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Abstract A new scheme was presented in this study for the
evaluation of fetal well-being from the cardiotocogram
(CTG) recordings using support vector machines (SVM)
and the genetic algorithm (GA). CTG recordings consist of
fetal heart rate (FHR) and the uterine contraction (UC)
signals and are widely used by obstetricians for assessing
fetal well-being. Features extracted from normal and patho-
logical FHR and UC signals were used to construct an SVM
based classifier. The GA was then used to find the optimal
feature subset that maximizes the classification performance
of the SVM based normal and pathological CTG classifier.
An extensive clinical CTG data, classified by three expert
obstetricians, was used to test the performance of the new
scheme. It was demonstrated that the new scheme was able
to predict the fetal state as normal or pathological with
99.3 % and 100 % accuracy, respectively. The results reveal
that, the GA can be used to determine the critical features to
be used in evaluating fetal well-being and consequently
increase the classification performance. When compared to
widely used ANN and ANFIS based methods, the proposed
scheme performed considerably better.

Keywords Fetal Heart Rate (FHR) . Cardiotocogram
(CTG) . Diagnosis . Support VectorMachines (SVM) .

Genetic Algorithm (GA)

Introduction

The cardiotocography (CTG), introduced into clinical prac-
tice in the late 1960s, is a non-invasive and a low-price
technique for assessing fetal status. The baby’s fetal heart
rate (FHR) and the mother’s uterine contractions (UC) are
recorded on a paper trace known as cardiotocograph. This is
achieved by using a Doppler ultrasound transducer to mon-
itor FHR and a pressure transducer to monitor UC. Since the
fetus is not available for direct observations, CTG is widely
used by obstetricians for assessing fetal well-being. It allows
for the early identification of a pathological state (i.e. con-
genital heart defect, fetal distress or hypoxia, etc.) and
assists the obstetrician to predict future complications and
intervene before there is an irreversible damage to the fetus.

CTG recordings are visually analyzed by experts which
makes the interpretations subjective and not reproducible.
This is the originating point of the debates on whether the
CTG monitoring is effective or not, especially in low-risk
pregnancies [1]. In addition, it was shown that over-reliance
on the test has led to increased misdiagnosis of fetal distress
and hence increased the number of cesarean deliveries [2].
Although guidelines were developed for evaluating the CTG
recordings, inter-observer and intra observer variations in
the interpretations and the misdiagnosis of fetuses due to
different experience level of the experts still constitute a big
dilemma [3–5]. To increase the utility and the effectiveness
of the CTG monitoring and minimize the inconsistencies in
the interpretations, a lot of effort has been devoted by
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researchers from both medical and engineering backgrounds
towards developing computerized systems for the analysis
and the classification of CTG recordings.

Various techniques have been proposed in the literature
for the prediction and classification of fetal state from CTG
recordings. In a study presented in [6], FHR signals
recorded between 38 and 40 week gestation were classified
using a statistical method. Auto-regressive moving-average
(ARMA) model parameters of 3 min FHR segments were
used as features for a retrospective classification of the FHR
segments, using a linear discriminant function. Compared to
visual classification results, the computer/observer classifi-
cation agreement was found to be 85 %. In another study
[7], hidden Markov models (HMMs) were used to identify
the fetal state as either hypoxic (low supply of oxygen) or
normal. Both time and frequency domain features were used
to train two separate HMM models. A maximum overall
classification rate of 83 % was reported after testing with
various HMM configurations. The authors of [8] used time
domain parameters like mean, standard deviation, approxi-
mate entropy and frequency domain parameters obtained
from the power spectral density (PSD) of the FHR signals
along with fuzzy inference systems (FIS) to predict two very
common fetal pathological conditions: Intra-Uterine Growth
Retardation (IUGR) and type-I Diabetes. Support vector
machines (SVM) were used in another study [9] to identify
fetuses compromised and suspicious of developing metabol-
ic acidosis. The method proposed in [10] uses nonlinear
features like fractal dimension, approximate entropy and
Lempel Ziv complexity along with Naive Bayes and SVM
classifiers to classify FHR signals as normal or pathological.
Results based on 189 recordings revealed an overall sensi-
tivity and specificity of 70 %. Methods based on wavelets
[11–13], artificial neural-networks (ANN) [14, 15] and
adaptive neuro-fuzzy inference systems (ANFIS) [16] have
also been proposed. A comparative study of neural networks
and statistical methods is presented in [17].

In the first phase of the study, unlike most of the methods
presented in the literature which use features extracted only
from FHR signals to classify fetal states, features extracted
from both FHR and UC data were used in an SVM based
classification scheme. SVM has been one of the most widely
used and popular classification methods since its introduc-
tion to the literature in the early 1990s. In the second phase
of the study, the genetic algorithm (GA) was employed to
reduce the number of features and find the optimal feature
subset that maximizes the classification performance of the
SVM classifier. The GA is an adaptive heuristic search
algorithm inspired by Darwinian natural selection and ge-
netics in biological systems. The GA has not only a higher
probability of locating the global optimum solution in a
complex search space than the traditional techniques, but
is also less sensitive to initial conditions. It has been applied

in a wide range of real-world applications, including but not
limited to machine learning, data mining, financial forecast-
ing and medical decision support systems [18–22]. The
new scheme was tested with a large clinical data set that
consists of 1831 CTG recordings, out which 1655 were
classified as normal and the remaining 176 were classi-
fied as pathological by a consensus of three expert
obstetricians. The results demonstrated that the GA based
optimal feature selection scheme increased the classifica-
tion performance of the SVM classifier especially for the
pathological CTG while reducing the number of features
from 21 to 13.

Technical background

Support Vector Machines (SVM)

Support vector machines (SVM), originally introduced to
the literature in 1995 by Vapnik [23], are a relatively new
learning method that classifies any data into two classes by
finding the optimal hyperplane that separates the data. SVM
has become one of the most widely used classification
technique since its introduction and has been successfully
applied in many medical decision support systems [24–27].

Let’s consider N training vectors, where each input xi
belongs to one of the two classes yi = -1 or +1. Thus, it is
assumed that the training data is of the form

xi; yif g; i ¼ 1 . . .N ; x 2 <d; y 2 �1; 1f g ð1Þ
In the case of linearly separable data, a hyperplane can be

drawn to separate the two classes as illustrated in Fig. 1.
This hyperplane can be defined as

x � w�b ¼ 0 ð2Þ
where w is a vector normal to the hyperplane and b is a
scalar. The perpendicular distance between the hyperplane

w/b
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w
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Fig. 1 The optimal hyperplane that separates two classes
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and the origin is given by b wk k= . One can now define two
more hyperplanes, H1 and H2, parallel to the separating
hyperplane in a way that they separate the two classes and
there are no data points between them.

xi � w� b ¼ �1 for H 1 ð3Þ

xi � w� b ¼ þ1 for H 2 ð4Þ

The distance between these two planes are referred to as
SVM’s margin. By simple geometry, the margin can be
computed as 2 wk k= . The goal is to find the separating
hyperplane that maximizes this margin while it is equidis-
tant from both H1 and H2. This can be accomplished by
minimizing wk k . However, in order to prevent the data
points from falling into the margin, the following constraints
should also be satisfied

yi ¼ þ1 ) xi � w� b � 1 ð5Þ

yi ¼ �1 ) xi � w� b � �1 ð6Þ
These two constraints can be rewritten as one

yi xi � w� bð Þ � 1 � 0 ð7Þ
Therefore, maximization of the margin leads to the fol-

lowing constrained problem

min
1

2
wk k2 s:t: yi xi � w� bð Þ � 1 � 0 ð8Þ

which can be solved by using Lagrange multipliers

Lp w; b; að Þ ¼ 1

2
wk k2 �

XN

i¼1

ai yi xi � w� bð Þ � 1½ � ð9Þ

where α is a vector of Lagrange multipliers. The minimiza-
tion can now be achieved by setting the partial derivatives of
the above equation to zero.

@Lp
@w

¼ 0 ) w ¼
XN

i¼1

aiyixi ð10Þ

@Lp
@b

¼ 0 )
XN

i¼1

aiyi ¼ 0 ð11Þ

Substitution of Eqs. 10 and 11 back into Eq. 9 gives a
new formulation of the problem

Ld ¼
XN

i¼1

ai � 1

2

XN

i;j

aiajyiyjxi � xj s:t: ai � 0;
XN

i¼1

aiyi ¼ 0

ð12Þ

If yiyjxi � xj is denoted by Hij, then the optimization
problem can be restated as

min
a

1

2
aaTHaa� 1

2

XN

i¼1

ai s:t: ai � 0;
XN

i¼1

aiyi ¼ 0

ð13Þ
which can now be solved by standard quadratic program-
ming techniques.

In case the data is not linearly separable, a nonlinear
classifier can be implemented by applying the kernel trick
which transforms the data into high-dimensional space
where it can be linearly separated. In this method, the dot
product, xi � xj, is replaced by a nonlinear kernel function. In
this study, the data was not linearly separable and a
Gaussian radial basis function (RBF) was used to realize
the nonlinear classifier.

k xi; xj
� � ¼ e� xi�xjk k2

2σ2= ð14Þ
The Gaussian RBF and the σ value were selected by

testing with various SVM configurations.

Genetic Algorithms (GAs)

A genetic algorithm is a stochastic optimization technique
which is successfully applied to wide variety of applica-
tions. Unlike traditional gradient based optimization
schemes, genetic algorithms (GAs) can be applied to solve
problems that are not well suited for conventional gradient
based optimization methods, including the problems in
which the objective function is highly nonlinear, discontin-
uous, nondifferentiable or stochastic. In classical optimiza-
tion methods, a single point is generated by a deterministic
computation at each iteration and the sequence of points
approaches to an optimal solution. In GA on the other hand,
a population of points are stochastically generated at each
iteration and the best point in the population approaches to
an optimal solution which is more likely to be the global
minimum as compared to the optimal points found by
derivative-based deterministic algorithms [28, 29].

The critical step in applying the genetic algorithms to an
optimization problem is the representation of a potential
solution to the problem as an individual or a gene sequence
(also known as chromosome). The most common approach
is to encode solutions as binary strings: sequences of 1’s and
0’s. The typical steps involved in the genetic algorithm are
presented in Fig. 2. At the beginning of the process, indi-
viduals which are the encoded solutions are randomly cre-
ated. These individuals are independent initial solution
candidates and allow complex and very high dimensional
spaces to be searched in parallel decreasing the chances of
getting stuck at a local minimum which is the most important
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limitation of gradient based methods. The performance of
individuals or chromosomes are measured and assessed by
an objective function. Fitness value or scores assigned to
individuals by the objective function constitute the basis for
applying the survival of the fittest strategy. The ultimate goal
is to find the individual or the encoded solution that minimizes
this objective function. Based on the fitness scores, the algo-
rithm selects the best two individuals, namely the parents, that
will exchange genes to reproduce new individuals, namely the
children, for the next generation. Through the gene exchange
process, the GA generates better individuals at each evolu-
tionary cycle and eventually finds the best possible individual
which is the optimal solution to the objective function. As
illustrated in Fig. 3, reproduction is governed by the two
genetic operators: crossover and mutation. Crossover is a
process in which parents exchange genes whereas mutation

is the random modification of gene(s) in a parent’s chromo-
some. Both operators are critical and affect the way the search
space is explored. Crossover allows new solution regions to be
searched while mutation adds random behavior to the search
allowing the algorithm to jump to unexplored regions [30].
The evolutionary cycle of the GA resumes for many gener-
ations until a termination condition is satisfied. The best gene
sequence in the last generation is decoded to obtain the
optimal solution for the given problem.

Methods

Clinical data and feature set

The data used in this study was obtained from UCI Machine
Learning Repository [31] and originated from a study con-
ducted in University of Porto. The data set consists of fetal
heart rate and uterine contraction features extracted from
1831 CTG recordings. The features were obtained using a
CTG analysis program SisPorto 2.0 [32]. There are a total of
21 features per CTG recording which are illustrated in
Table 1. A consensus classification label was assigned to
each of the data as either normal or pathological by three
expert obstetricians. Out of the 1831 CTG recordings, 1655
belong to the normal fetal state, and the remaining 176
belong to the pathological state.

SVM based classification

In order to develop an SVM classifier, the available data set
which consists of 1831 input codebook vectors, was divided
into training and test sets. Out of the 1655 normal CTG data,
827 (50 %) were included in the training and the remaining
828 (50 %) were included in the test data set. Similarly, out
of the 176 pathological CTG data, 88 (50 %) were included
in the training and the remaining 88 (50 %) were included in

First generation 
of individuals
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Reproduction:
Crossover & Mutation

New generation

Stop criteria
satisfied?

Select the 
fittest individual

No

Yes

Fig. 2 A typical flow chart of the GA
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Fig. 3 Genetic operators:
crossover and mutation
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the test data set. The input vectors included in the training and
test data sets were selected based on the data indices. The data
with even indices were included in the training data set whereas
data with odd indices were included in the test data set.

The data used in this study was not fully separable using
a linear SVM. Therefore, kernel functions were used to
transform the data into a new feature space where a hyper-
plane could separate the data. By testing with various kernel
functions, a Gaussian radial basis function (RBF) was se-
lected as the kernel function. By trial and error, the σ value
for the RBF was set to 2.

To account for the misclassified data (points that fall into
the SVM’s margin) a penalty factor is added to the objective
function given in Equation 8. This penalty factor is adjusted
by a constant, C, known as the box constraint of the SVM. It
is called the box constraint since it keeps the allowable
values of Lagrange multipliers in Eq. 13 in a bounded
region, a “box”, such thatC � ai � 0. C controls the degree
of tolerance to the misclassified data. Larger values of C
lower the generalization ability of the SVM leading to over-
fitting of the training data. By trial and error, the boxcon-
straint for the SVM was set to 0.3. SVM-based classification
of the data was implemented in MATLAB.

GA based optimal feature selection

Finding the optimum feature subset that maximizes the
classification rates of normal and pathological CTG is a
combinatorial problem. The GA, having proven perfor-
mance in solving such problems, was used to select the
features that best correlate with the fetal state. After testing
with various GA configurations, the parameters were tuned
as given in Table 2. The number of individuals within the
population was determined to be 50. The solutions were
coded as chromosomes with 21 genes, each having a value
of 0 or 1. The 21 genes characterize the 21 features in the
feature pool. A gene having a value of 1 implies that the
feature subset encoded by the chromosome contains the
corresponding feature. The evolutionary process started
with the first generation of individuals that were randomly
created. The objective function that was used to measure the
fitness or the performance of an individual was set as,

f ¼ w1en þ w2ep þ w3Nf ð15Þ
where w1, w2 and w3 are the weights, en and ep are the
misclassification rates of the SVM classifier in percentages
for the normal and the pathological states, respectively. Nf is
the number of 1’s in the gene sequence which is equal to the
number of features in the encoded feature subset. Only the
test data was utilized to evaluate the fitness function for a
given individual. As either w1 or w2 increased, the penalty
for misclassifying an input vector that belongs to the
corresponding class would increase as well. Consequently,
the GAwould give more effort to minimizing the misclassifi-
cation rate for that class as compared to the other one.
Similarly, the penalty for adding an extra feature to the feature
subset increases as k3 is increased. Hence, the GA would
attempt to reduce the number of features. In this study, by trial
and error w1, w2 and w3 were set to 1, 1 and 0.1, respectively.

Two individuals with the highest scores, named as elites,
in each generation were guaranteed to survive to the next
generation. The elite genes were not modified in any way.
The reproduction process for generating the children of the
new generation was governed by two genetic operators:
crossover and mutation. Crossover and mutation rates were
set to 80 % and 20 %, respectively. The evolutionary cycle

Table 1 Summary of all CTG features used in classification

Feature # Symbol Feature info

1 LB FHR baseline (beats per minute)

2 AC # of accelerations per second

3 FM # of fetal movements per second

4 UC # of uterine contractions per second

5 DL # of light decelerations per second

6 DS # of severe decelerations per second

7 DP # of prolonged decelerations per second

8 ASTV percentage of time with abnormal short term
variability

9 MSTV mean value of short term variability

10 ALTV percentage of time with abnormal long term
variability

11 MLTV mean value of long term variability

12 Width width of FHR histogram

13 Min minimum of FHR histogram

14 Max maximum of FHR histogram

15 Nmax # of histogram peaks

16 Nzeros # of histogram zeros

17 Mode histogram mode

18 Mean histogram mean

19 Median histogram median

20 Variance histogram variance

21 Tendency histogram tendency:

-1=left assymetric; 0=symmetric; 1=right
assymetric

Table 2 GA configuration

Population size 50

# of genes per individual 21

# of elites 2

crossover percentage 80 %

mutation percentage 20 %

max. # of generations 100

stop criteria If no improvements for the last
20 generations or for the last 5 min
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was allowed to continue for 100 generations or until the
termination condition given in Table 2 was met.

Results and discussion

Results using the complete feature set

As mentioned earlier, the data used in the study was not
fully linearly separable. Therefore, Gaussian RBF’s were
used to transform the data into a new feature space where
a hyperplane could separate the data into its two classes. The
SVM classifier was implemented in MATLAB. The
corresponding classification rates of the SVM are provided
in the first row of Table 3. Normal and pathological data in
the training set were classified accurately with 99.6 % and
100 %, respectively. The classification rates for the test set
were 97.9 % and 97.7 % for the normal and the pathological
data, respectively. The results after the GA step are pre-
sented in the next section.

Results after selecting the optimal feature set using the GA

The classification performance of the SVM can be enhanced
by eliminating irrelevant features and keeping the ones that
best correlate with the fetal state. The GA was utilized for
that purpose. The parameters of the GA must be set

intelligently since they affect the way the complex optimiza-
tion surface is explored. New regions are added to the search
through the crossover operation. Thus, the number of regions
explored in the search space increases as the crossover rate
increases. Mutation on the other hand is a critical operator that
introduces random behavior to the search. It allows unexplored
new solution regions to be discovered preventing premature
convergence of the algorithm. By trial and error crossover and
mutation rates were set to 80 % and 20 %, respectively.

The stop criterion for the evolutionary cycle was set such
that the algorithm will halt when either the maximum number
of generations (set as 100) is reached or the best individual in
the population does not improve for the last 5 min or twenty
generations. Figure 4 illustrates the fitness scores of encoded
solutions for a sample run. The figure illustrates 1-) the fitness
scores of the fittest individual (bottom bars); 2-) the fitness
scores of the worst individual (top bars) and 3-) the popula-
tion’s mean fitness score (line plot in the middle) as a function
of the evolutionary cycle. It can be observed that, over suc-
cessive generations the population evolved toward a set of
more optimal solutions. New generations of individuals, on
average, contain more good genes than a typical solution in a
previous generation. Convergence was achieved at the end of
the 32nd generation.

Since the search space is very complex and there are a lot
of hills and valleys, the GA does not return the same optimal
solution at each run. Besides, there might be more than one

Table 3 Summary of the classification rates

Training data set Test data set

Normal CTG Pathological CTG Normal CTG Pathological CTG

Complete feature set used 99.6 % 100 % 97.9 % 97.7 %

GA based optimal feature subset used 99.5 % 100 % 99.3 % 100 %

Improvement -0.1 % 0 % 1.4 % 2.3 %
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feature subset that would give the best possible classifica-
tion rate that can be achieved by the algorithm. Therefore, to
identify the features that are vital to the classification
performance, the GA was ran for 100 different instants.
Figure 5 depicts the number of times each feature was
selected during these instances. A horizontal red line is
drawn in the figure at y=65. The 12 features above this red
line were selected at least 65 % of 100 different instances.
Table 4 includes a list of the feature subset found by the GA
for which the best classification rate was achieved. It can be
observed the feature subset includes all the 12 features that
are above the red line in Fig. 5. In addition to these features,
the feature subset also includes the 10th feature which was
selected 38 times out of 100 instances.

Table 3 depicts the classification rates achieved by the
SVM classifier when the optimal feature subset provided in

Table 3 was used. The normal and pathological data in the
training set were classified accurately with 99.5 % and
100 %, respectively. Compared to the results obtained for
the complete feature set, the classification percentages are
the same except for a 0.1 % drop in the classification
accuracy of the normal CTG. The classification rates for
the test set were 99.3 % and 100 % for the normal and
pathological data, respectively. Compared to the results
obtained for the complete feature set, there was a 1.4 %
and 2.3 % increase in the classification performances of the
normal and the pathological data, respectively. When an
obstetrician incorrectly interprets a normal CTG as patho-
logical, he/she would most likely proceed with cesarean
delivery. This would just be a wrong decision on the type
of delivery that would not put the mother and the baby in
extra danger and can be tolerable. On the other hand, when a
pathological CTG (implying the baby is under stress) is
mistakenly evaluated as normal, a decision of natural deliv-
ery might put both the baby’s and the mother’s life in
danger. Therefore, misclassification of pathological CTG
as normal should be avoided as much as possible. In this
study, only about 0.7 % of the normal fetal states were
predicted as pathological whereas none of the pathological
states were evaluated as normal. The results are promising
since the proposed scheme does not make the critical error
of misclassifying the pathological CTG as normal. In short,
the GA did not only reduce the number of features from 21
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Table 4 Features selected by the GA

Feature # Symbol Feature info

1 LB FHR baseline (beats per minute)

2 AC # of accelerations per second

4 UC # of uterine contractions per second

8 ASTV percentage of time with abnormal short term
variability

10 ALTV percentage of time with abnormal long term
variability

11 MLTV mean value of long term variability

13 Min minimum of FHR histogram

14 Max maximum of FHR histogram

15 Nmax # of histogram peaks

16 Nzeros # of histogram zeros

17 Mode histogram mode

19 Median histogram median

21 Tendency histogram tendency:

-1=left assymetric; 0=symmetric; 1=right
assymetric

Table 5 Comparison of the proposed scheme with the ANN and
ANFIS classifiers

Test data set

Normal CTG Pathological CTG

Proposed scheme 99.3 % 100 %

ANFIS-based classifier 97.2 % 96.6 %

ANN-based classifier 96.0 % 94.3 %

J Med Syst (2013) 37:9913 Page 7 of 9, 9913



to 13, but also increased the performance of the classifier by
1.4 % for the normal and 2.3 % for the pathological case.
Moreover, the GA helped undercover which parameters or
features are useful in assessing the fetal state.

Comparison of the proposed scheme with the ANN
and ANFIS

The proposed method was compared to widely used ANN
and ANFIS based classifiers. A feedforward backpropaga-
tion neural network was used for the ANN based classifier.
After testing with various configurations, the best perfor-
mance was achieved with a network having two hidden
layers. There were five neurons in the first hidden layer
and three neurons in the second hidden layer. Tangent-
sigmoid transfer functions were used in the hidden layers
whereas a pure linear transfer function was used in the
output layer. The network was trained using Levenberg-
Marquardt (LM) algorithm. For the ANFIS classifier, a
Sugeno-type FIS structure was generated using subtractive
clustering. By trial and error, the cluster radius was deter-
mined as 0.6. Both classifiers were implemented in
MATLAB using the same training and the test data. The
classification results of the ANN and ANFIS based schemes
along with the proposed method for the test data are pre-
sented in Table 5. ANN and ANFIS based classifiers
achieved 96.0 % and 97.2 % correct classification rates for
the normal CTG, respectively. On the other hand, the
corresponding classification rates for the pathological
CTG were 94.3 % and 96.6 %, respectively. The test
results reveal that, the proposed scheme outperformed
the ANN based method by 3.3 % and the ANFIS based
method by 2.1 % in terms of predicting the normal
state. In addition, it also outperformed the ANN based
method by 5.7 % and the ANFIS based method by
3.4 % in terms of predicting the pathological state. In
overall, using SVM with the GA selected CTG and UC
based features is shown to be an effective method for
evaluating the fetal well-being.

ANN and ANFIS based methods were tested using the
full feature set. The optimal feature set as presented in the
manuscript was obtained for the SVM classifier. The GA
selected features are optimal only when used together with
an SVM classifier with the provided configuration. Thus,
the classification accuracies of the ANN and ANFIS based
classifiers get even worse when the optimal feature set was
used instead of the full feature set.

Conclusions

CTG recordings are widely used by obstetricians for detect-
ing fetal abnormalities and taking the necessary action

before it is too late. However, interpretations of the record-
ings after visual analysis by experts are subjective and not
reproducible. In this study, a new method was presented for
selecting the optimal feature subset that maximizes the
classification percentages of an SVM based normal and
pathological CTG classifier. Optimal feature selection was
accomplished using the genetic algorithm. Test results based
on extensive clinical data proved that the genetic algorithm
can be used to determine the important features that could be
used in assessing the fetal state. The results reveal that the
proposed scheme is favorable to ANN and ANFIS based
methods. The main shortcoming of the proposed method is
that it does not provide a confidence score besides the fetal
state returned by the SVM classifier. When modified to give
a confidence score, the proposed scheme could be more
practical to be realized on a commercial scale.
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