð ÞQ�

m

1

z�

� �
ð8Þ

Classification algorithms

k-nearest neighbor (k-NN)

K-nearest neighbour (k-NN) is a popular algorithm due to its
speed, because there is almost no learning process. Theoretical
background of k-NN is pretty simple. There are K training
inputs with a specified volume [33].

We first point an input by x and the number of inputs in one
class as Nk, where k €{1, 2}. We use two simple probabilities
to quantify [33]. The simple probability equations are de-
scribed below

p x
���k� �

¼ Nk

N
ð9Þ

where N=N1+N2 . The background probability is evaluated
by the following equation

p k
���x� �

¼
p x

���k� �
p kð Þ

p x
���1� �

p 1ð Þ þ p x
���2� �

p 2ð Þ
ð10Þ

where p(k) is the a prior probability of the kth class. If p(1)=
p(2) we have

p k
���x� �

¼ Nk

N
ð11Þ

The query vector is tagged as class 1 If N1>N2. If the prior
information is updated to p(1)>p(2) then we have

p k
���x� �

¼ p kð ÞNk

p 1ð ÞN1 þ p 2ð ÞN 2
ð12Þ

There is also another way to find same result. The proba-
bility of the kth class is defined for given a volume V

p x
���k� �

¼ Nk

N
ð13ÞÞ

The background probability of the kth class is described as

p k
���x� �

¼
Nk

V
p kð Þ

N1

V
p 1ð Þ þ N2

V
p 2ð Þ

ð14Þ

It seems like Bayes rule which is the base for deriving a k-
nearest neighbor classification. k-NN has a model selection
problem like other machine learning algorithms. k number
must be carefully selected based on model specifically. Dis-
tance measure formulas should be selected because different
formulas may cause different outputs such as Manhattan and
Euclidean distance formulas [33].

Artificial neural networks (ANN)

Artificial neural networks (ANNs) are computing systems
with many simple, highly interconnected processing elements
which are called nodes or artificial neurons to abstractly
simulate the organization, structure and operation of the
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biological nervous system. A biological neuron collects input
signals from near neurons via the dendrites, conjugates the
signals, and produces an output response then forward to other
neurons via the axon. In addition that, a neuron makes a
connection to other neurons by axons with the dendrite tree
of a neighboring neuron. The neurons are characterized as
mathematical function with numerical inputs and a single
output [34]. It is obvious that learning can be modeled math-
ematically like classification, if the first perceptron has a
number of inputs. Learning in ANNs is accomplished through
special training algorithms developed based on learning rules
presumed to imitate the learning mechanisms of biological
systems. There are many architectures and types of neural
networks especially for learning functions in signal processing
field. The details are well documented in [35, 36].

The perceptron and the biological neuron are comparable
in the following ways [6]. The input of the perceptron has
different features, thus becomes similar to real dendrite
branches of the biological neuron. The synapse connection
wj is modeled as weights which is very important for summa-
tion and activation function. The processing of the weighted
inputs to calculate the output of the perceptron is done by
summation node using following mathematical function
which acts like nucleus of the biological neuron:

ci ¼ f ∑ jw jxij
� � ¼ f uið Þ ð15Þ

The activation function f effects neuron’s behavior and it is
generally has a limited increasing and nonlinear function like
sigmoid function:

f uið Þ ¼ 1

e−ui
ð16Þ

The output ci is result of calculation which is spreading
along the axon. In the perceptron, learning quality and rate is
equivalent to optimum adjustments of weights to compare the
real network output and the expected network output for a
particular training input. The perceptron learning algorithm is
not able to classify when the data is not separable. But,
perceptron could produce much more separating limitations
if connected like a network that has links in each other [37].
This neural network design is known as the multilayer
perceptron (MLP) which is one of the most common neural
network designs. MLP design has a single input layer attached
to output layer via a hidden layer. In the network, every node,
in each layer, is linked to every node in the next layer. An N-
layer MLP network generally has an input layer, N - 1 hidden
layers and an output layer. The complexity of the separation
boundary depends on the number of hidden layers and nodes
per layer. The activation functions create separator boundaries
instead of linear function [6].

Support vector machines (SVMs)

Vapnik established Support vector machines (SVMs) in 1992
as a Supervised Learning Method [38]. SVMs are set of
supervised machine learning methods which is using in com-
puter science for classification. Although basic SVM is type of
tree algorithm, SVMs are capable to classify via different
kernel approaches. The main advantage of SVM is having
the best generalization capability on statistical learning theory
field [39]. Base of SVM is a linear separator by a hyperplane
with a given margin sizes. The hyperplane divides into two
classes which are linearly dividable groups of points in a
multidimensional space. In theory this situation is possible
but in daily life both classes may not linearly separable since
theymixed up. This case confuses the classifier which is using
linear hyperplane. Due to fact that, there is a requirement to
apply a nonlinear transformation from input space to feature
space [6].

The hyperplane shows evaluated sum of all training sam-
ples xi. Algorithm searching for the next hyperplane to make
possible the separation linearly in feature space,

f xð Þ ¼ ∑n
i¼1wi; xið Þ þ b≥1 if yi ¼ þ1 ð17Þ

f xð Þ ¼ ∑n
i¼1wi; xið Þ þ b≤1 if yi ¼ −1 ð18Þ

Equations (17) and (18) can be used together for a strict
linear discriminant function

yi f xð Þ≥1 ð19Þ

The closest points to the hyperplane have an important role
since they detect the size of class margins and boundaries. If
linear separation not applied to both two classes in feature
space, strict discriminant function cannot be weaken which is
represented in Eq. (19). To make weaker, the soft-margin
SVM classifier is defined as [40]:

eS X ;eS� �
¼ 1

2
∑n

i¼1w
2
i þ C ∑n

i¼1Si ð20Þ

subject to

yi f xð Þ≥1−Si Si > 0 ð21Þ

The parameter ‘C’ is an adjuster for the relationship be-
tween the training errors and generalization capability [6].
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Experimental results

The decomposition of EMG signals into integrated MUAPs
and their classification into groups of similar characteristics is
a common machine learning problem [18]. Complexity of the
problem is growing since MUAPs waveforms have unknown
and dissimilar shapes. Main goals of analyzing signals are to
get better accuracy in shorter time with flexible and useful
methods whose reliabilities are accepted. Our EMG data
collected from 25 patients. The control group consisted of
10 normal subjects aged 21–37 years, 4 females and 6 males.
6 out of 10 were in very good physical shape, and the remain-
ing, except one, were in general good shape. In control group
none of them have any signs or history of neuromuscular
disorders. The group with myopathy consisted of 7 patients;
2 females and 5males aged 19–63 years. All 7 had clinical and
electrophysiological signs of myopathy15. The ALS group
consisted of 8 patients; 4 females and 4 males aged 35–
67 years [19].

In this study, MSPCA denoising and MUSIC feature ex-
traction method have been applied for EMG signal classifica-
tion and good accuracy is achieved (Fig. 1). In order to
analyze the coherence between method combinations of our
approach, the whole EMGdata is separated as training and test
data since sets must be selected independently from each
other. The classification model built via training set and ver-
ified by the test set.

Since, k-fold cross-validation method is a well-known
and reliable method for performance evaluation, many
researchers used the k-Fold cross validation method to
decrease bias which is related with random sampling of
the produced data sets [18, 16, 41, 42]. K-fold cross
validation randomly divide the data into k subsets which
are calling as folds and approximately same size. The

cross-validation accuracy (CVA) is the average of the k
individual accuracy measures

CVA ¼ 1

k
∑k

j¼1Ai ð22Þ

where k (10 in our case) is the number of folds used, and Ai is
the accuracy measure of each fold [43]. The training data is
used for building of the classificationmodel and the test data is
used for validation.

The number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) are used to evaluate
performance of classifiers. Different definitions are used for
different domains. The sensitivity and specificity are exten-
sively used in diagnostic and detection tests. Sensitivity shows
the amount of people with disease, who have a positive test
result,

Sensitivity ¼ TP

TP þ FN
x100% ð23Þ

Specificity shows the amount of people without disease
who have a negative test result, which is 1 – FP and defined
as:

Specificity ¼ TN

TN þ FN
x100% ð24Þ

Accuracy is used as a measure, which is:

Accuracy ¼ TP þ TN

TP þ FN þ TN þ FP
x100% ð25Þ

Raw

EMG

Data

Denoising
(MSPCA)

Feature 
Extraction
(MUSIC)

Classification
(k-NN, SVM, 

ANN )

Myopathic

ALS

Normal

Fig. 1 Blok diagram of proposed
system

Table 1 Confusion Matrix for k-NN, ANN, and SVM Classifiers

k-NN ANN SVMs

Actuala/Predicted ALS Myopathic Normal ALS Myopathic Normal ALS Myopathic Normal

ALS 286 8 6 287 6 7 289 0 14

Myopathic 21 255 24 5 246 49 7 273 20

Normal 27 75 198 11 10 279 12 17 271

aAccording to the medical expert
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F-measure is an another measure used to evaluate perfor-
mance [17]

F−measure ¼ 2 TP

2 TP þ FN þ FP
x100% ð26Þ

We calculated performances of different machine learning
methods. Classification accuracy is the number of correctly
classified instances divided by the full number of instances.
Results are shown in Table 1.

Results without using MSPCA denoising method are not
good enough with the EMG data for any of the classifier. On
the other hand, as it can be seen easily by comparing Tables 1,
2 and 3 and Figs. 2 and 3 results with MSPCA denoising are
considerably improved. SVMs obtained the best classification
accuracy with 92.55 %, ANN is 90.02 % and k-NN is 82.11 %
accuracy. This results shows that SVM is better than the others
for EMG patterns with MSPCA denoising. As said in litera-
ture SVMs have one of the best generalization capabilities. In
some cases SVM can classify effectively but in our case which
is classification of EMG data, SVMs could not achieve effi-
cient performance. Since, EMG has a complex structure,
SVMs and other classifiers need to be feed with more clear
data. In spite of the fact that features of EMG data needs to be
extracted to obtain better performance from classifiers [39].
Since SVMs have an adjuster parameter for the relationship
between the training errors and generalization capability, error
rate is not increasing when capability increased [6]. It is
obtained that to confirm the optimum number of the parameter
within a logical range is higher accuracies obtained by using
higher values. The accuracy for SMVwithMSPCA denoising

is 92.55%, conversely 57%withoutMSPCA. This proves the
great advantage of using MSPCA denoising.

For Myopathy, highest sensitivity obtained with SVMs in
both with and without MSPCA denoising. But for ALS,
highest sensitivity obtained by ANN which shows that for
ALS, ANN can perform better than others. Highest specificity
obtained by ANN in both cases which means ANN is com-
patible to classify normal EMG data. MSPCA perform best on
ANN with almost 40 % increment which was following by
SVMs with 35% increment. According to fact that better total
accuracy can be expected fromSVMswithMSPCAdenoising
and ANN has better compatibility with SVM.

The classification performance also measured via receiver
operating characteristic (ROC) curve which is graphical tech-
nique. It is produced by plotting true positives as percentage of
all positives in the sample versus negative ones using cross-
validation. For each fold of cross-validation it counts the true
and false positives in the test set and plot the results to ROC
axes [44]. Then, the classification performance can be mea-
sured by the mean area, which is the area under the ROC curve
(AUC). The mean of area which is under curve as an average
gives result using drawn and calculated axis points to evaluate
how reliable the estimated results. Correspondingly, the qual-
ity of the estimation of a curve depends on the number tested
thresholds. The AUC is generally taken as the index of per-
formance because it generates one accuracy output which not

Table 2 Comparison of performance results of three different classifiers
without MSPCA de-noising

Statistical Parameters k-NN ANN SVMs

Specificity (%) 51,33 61,33 54,66

Sensitivity (Myopathic) (%) 49 34,66 53,66

Sensitivity (ALS) (%) 51,33 56,66 62,66

Total Classification Accuracy (%) 50,55 50,89 57

Table 3 Comparison of performance results of three different classifiers
with MSPCA de-noising

Statistical Parameters k-NN ANN SVMs

Specificity (%) 66 93 90,3

Sensitivity (Myopathic) (%) 85 82 91

Sensitivity (ALS) (%) 95,3 95,67 96,33

Total Classification Accuracy (%) 82,11 90,02 92,55

0

20

40

60

80

100

k-NN ANN SVM

Accuracy

MUSIC

MSPCA + MUSIC

Fig. 2 Graphical representation of results of both approaches

0

20

40

60

80

100

120

k-NN ANN SVMs

Specificity (%)

Sensitivity (Myopathic) (%)

Sensitivity (ALS)  (%)

Total Classification Accuracy (%)

Fig. 3 Graphical representation of evaluation performance of classifiers
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depends on any defined threshold [45–47]. It can be seen from
Table 4 that AUC results are close to previous results but not
in the same order. Total AUC of ANN is slightly better than
other classifiers with 0.963. Since there is coherence between
normal data and ANN, 0.952 which is best for normal data
obtained. SVM is following ANN with 0.956. Even if results
little higher, best classification rate also obtained by ANN for
Normal data, comparing to SVM. Since results are very close
to each other, it is Acceptable.

F-measure is another performance measurement which
supports our results. As shown from Table 5 best total accu-
racy obtained by using SVM which is following by ANN.
Although total accuracy of SVM is better than ANN, ANN
performed surprisingly efficient for ALS data with 0.952
which is little better than SVM.

Discussion

Other significant EMG classification studies can be find in
literature such as [3, 48–50, 39, 16]. In some studies EMG
signal data obtained from surface and classified using some
other techniques while some of them using simulated EMG
datasets. We used intramuscular EMG signal data which gath-
ered using needle from muscle. Since collection method is
different, it cannot be said both of the data is EMG data and by
using same methods, same accuracy rate can be achieved.

SVM approach can be applied to classifying EMG signals
due to their wide generalization capability, feasibility and
flexibility compared to traditional classification techniques.
Advantage of the capability provides higher classification
accuracies and a lower sensitivity. Effects of the cost param-
eter C and kernel parameter γ values for EMG signal dataset
are discovered. C organizes the range of support vector which
can provide to the decision function. As a result, by using low

values of C, big numbers of support vectors were obtained and
more computations required determining the decision func-
tion. Hence, low number of support vectors can be used as
parameter while choosing C. it is obtained that to confirm the
optimum number of support vectors which are as function of
C and γ within a logical range, while applying sufficiently
high values of C, number of support vectors does not decrease
anymore. Higher accuracies obtained by using higher C
values. As an experiment, it is found that for lower values of
C good generalization ability is achieved. For different γ
values, different margin sizes are obtained on the generaliza-
tion [40, 51, 52]. Different kernels, C and gamma values were
tried to find the best accuracy results, the best accuracy ob-
tained by using poly kernel with degree two, C value 650 and
gamma value 0.001.

Regarding with presented results in Table 1 and Table 2 it
can be said that denoising EMG data with MSPCA is effi-
ciently improved classification accrucy. After denoising with
MSPCA accuracy uprised from 57 to 92.55 % for SVM, from
50.89 to 90.02 % for ANN, from 50.55 to 82.11 % for k-NN.
Consequently, we can say that EMG data is more coherent to
classify with SVM classifier either not denoised or denoised.
In total classification accuracy SVMs achieved best perfor-
mance although it wasn’t best on specificity. Best specificity
achieved by ANN both with and without MSPCA denoised
EMG data. While specificity of SVM is 90.3 % ANN
achieved the best with 93 %. According to fact that it can be
said normal data should be classify with ANN to get highest
accuracy.

Conclusion

In this paper, we find out considerable accompanies between
classifiers, denoising and decomposition methods, which
proved by the results. Novelty of this study is achieving
significantly better performance by denoising with MSPCA
over the three EMG signal patterns: normal, myopathic and
ALS. This was concluded using classifiers such as ANN, k-
NN, SVM and MUSIC decomposition method with MSPCA
denoising. During investigation of accompany between used
methods, we comprehend how to get higher accuracy by
rearranging kernel parameters of SVM. Generally it is better
not to use default parameter values of SVM kernels. The
classification accuracy with MSPCA improved to 92.55 %
which was 57 % without MSPCA using same MUSIC and
SVM combination. Classification accuracy of other classifiers
also increased such as ANN and k-NN. Improvement of
classification accuracy for SVM is 35.55 %, for ANN is
39.87%, for k-NN is 31.66%.MSPCA denoising can become
helpful for diagnosing of neuromuscular disorders regarding
these results and methods.

Table 4 AUC results for
different classifiers k-NN ANN SVM

Normal 0.88 0.952 0.923

Myopathic 0.89 0.958 0.962

ALS 0.956 0.979 0.984

Total 0.909 0.963 0.956

Table 5 F-measure of
different classifiers k-NN ANN SVM

Normal 0.75 0.879 0.9

Myopathic 0.799 0.875 0.925

ALS 0.902 0.952 0.951

Total 0.817 0.902 0.925
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