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Abstract Down syndrome is a chromosomal condition
caused by the presence of all or part of an extra 21st
chromosome. It has different facial symptoms. These
symptoms contain distinctive information for face recogni-
tion. In this study, a novel method is developed to
distinguish Down Syndrome in a custom face database.
Gabor Wavelet Transform (GWT) is used as a feature
extraction method. Dimension reduction is performed with
Principal Component Analysis (PCA). New dimension
which has most valuable information is derived with Linear
Discriminant Analysis (LDA). Classification process is

implemented with k-nearest neighbor (kNN) and Support
Vector Machine (SVM) methods. The classification accu-
racy is carried out 96% and 97,34% with kNN and SVM
methods, respectively. Different from the studies related
with the Down Sydrome, feature selection process is
applied before PCA according to the correlation between
components of feature vectors. Best results are achieved
with euclidean distance metric for kNN and linear kernel
type for SVM. In this way, we developed an efficient
system to recognize Down syndrome.
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Introduction

Down Syndrome, trisomy 21 or mongolism, is one of today’s
most common dysmorphic disorders. It is named clinically
after John Langdon Down, the British physician who described
the syndrome in 1866. The condition was identified as a
chromosome 21 trisomy by Jérôme Lejeune in 1959 [1]. It
affects about 1 baby in every 800 babies and it changes with
respect to mother’s age. Despite the variability in Down
syndrome, individuals with Down syndrome have a widely
recognized characteristic appearance. Typical facial features
include a flattened nose, small mouth, protruding tongue,
small ears, and upward slanting eyes. The inner corner of the
eyes may have a rounded fold of skin. The hands are short
and broad with short fingers, and may have a single palmar
crease. White spots on the colored part of the eye called
Brushfield spots may be present. Babies with Down
syndrome often have decreased muscle tone at birth. Normal
growth and development is usually delayed and often
individuals with Down syndrome don’t reach the average
height or developmental milestones of unaffected individuals.
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Today, for the diagnosis of such diseases, defined
disease recipes found in the literature or photograph
databases are being used. When the exact diagnosis wasn’t
determined, various hormone and cytogenetic tests are
performed. These tests are very costly and takes a long
time. Speeding up the diagnosis, it is important to have
high accuracy classification process by comparing a new
image with the patient images on the existing database. In
this context, computer-based medical image processing
techniques are used.

Two-dimensional (2D) and three-dimensional (3D) face
recognition methods have been successfully used in the
classification of dysmorphic disorders. Wieczorek and her
team achieved classifiying the two-dimension face images
of the patients (taken from front and sides) in groups and in
pairs in their study which began with 55 patient from 5
sydromes and reached 200 patients from 14 syndromes
with varying accuracy [2–4]. Hammond and his team
achieved classification with high accuracy by using dense
surface model (DSM) method in the database consisting of
three dimensional face images of individuals with syn-
dromes and healthy [5, 6]. In order to distinguish Down
syndrome’s and healthy individuals; classification accuracy
of 68,7% was achieved with elastic bunch graph matching
(EBGM) method in a database comprising of 36 images [7].
Classification accuracy of up to 95,3% was achieved with
local binary pattern (LBP) method in another database
comprising of 107 images [8].

In this study, the necessary image preprocessing proce-
dures are completed firstly. Features of the images are
extracted with GWT in a database comprising of 30 images
collected by authors with the required permissions. As
different from the studies related with the Down Sydrome,
selection of the most valuable features is performed for the
first time. Dimension of the most valuable features is
reduced to smaller size with PCA. A new dimension for
reduced features is derived with LDA. The most significant
information is kept in this dimension. After the dimension
changed, classification accuracy is carried out 96% and
97,34% with kNN and SVM methods, respectively.

Material and method

Image acquisition

Necessary database for feature extraction was taken from
Down Syndrome Association of Turkey and Istanbul
University Medicine Faculty Department of Medical Ge-
netics by authors. At the annual meetings of the parents
support groups, the patients and their parents were informed
about the study design, and photographs of the patients
were taken after their consent. Several photographs of each

patient, especially in incooperative ones, were taken to
ensure that a sharp photograph in optimal pose was
obtained. At least two independent clinical geneticists has
established the diagnoses in the patients. Images in the
database belong to healthy and down’s syndrome children
aged 1–12 years. As it can be seen from Fig. 1, there are 15
images for each group. There are 6 girls and 9 boys in
down group and 7 girls and 8 boys in healthy group.

Standardization and selection of images

In preprocessing section, rotation, cropping, histogram
equalization and scaling procedures are applied to the gray
scale images in database which are converted from colour
images. Rotation is the turning of an object or coordinate
system by an angle about a fixed point. In order that all
images have same angle in front view, visual direction of
images are adjusted in rotation procedure. Cropping refers
to the removal of the outer parts of an image to improve
framing, accentuate subject matter or change aspect ratio.
Focusing on the actual area, unneeded parts of images are
deleted with cropping process. Histogram equalization
usually increases the global contrast of many images,
especially when the usable data of the image is represented
by close contrast values. Through this adjustment, the
intensities can be better distributed on the histogram. This
allows for areas of lower local contrast to gain a higher
contrast. Histogram equalization accomplishes this by
effectively spreading out the most frequent intensity values.
Contrast differences in images are fixed with histogram
equalization process. Scaling is a linear transformation that
enlarges or diminishes objects. Resolution of images are
adjusted to 320×240 with scaling before the GWT. Sample
image preprocessing procedures are seen in Fig. 2. The
MATLAB program is used for implementation of all
processes in this study.

Feature extraction of images

Gabor wavelets

Because of the robustness of Gabor features against local
distortions caused by variance of expression, illumination
and pose, they have been successfully implemented for face
recogniton [9]. Among various wavelet bases, Gabor
functions particularly provide the optimized resolution both
in the spatial and frequency domains [10, 11]. For the
following reasons, Gabor wavelets appear to be the optimal
basis for extracting local features for pattern recognition:

Biological reason: The shapes of Gabor wavelets are
similar to the receptive fields of simple cells in the
primary visual cortex [11].
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Mathematical reason: The Gabor wavelets are
optimal for measuring local spatial frequencies
[12, 13].

Experimental reason: Gabor wavelets have been
found to yield distortion tolerant feature spaces for
other pattern recognition tasks, including texture

Fig. 1 Images of down’s syndrome and healthy individuals
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segmentation [14, 15], handwritten numeral recognition
[16] and fingerprint recognition [17].

Normalized elementary Gabor function is defined by
Gabor [10] with Eq. 1. He found that the function is a
Gaussian modulated by a sinusoidal signal.

8 ðtÞ ¼ f0j j
g

ffiffiffi
p

p expð� f0
2

g2
t2Þ expð�j2pf0tÞ ð1Þ

where α is the sharpmess of the Gaussian, and f0 is the center
frequency of the sinusoidal signal, a constant ratio γ = f0/α is
defined such that the functions on different frequencies
behave as scaled version of eachother.

Two dimensional counterpart of a Gabor elementary
function was introduced by Granlund [18]. It can be derived
directly from Eq. 1. by replacing t with the spatial
coordinates (x,y). Setting the sharpness of the Gaussian in
the y axis as β and the ratio with central frequency as η = f/β.
The 2D Gabor wavelet can now be defined as in Eq. 2.
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where xr ¼ x cos q þ ysinq; yr ¼ �x sin q þ y cos q
The 2D Gabor wavelet as defined with Eq. 2. has Fourier

transform as in Eq. 3.
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where ur ¼ u cos q þ vsinq; vr ¼ �u sin q þ v cos q
An amazing equivalence between the 2D Gabor func-

tions and the organization and characteristics of the
mammalian visual system was presented by Daugman
[11]. He generalized the time frequency resolution uncer-
tainty to the 2D domain. Okajima’s work showed that the
Gabor-type receptive field can extract the maximum
information from local image regions [19]. In order to find
the relationships between different Gabor wavelets defini-

tions, a wave vector is defined k
!¼ 2pf ð jqÞ

� �
to

represent the central frequency components in the frequency

domain. Setting g ¼ h ¼ sffiffi
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p
p
, i.e., a ¼ b ¼
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s , the Gabor

wavelet located at position z!¼ ðx; yÞ can be defined with
Eq. 4.
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||..|| denotes the absolute value. A family of U x V Gabor
wavelets are usually required to extract features from
images, since local frequency and orientation are unknown
[20–22]. The filter family are obtained with Eq. 5.

8 ð fu;qv;g;hÞðx; yÞ
n o

; fu ¼ fmaxffiffiffi
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qv ¼ v
8 p; u ¼ 0; :::;U � 1; v ¼ 0; :::;V � 1

where fu and θv define the scale and orientation of the
Gabor wavelets, fmax is the maximum frequency andffiffiffi
2

p
(half octave) is the spacing factor between different

central frequencies. Gabor wavelets with five scales (U=5),
and eight orientations (V=8) are used in most face
applications. Whole set of 40 Gabor wavelets are seen in
Fig. 3. Figure 3a shows the magnitude at five scales, while
Fig. 3b shows the real parts. The wavelets show desirable
characteristics of orientation selectivity, spatial frequency
and spatial locality [9].

Gabor wavelet representation

The Gabor wavelet representation of an image is the
convolution of the image with a family of Gabor wavelets
as defined by Eq. 5. Consequence of the convolution of an
image and a Gabor wavelet can be defined by Eq. 6.

Gu;vð z!Þ ¼ I»8 ð fu;qv;g;hÞð z!Þ ð6Þ

where z!¼ ðx; yÞ and 8 ð fu;qv;g;hÞð z!Þ denotes the Gabor

wavelet with orientation θv. and central frequency fu. When
a set of 40 complex Gabor wavelets are used (five scales
and eight orientations), local features can be represented by
the set of convolution results at a certain convolution point
z!, which consists of important information at different

Fig. 2 Preprocessing of images. a Crop b Scale (from 486×360 to 320×240) c Convert RGB image to grayscale d Histogram Equalization

3208 J Med Syst (2012) 36:3205–3213

where



orientation and scales. Such a feature Jð z!Þ is usually
called a Gabor jet [20, 23] and can be defined by Eq. 7.

Jð z!Þ ¼ Jjð z!Þ; j ¼ 0; 1; . . . ; 39
� � ð7Þ

where complex Jjð z!Þ ¼ Gu;vð z!Þ; J ¼ vþ 8u; u ¼ 0; :::;
4; v ¼ 0; :::; 7: Jj can also be written as Jj ¼ aj expðifjÞ
with magnitude aj and phase ϕj, which contains very
important information. In face recognition, a face image
could be represented by the Gabor jets extracted at some
pre-defined feature points, or by the full convolution with
all of the Gabor wavelets. The convolution result of a down
syndrome’s face image with 40 Gabor wavelets is shown in
Fig. 4, the magnitude and real parts are shown in Fgure 4a
and 4b, respectively.

In this study, the resolution of Gabor wavelets is set to
10×10 in order to decrease the overlap. All images in
database are convolved with 40 different Gabor wavelets.
Magnitudes of convolution results of each image are
collected in a feature vector. Components of feature vectors
are decreased from 3072000 to 122880 with row and
column downsampling in proportion to 1/5.

Preperation of training and test samples

In K-fold cross-validation, the original sample belonging to
down’s syndrome and healthy individuals is randomly
partitioned into K subsamples. From the K subsamples, a

single subsample is kept as the validation data for testing
the model, and the remaining K−1 subsamples are used as
the training data. The cross-validation process is repeated K
times, with each of the K subsamples used exactly once as
the validation data. The advantage of this method over
repeated random subsampling is that all observations are
used for both training and validation, and each observation
is used for validation exactly once [24].

We repeat the classification process five times.
Because we purpose to differentiate contents of sumsam-
ples for each repetion. We try the number of cross
validation between 2 and 15. As the number of cross
validation increases, the size of subsamples decreases. As
a result of this, the number of validation data decreased
and the classification performance is affected negatively.
So we decided to use about 10–12 images as training
data and retain 3–5 images as the validation data. To
achieve this, 3 and 4 is chosen as the number of cross
validation in this study.

Feature selection of images

Most valuable 2000 components of the 122880 components
are selected to training set by the relationship between the
pooled variance of feature vectors. The reduced feature
vectors are used in PCA. Pooled variance is a method of
estimating variance in different samples within different
circumstances [25]. The mean may vary between samples
but the true variance (equivalently, precision) is assumed to

Fig. 3 The set of 40 Gabor
wavelets. a The magnitude at
five scales b The real parts at
five scales and eight orientations
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remain the same. The pooled variance sp
2 is calculated with

the Eq. 8.

s2p ¼
Pk
i¼1

ðni � 1Þs2i
� 	
Pk
i¼1

ni � 1ð Þ
ð8Þ

where ni is the sample size of the ith sample, s2i is the
variance of the ith sample, and k is the number of samples
being combined. n−1 is used instead of n for the reason it
may be used in estimating variances from samples.

Statistical analysis of features

While analytic approaches compare the salient facial features
detected from the face, holistic approaches make use of the
information derived from the whole face. PCA is a typical
holistic method, which is a statistical technique using the
Karhunen–Loeve transform. Turk and Pentland [26] developed
a well known eigenface method for both face representation

and recognition using the PCA technique. PCA can achieve the
optimal representation in the sense of mean-square error, but
the differences between faces from different people seem to be
more significant in face recognition [27]. Based on this
observation, LDA [28] is applied for the Fisher face [29]
methods. LDA defines a projection that makes the within-class
scatter small and the between-class scatter large. As a result,
PCA is normally adopted to reduce the feature dimension
before LDA can be applied [30]. In this study PCA is applied
to most valuable 2000 components in order to reduce
dimension to 9. The ultimate objective is to achieve a
classification with as few features as possible. Thus it is passed
to the LDA space and dimension is reduced to 2. Hereby the
classification process is performed with two features.

The statistical evaluation of classification

Classification methods

kNN and SVM methods are used in classification process.
They are commonly used in pattern recognition applica-

Fig. 4 Gabor wavelet represen-
tation of a face image.
a magnitude b the real part
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tions [31, 32]. Euclidean distance metric was chosen in
kNN method. The value of k is tried as 1,3,5,7,9,
respectively. Similar results are obtained because of the
low variance between classes. The results are seen in the
tables with respect to k=3. Linear kernel type is used in
SVM method.

Performance and correctness measures

The classification methods are compared with different
performance and correctness measures [33]. Firstly, confu-
sion matrix is defined. The confusion matrix has two rows
and two columns and it reports the number of true negatives

(TN), false positives (FP), false negatives (FN), true
positives (TP) in predictive analysis as:

Confusion Matrix ¼ TP FN

FP TN

" #

Definitions are given below for our study.

True positive (TP): Down’s syndrome people correctly
diagnosed as down’s syndrome
False positive (FP): Healthy people incorrectly identified
as down’s syndrome
True negative (TN): Healthy people correctly identified
as healthy
False negative (FN): Down’s syndrome people incor-
rectly identified as healthy.

The accuracy is the rate of true results (both true
positives and true negatives) in the population. The formula
of classification accuracy is defined by Eq. 9.

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
ð9Þ

The precision or positive predictive value (PPV) is
defined as the rate of the true positives against all the
positive results (both true positives and false positives). It is
calculated with Eq. 10.

Precision ¼ TP

TP þ FP
¼ Positive Predictive Value PPVð Þ ð10Þ

The negative predictive value (NPV) is a summary
statistic used to describe the performance of a diagnostic
testing procedure. It is defined as the proportion of subjects
with a negative test result who are correctly diagnosed. It is
given in Eq. 11.

Negative Predictive Value NPVð Þ ¼ TN

TN þ FN
ð11Þ

Table 2 Results about performance and correctness measures (for K=3)

The order of trial K=3

kNN SVM

A ppv npv S Sp A ppv npv S Sp

1 96,7% 1 0,938 0,933 1 93,3% 0,933 0,933 0,933 0,933

2 100% 1 1 1 1 96,7% 1 0,938 0,933 1

3 93,3% 0,933 0,933 0,933 0,933 100% 1 1 1 1

4 96,7% 0,938 1 1 0,933 96,7% 0,938 1 1 0,933

5 93,3% 0,933 0,933 0,933 0,933 100% 1 1 1 1

Average 96% 0,961 0,961 0,96 0,96 97,34% 0,9742 0,9742 0,9732 0,9732

A Accuracy; ppv Positive Predictive Value; npv Negative Predictive Value; S Sensitivity; Sp Specificity

Table 1 Confusion matrices: TP FN

FP TN

" #

The order
of trial

Confusion matrix Confusion matrix

K=3 K=4

kNN SVM kNN SVM

1 14 1

0 15

" #
14 1

1 14

" #
13 2

1 14

" #
13 2

0 15

" #

2
15 0

0 15

" #
14 1

0 15

" #
14 1

1 14

" #
15 0

1 14

" #

3
14 1

1 14

" #
15 0

0 15

" #
15 0

1 14

" #
14 1

1 14

" #

4
15 0

1 14

" #
15 0

1 14

" #
14 1

2 13

" #
15 0

2 13

" #

5
14 1

1 14

" #
15 0

0 15

" #
15 0

2 13

" #
15 0

1 14

" #
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Sensitivity and specificity are statistical measures of the
performance of a binary classification test. Test sensitivity
is the ability of a test to correctly identify those with the
disease, whereas test specificity is the ability of the test to
correctly identify those without the disease.

Sensitivity (also called recall rate in some fields)
measures the proportion of actual positives which are
correctly identified (e.g. the percentage of down’s syn-
drome people who are correctly identified). Sensitivity is
defined by Eq. 12.

Sensitivity ¼ Recall ¼ True Positive Rate TPRð Þ ¼ TP

TP þ FN

ð12Þ
Specificity measures the proportion of negatives which are

correctly identified (e.g. the percentage of healthy people who
are correctly identified). Specificity is obtained with Eq. 13.

Specificity ¼ True Negative Rate TNRð Þ ¼ TN

TN þ FP
ð13Þ

Results

The classification process is repeated five times. Because we
purpose to differentiate the contents of the subsamples in K-fold
cross validation. As increased the number of cross validation,

classification performances are affected negatively. Therefore 3
and 4 was chosen as the number of cross validation in this study.
It is easily understood from the Tables 2 and 3, the number of
cross validation is important for kNN and SVM classifiers.

The test results are presented in confusion matrix format
in Table 1. True Positive, True Negative, False Positive,
False Negative values can be seen from Table 1.

The results about performance and correctness measures of
this study are presented in Tables 2 and 3. The averages of the
results are considered as overall performance of classification
methods. Because of the low variance between classes,
similar results are obtained with respect to k values for kNN.
The results are seen in the tables according to k=3. Linear
kernel type is chosen for SVM method.

Comparison table of this and other methods with respect
to the performance and correctness measures is seen in
Table 4. We have 30 face images which has 15 Down
syndrome and 15 healthy. The classification accuracy is
carried out 96% and 97,34%, while the sensitivity and
specificity of the system is 0,96 and 0,973 with kNN and
SVM methods, respectively. PPVand NPV values are 0,961
and 0,974. As can be seen from the results in Table 4,
accuracy parameter of the developed method is better than
other studies. Furthermore, while NPV and sensitivity
parameters of the developed method are close to the LBP
method; PPV and specificity parameters were found to be
better with respect to our custom face database.

Table 3 Results about performance and correctness measures (for K=4)

The order of trial K=4

kNN SVM

A ppv npv S Sp A ppv npv S Sp

1 90% 0,929 0,875 0,867 0,933 93,3% 1 0,882 0,867 1

2 93,3% 0,933 0,933 0,933 0,933 96,7% 0,938 1 1 0,933

3 96,7% 0,938 1 1 0,933 93,3% 0,933 0,933 0,933 0,933

4 90% 0,875 0,929 0,933 0,867 93,3% 0,882 1 1 0,867

5 93,3% 0,882 1 1 0,867 96,7% 0,938 1 1 0,933

Average 92,66% 0,9114 0,9474 0,9466 0,9066 94,66% 0,9382 0,963 0,960 0,9332

Table 4 Comparison table of methods according to the performance and correctness measures

Method Database information Accuracy PPV NPV Sensitivity Specificity

Elastic Bunch Graph Matching
(EBGM) [9]

36 images (18 down’s
syndrome, 18 healthy)

68,7% – – – –

Local Binary Pattern (LBP) [10] 107 images (51 down’s
syndrome, 56 healthy)

95,3% 0,926 0,981 0,98 0,90

Gabor Wavelet Transform 30 images (15 down’s
syndrome, 15 healthy)

kNN: 96% kNN:0,961 kNN:0,961 kNN:0,96 kNN:0,96

SVM: 97,34% SVM:0,974 SVM:0,974 SVM:0,973 SVM:0,973

3212 J Med Syst (2012) 36:3205–3213



Discussion and conclusion

Down syndrome is one of the dysmorphic disorders which has
more signs on the faces. In this study, the feature vectors are
obtained by Gabor wavelets. These wavelets can simulate
human visual system. They are robust against local distortions
caused by variance of expression, illumination and pose. The
feature vectors is classified correctly by using kNN and SVM
algorithms. Thus the images belonging to patients with Down's
syndrome can be separated from the images belonging to
healty people.

In this study, selection of the most valuable features is
performed for the first time. This process is different from
the studies related with the discrimination of Down’s
Sydrome and healthy individuals.

Classification of facial dysmorphic disorders will provide
preliminary diagnosis for medical doctors who has less
experience about dysmorphology. Our studies on classification
of dysmorphic syndromes by 2D and 3D face recognition
algorithms are ongoing. In future works, we consider to expand
the database with different syndrome images. By this way, more
accurate classification can be realized. Also it is considered that
more successful results will be achieved with the addition of
other feature selection and classification methods.
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