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Abstract The paper attempts to improve the accuracy of a
fuzzy expert decision making system by tuning the
parameters of type-2 sigmoid membership functions of
fuzzy input variables and hence determining the most
appropriate type-1 membership function. The current work
mathematically models the variability of human decision
making process using type-2 fuzzy sets. Moreover, an index
of accuracy of a fuzzy expert system has been proposed and
determined analytically. It has also been ascertained that
there exists only one rule in the rule base whose associated
mapping for the ith linguistic variable maps to the same
value as the maximum value of the membership function
for the ith linguistic variable. The improvement in decision
making accuracy was successfully verified in a medical
diagnostic decision making system for renal diagnostic
applications. Based on the accuracy estimations applied
over a set of pathophysiological parameters, viz. body mass
index, glucose, urea, creatinine, systolic and diastolic blood
pressure, appropriate type-1 fuzzy sets of these parameters
have been determined assuming normal distribution of
type-1 membership function values in type-2 fuzzy sets.

The type-1 fuzzy sets so determined have been used to
develop an FPGA based smart processor. Using the
processor, renal diagnosis of patients has been performed
with an accuracy of 98.75%.

Keywords Fuzzy systems . Type-2 fuzzy sets . Expert
system .Medical diagnosis

Introduction

Fuzzy expert systems have been used extensively in several
fields of applications [1–10] for modeling linguistic notions
of real world objects and making decisions by methods of
inference much akin to the human rational process.
However, the accuracy in decision making depends on the
shape of fuzzy sets. The authors in their previous work [11]
has already demonstrated that the shape of the fuzzy sets
directly influence the accuracy of decision making in a
fuzzy expert system applied for medical diagnostic applica-
tions. Hence, accurately determining the shape of the fuzzy
sets, in spite of intra-expert and inter-expert variability [1], is
essential for the development of a medical diagnostic system
that closely mimics the human decision making process.

Modeling the variation in decision making was investi-
gated in a conventional type-1 fuzzy expert system (FES)
developed in earlier work by Garibaldi [12] which is able to
assess the health of infants immediately after birth by
analysis of the biochemical status of blood taken from an
infant’s umbilical cord (umbilical acid–base analysis).
Preliminary investigations for determining variation in the
results of fuzzy inferencing that can be obtained through
variation of membership function parameters were pre-
sented in [13–15]. Garibaldi et al. have also explored the
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use of type-2 fuzzy sets to model the variability in decision
making in [1].

However, to the best of our knowledge, no index of
accuracy has been determined that can be used to estimate
the accuracy in decision making process in a type 2 fuzzy
expert system based on error estimations over type 2 fuzzy
sets. In the current work, an index of accuracy has been
proposed and determined analytically and is shown to be a
measure of accuracy of the system. Moreover, it has been
ascertained that there exists only one rule in the rule base
whose associated mapping for the ith linguistic variable
maps to the same value as the maximum value of the
membership function for the ith linguistic variable. Based
on the accuracy estimations applied over a set of inputs,
optimal type-1 fuzzy sets have been determined assuming
normal distribution of type-1 membership function values
in type-2 fuzzy sets. In doing so, Mendel’s type reduction
procedure [16] has been assumed. The improvement in
decision making accuracy has been successfully verified in
a medical diagnostic decision making system for renal
diagnostic applications. Based on the accuracy estimations
applied over a set of pathophysiological parameters, viz.
body mass index, glucose, urea, creatinine, systolic and
diastolic blood pressure, type-1 fuzzy sets of these
parameters have been determined. To assess the practicality
of this model, the type-1 fuzzy sets determined in the
current work have been used to develop an FPGA based
smart fuzzy processor using the same principle as described
in [11]. The developed processor is tested with real patient
data to determine the accuracy of diagnosis.

The paper is organized as follows. “Notion of type II fuzzy
sets” gives a notion of type-2 fuzzy sets. “Mathematical
modeling of fuzzy expert diagnostic system” discusses the
mathematical modeling of the fuzzy expert diagnostic
system. “Estimation of error in diagnosis by analytical
approach” focuses on estimation of error in medical
diagnosis by an analytical approach. It has also been proven
that there exists only one rule in the rule base whose
associated mapping for the ith linguistic variable maps to the
same value as the maximum value of the membership
function for the ith linguistic variable. “Application of
accuracy estimations in a smart agent based medical
diagnostic decision making system” focuses on the applica-
tions of accuracy estimations in a smart agent based medical
diagnostic system. “Fuzzification of patient data on type 2
fuzzy sets” describes the fuzzification of patient data. The
determination of optimized type-1 fuzzy sets from the
analysis of type 2 fuzzy sets has been discussed in
“Determination of appropriate type I fuzzy sets from analysis
of type II fuzzy sets and application in FPGA” and applied in
FPGA. Finally, Bayesian analysis has been performed on the
population of patients under study in “Bayesian analysis”,

using the processor implemented with optimum type-1 fuzzy
sets determined in “Determination of appropriate type I
fuzzy sets from analysis of type II fuzzy sets and application
in FPGA”.

Notion of type II fuzzy sets

Fuzzy systems typically employ type-1 fuzzy sets, in which
the degree of membership of any element in the set is
represented by a number in the range [0,1]. The assignment
of a single precise number in [0,1] means that there is no
“fuzziness” in a type-1 fuzzy set. The notion of type-2
fuzzy sets was introduced by Zadeh [17], as an extension of
type-1 fuzzy sets, in which an additional dimension is
introduced that represents the uncertainty in the degrees of
membership. In effect, the membership of any element in
the original fuzzy set (the primary membership) is itself a
fuzzy set (the secondary membership). Mizumoto and
Tanaka studied the fuzzy set theoretic operations of type-2
fuzzy sets and properties of membership degrees of such
sets [18]; they examined type-2 fuzzy sets under the
operations of algebraic product and algebraic sum [19].
Dubois and Prade introduced a formula for the composition
of type-2 relations as an extension of the type-1 sup-star
composition for the minimum t-norm [20]. Hisdal studied
rules and interval sets for higher-than-type-1 fuzzy logic
[21]. Karnik and Mendel obtained algorithms for
performing union, intersection, and complement for type-2
fuzzy sets, and developed the concept of the centroid of
a type-2 fuzzy set [22]. Karnik et al. presented a general
formula for the extended sup-star composition of type-2
relations [16]. Liang and Mendel developed the theory for
different kinds of fuzzifiers for interval type-2 FESs [23].
Mendel and John have developed a simple method to
derive union, intersection and complement of type-2 fuzzy
sets without having to use Zadeh’s extension principle
[24].

In the present paper, type-2 membership degrees have
been incorporated to represent inter and intra expert
variability in decision making processes. For any fuzzy
set involved with the FES, we thus have associated with it
not a single membership function but two, namely f1 and f2
with f2(x)≥ f1(x) ∀x in region of support of the fuzzy set.
Thus for any point in the universe of discourse the
membership value is the interval [f1(x), f2(x)]. As a result,
the output fuzzy sets will also be of the interval type. We
can interpret them to represent the upper and lower limits of
the experts’ opinion regarding the output, as we had done in
the case of inputs.

However, patients always prefer several experts to arrive
at a unanimous decision regarding their health. So it is
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desirable that in the outputs of the FES, the two
membership functions be as close to each other as possible.
In the current work, type I fuzzy sets have been ascertained
from type 2 output fuzzy sets using Mendel’s type
reduction procedure. For ascertaining the type I fuzzy sets,
we assume that the type I fuzzy sets are normally
distributed in the type II fuzzy sets.

Mathematical modeling of fuzzy expert diagnostic
system

To mathematically model the FES, a host of symbols and
representations are introduced. The universes of discourse
for the inputs is labeled as X1, X2,…., Xm. The universe Xi

has Ni linguistic variables described on it to qualify the
input, for 1<=i<=m. In our particular case of medical
diagnosis problem, Ni is taken to be equal to 3. Any fuzzy
variable in the FES is identified by 2 indexes: one to
specify its underlying universe and the other to indicate its
index within that universe. We shall consider the notation L
(i,j) to denote the jth linguistic variable in Xi. The output
universe is Y, with variable y.

A typical rule in the rule base contains m antecedents,
connected by the AND construct, followed bym′ consequents.
The jth antecedent is xj is α, where α denotes some linguistic
variable in Xj. Thus associated with each rule is a mapping σ
such that σ(i) denote the index of the linguistic variable of Xi

mentioned in the rule. Thus the rule takes the form

IFðx1 is Lð1; sð1Þ; . . . ; xi is LðI ; sðiÞÞ; . . . ; xm is Lðm; sðmÞÞÞ THEN y is Y 0;

where Y′ is a variable in the output universe of discourse Y.
We call σ the associated mapping of the rule.

Let the output, defined on universe Y, have k linguistic
variables. Our FES effectively decomposes it into k classes,
in each class the rules have as a consequent a particular
fuzzy output variable. The FES applies the rules of
conjunction and disjunction to each class separately to
form fuzzy outputs for the k variables; when the question of
decision making comes, the FES returns the linguistic term
whose corresponding output has the maximum area under
it.

Considering a particular class, let the fuzzy output
variable in question be Y. Let us suppose it has n rules.
The associated mappings of these rules are denoted as σ1,
σ2,…, σn. Thus if Y′ is the output then we have, by virtue
of Mamdani’s method of inference [25],

mz0 ðyÞ ¼ max
n

i¼1
ðminðmzðyÞ;min

m

j¼1
mLðj;s iðjÞÞðxjÞÞÞ ð1Þ

Let ∃ n intervals I1, I2,….., In, where Ik=[lk,uk] for
1<=k<=n. Then using extension principle [26] we obtain:

min
k
½lk ; uk � ¼ ½min

k
lk ;min

k
uk � ð2Þ

and

max
k

½lk ; uk � ¼ ½max
k

lk ;max
k

uk � ð3Þ

Let min
k

lk ¼ lc and max
k

uk ¼ uc for some 1 � c � n.
Then the length of min

k
Ik � uc � lc.

Let L0 ¼ max
n

i¼1
min
m

j¼1
mLðj;s iðjÞÞðxjÞ. Then we have

mZ0 ðyÞ ¼ mZðyÞ , mZðyÞ < L0 ð4Þ
Thus, the output is uniquely determined by the parameter L0.
The fuzzy output set is seen to be completely determined

by L0, thus a statistical study of L0 will yield measures of
accuracy/inaccuracy of the FES’s output.

We seek to obtain an appropriate type-I membership
function whose membership values are bonded by the
underlying type-II membership function. If for any point x
in the universe of discourse the membership value of the
type-II set is the interval [f1(x), f2(x)], the membership
functions will have an upper as well as a lower boundary,
namely f1 and f2 with f2(x)≥ f1(x) for ∀x in region of support
of the fuzzy set.

Estimation of error in diagnosis by analytical approach

Figure 1(a) depicts the left edge and right type 2 fuzzy sets
that models the intra-expert and inter-expert variability
embodied in a typical diagnosis process.

Let us define gðxÞ ¼ f2ðxÞ � f1ðxÞ. Let E(L0) be the area
between the two membership boundaries of the output for a
given value of L0. Let f be a type-I membership function
lying between f1 and f2, obviously the deviation of f from
any expert’s opinion is less than or equal to g(x). Let us
define eðlÞ ¼ gðf �1ðlÞÞ.

Thus EðL0Þ ¼
Rf �1ðL0Þ

x¼0
gðxÞdxþ ðcþ w� f �1ðL0Þgðf �1ðL0ÞÞ for left

and right edge fuzzy sets and EðL0Þ ¼ 2� f Rf �1ðL0Þ

x¼0
gðxÞdx þðcþ

w� f �1ðL0Þgðf �1ðL0ÞÞg for middle edge fuzzy sets (assum-
ing the fuzzy sets to be bilaterally symmetrical as shown in
Fig. 1(b)).

Applying, change of variable l= f(x), we get,

EðL0Þ ¼ n� f
ZL0
x¼0

gðxÞdxþ ðcþ w� f �1ðL0Þgðf �1ðL0ÞÞg ð5Þ

[n=1 or 2 depending on whether the fuzzy set whose
membership function μ represents right/left or middle fuzzy
set respectively.]
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, EðL0Þ ¼ n� f RL0
x¼0

eðlÞdðf �1ðlÞÞ þ ðcþ w� f �1ðL0ÞÞgðf �1ðL0ÞÞg

, EðL0Þ ¼ n� f RL0
x¼0

eðlÞf �1
0 ðlÞdl þ ðcþ w� f �1ðL0ÞÞeðL0Þg

ð6Þ
For maximum accuracy, E(L0) has to be minimum.

Differentiating both sides of Eq. 6 we get,

dEðL0Þ
dL0

¼ eðL0Þf �1
0 ðL0Þ þ ðcþ w� f �1ðL0ÞÞ dðeðL0Þ

dL0
� eðL0Þf �1

0 ðL0Þ
, dEðL0Þ

dL0
¼ ðcþ w� f �1ðL0ÞÞ dðeðL0Þ

dL0

ð7Þ

From (7), we find that E(l) is a decreasing function for
almost its entire domain [E′(l)=0 for a very small value of l,
to be explained later]. E(l) is however the spread in the
output that we were aiming to minimize, so we arrive at an

equivalent problem of designing our FES such that a large
value for L0 arises on ‘most’ occasions.

The expectation of L0 indicates the accuracy of the FES.
A higher value of L0 means a lesser value of E(l) as shown
above. Thus it means lesser ambiguity in output. Thus
higher the value of L0, more is the accuracy.

Let P(l) denote the probability that L will attain value l.
So expected value of L0 is L0h i ¼ R lPðlÞdl, under proper
limits. An expression for P(l) will now be established.

The m input variables are in reality, pseudo-random. At
least in medical diagnosis, this is true, as the inputs are
health parameters among which there always exists a
correlation. An important implication is that all possible
configurations of input are not practically realizable, and
those that do, do not form an equiprobable space.
However for the purpose of computing P(l) we shall
consider them to be random independent variables, so all

Fig. 1 a Left edge and right edge
type II fuzzy sets. b Middle
edge type II fuzzy sets

Fig. 2 Functional architecture
of the smart agent based medi-
cal diagnostic system
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m-tuples of inputs are equiprobable. We will call a
particular m-tuple a feasible input if and only if it is
practically realizable. Now, as mentioned earlier, with
each rule there is associated a unique mapping σ. However
9 Qm

i¼1
Ni distinct σ s, which in all practical applications,

turns out to be a huge number. The number of rules in the
rule-base usually varies from 150 to 200. Thus a majority
of the σ s are excluded. The rule base is divisible into k
classes as explained earlier, and corresponding to each
rule, ∃ L0, which also denotes the height of the output
fuzzy set of that class. Thus, the rule base should be so
chosen such that for ∀ feasible input, L0 assumes a substantial
value in at least one of the output sets.

Let us consider a an input m-tuple (x1, x2, …., xm). Let us
consider the ith input xi (1≤i≤m), it can have non-zero
membership in at most two of the fuzzy sets defined on the
ith input. Let us call the greater of them upi and the lesser of
them lowi [if it has nonzero-membership in only one fuzzy
set, then upi = the non-zero membership value, lowi=0].
Further, let us label the index of the fuzzy set in which xi has
membership value upi as indexupi , similarly let us define
indexupi . Thus, we get,

mLði;indexupi ÞðxiÞ ¼ upi ð8:1Þ

mLði;indexlowi ÞðxiÞ ¼ lowi ð8:2Þ
81 � i � m.

We now state and prove the following theorem.

Theorem 1 There exists only one rule in the rule base of
type II fuzzy expert system with associated mapping σ such
that sðiÞ ¼ indexupi .

Proof If possible, let us assume that this rule does not exist.
Therefore ∀rules with associated mapping σ 9k; 1 � k � m such
that σ(k)≠ indexupk . Now, from Eq. 8.2, mLðk;indexlowk ÞðxkÞ ¼
lowk . The values of x1, x2, …., xm can be changed slightly
such that the tuple (x1, x2, …., xm) still remains feasible.
Hence, 81 � i � m, we change xi to the right or left such that
the value in indexlowi ! 0. Therefore, mLðk;indexlowk ÞðxkÞ ¼
lowk ! 0. This is true for any k. Thus for any rule the value
of L0→0. This violates the basic assumption in the design of
rule base that, the rule base should be so chosen such that for
∀ feasible input, L0 assumes a substantial value in at least one
of the output sets. Thus there exists only one rule in the rule
base with associated mapping σ such that sðiÞ ¼ indexupi .

This rule will be marked as Max-Rule.

From the above proof, we can state the following
corollary:

Corollary 1 The final output of the fuzzy expert diagnostic
system depends only upon the values of upi. and
L0 ¼ minfupij1 � i � mg.

We can now determine an expression for P(l).

PðL0 ¼ lÞ ¼
Xm
i¼1

fPðupi ¼ lÞ �
Ym
j¼1
j6¼i

Pðupj � lÞg ð9Þ

We are thus interested in the membership function values
[li, 1] for the ith universe. Let fi : ½0;wi� ! ½li; 1�, where wi

Fig. 3 Type II fuzzy sets for B.M.I.

Time Weight B.M.I. Glucose Creatinine Systolic blood pressure Diastolic blood pressure

T1 64.1 27.97 120 1.0 128 87

T2 66.2 28.31 125 1.1 131 88

T3 66.8 28.57 128 1.2 132 90

T4 67.5 28.87 127 1.3 136 94

T5 66.9 28.61 128 1.4 137 96

T6 67.8 29.00 128 1.4 138 98

T7 68.2 29.17 128 1.4 139 98

T8 69.5 29.73 129 1.4 140 97

T9 70.5 30.15 129 1.8 140 100

T10 70.6 30.62 131 2.4 143 101

Table 1 Result of a sample
patient of age 42 years
height of patient: 5.0 ft
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is the length of the edge between kernel and point of
intersection with neighboring edge. Let PiðlÞ ¼ PðfiðxiÞ � lÞ.

Thus,

PiðlÞ ¼ 1� fi
�1ðlÞ
jXij
Ni

� ð10Þ

Therefore,

PðfiðxiÞ ¼ lÞ ¼ �Pi
0 ðlÞ ¼ fi

�10 ðlÞ
jXij
Ni

: ð11Þ

But, Pðupi ¼ lÞ ¼ PðfiðxiÞ ¼ lÞ and Pðupj � lÞ ¼ PiðlÞ.

) PðL0 ¼ lÞ ¼
Xm
i¼1

ð�Pi
0ðlÞ

Ym
j¼1; j 6¼i

PjðjÞÞ ð12Þ

Let us denote the probability that L0≥ l by P(l). Then,
PðlÞ ¼ Qm

i¼1
PiðlÞ.

) PðlÞ ¼ PðL0 ¼ lÞ ¼
Xm
i¼1

ð�Pi
0ðlÞ

Ym
j¼1; j 6¼i

PjðjÞÞ ð13Þ

Thus expectation of

L0 ¼ L0h i ¼
Z1
l¼0

lPðlÞdl ¼
Z1
l¼li

ðlð
Xm
i¼1

ð�Pi
0ðlÞ

Ym
j¼1; j6¼i

PjðjÞÞÞdl ð14Þ
This has been used as the index of accuracy in the fuzzy

expert diagnostic system. Since the fuzzy sets that were
used for expert system modeling were arbitrary fuzzy sets
only, therefore, Eq. 14 may be used for determining the
index of accuracy in any fuzzy expert diagnostic system
without restricting to any particular application or a class of
applications.

Application of accuracy estimations in a smart agent
based medical diagnostic decision making system

Figure 2 shows the functional architecture of a diagnostic
system comprising of a smart agent.

Here, the smart agent is represented through a fuzzy
system. The details of modeling of the smart agent have

c1 Δ1 w1 c2 Δ2 w2 c3 Δ3 w3 c4 Δ4 w4 <L0>

9 0.1 0.5 29 0.1 0.5 9 0.1 0.5 19 0.1 0.5 0.919

9 0.2 0.5 29 0.2 0.5 9 0.2 0.5 19 0.2 0.5 0.912

9 0.3 0.5 29 0.3 0.5 9 0.3 0.5 19 0.3 0.5 0.905

9 0.1 0.6 29 0.1 0.6 9 0.1 0.6 19 0.1 0.6 0.927

9 0.2 0.6 29 0.2 0.6 9 0.2 0.6 19 0.2 0.6 0.919

9 0.3 0.6 29 0.3 0.6 9 0.3 0.6 19 0.3 0.6 0.913

9 0.1 0.7 29 0.1 0.7 9 0.1 0.7 19 0.1 0.7 0.935

9 0.2 0.7 29 0.2 0.7 9 0.2 0.7 19 0.2 0.7 0.929

9 0.3 0.7 29 0.3 0.7 9 0.3 0.7 19 0.3 0.7 0.922

10 0.1 0.5 30 0.1 0.5 10 0.1 0.5 20 0.1 0.5 0.975

10 0.2 0.5 30 0.2 0.5 10 0.2 0.5 20 0.2 0.5 0.972

10 0.3 0.5 30 0.3 0.5 10 0.3 0.5 20 0.3 0.5 0.974

10 0.1 0.6 30 0.1 0.6 10 0.1 0.6 20 0.1 0.6 0.981

10 0.2 0.6 30 0.2 0.6 10 0.2 0.6 20 0.2 0.6 0.989

10 0.3 0.6 30 0.3 0.6 10 0.3 0.6 20 0.3 0.6 0.982

10 0.1 0.7 30 0.1 0.7 10 0.1 0.7 20 0.1 0.7 0.976

10 0.2 0.7 30 0.2 0.7 10 0.2 0.7 20 0.2 0.7 0.972

10 0.3 0.7 30 0.3 0.7 10 0.3 0.7 20 0.3 0.7 0.968

11 0.1 0.5 31 0.1 0.5 11 0.1 0.5 21 0.1 0.5 0.942

11 0.2 0.5 31 0.2 0.5 11 0.2 0.5 21 0.2 0.5 0.941

11 0.3 0.5 31 0.3 0.5 11 0.3 0.5 21 0.3 0.5 0.933

11 0.1 0.6 31 0.1 0.6 11 0.1 0.6 21 0.1 0.6 0.954

11 0.2 0.6 31 0.2 0.6 11 0.2 0.6 21 0.2 0.6 0.959

11 0.3 0.6 31 0.3 0.6 11 0.3 0.6 21 0.3 0.6 0.941

11 0.1 0.7 31 0.1 0.7 11 0.1 0.7 21 0.1 0.7 0.924

11 0.2 0.7 31 0.2 0.7 11 0.2 0.7 21 0.2 0.7 0.918

11 0.3 0.7 31 0.3 0.7 11 0.3 0.7 21 0.3 0.7 0.917

Table 2 Analysis of fuzzy sets
for B.M.I data
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been given in [27]. Since data from the patient are nothing
but physiological measures, they are subjected to noise
and uncertainty. The data from the patient such as height
or weight data cannot always be trusted as they are
subjected to the quality and accuracy of measuring units
and the skill of the technician. Moreover, based on a
single data, it would be highly uncertain to make an
accurate decision about the future physiological state of
the patient [28]. Expert systems, even if designed with
utmost care suffers from the problem of mismatch of
decisions with physicians [1]. Even, there is a conflict
between the decisions given by individual physicians at
different instants of time [1]. Therefore, in order to
develop a medical diagnostic decision making system that
can closely replicate a human physician, a mathematical
model of human decision making process and the
uncertainty associated with the decision making process
has to be developed. To model the human decision making
process, the notion of type 2 fuzzy systems has been
introduced. In the current work, the example of renal

diagnosis of patients has been taken up. For renal
diagnosis, body mass index (B.M.I.), glucose, urea,
creatinine, systolic and diastolic blood pressure are
considered as pathophysiological parameters.

Fuzzification of patient data on type 2 fuzzy sets

The patient data has been fuzzified with the objective of
transformation of periodic measures into likelihoods that the
Body Mass Index (B.M.I.), blood glucose, urea, creatinine,
systolic and diastolic blood pressure of the patient is high, low
or moderate. Each pathophysiological parameter is repre-
sented by three sigmoid fuzzy sets for low, moderate and high
values of pathophysiological parameters. Left edge fuzzy sets
(decreasing sigmoid) represented by:

mLðxÞU ¼ max
1

1þ e
ðx�ðc1þΔ1ÞÞ

w1

;
1

1þ e
ðx�ðc1�Δ1ÞÞ

w1

 !
ð15Þ

c1 Δ1 w1 c2 Δ2 w2 c3 Δ3 w3 c4 Δ4 w4 <L0>

74 0.1 0.2 124 0.1 0.2 74 0.1 0.2 124 0.1 0.2 0.942

74 0.2 0.2 124 0.2 0.2 74 0.2 0.2 124 0.2 0.2 0.941

74 0.3 0.2 124 0.3 0.2 74 0.3 0.2 124 0.3 0.2 0.933

74 0.1 0.3 124 0.1 0.3 74 0.1 0.3 124 0.1 0.3 0.954

74 0.2 0.3 124 0.2 0.3 74 0.2 0.3 124 0.2 0.3 0.959

74 0.3 0.3 124 0.3 0.3 74 0.3 0.3 124 0.3 0.3 0.981

74 0.1 0.4 124 0.1 0.4 74 0.1 0.4 124 0.1 0.4 0.924

74 0.2 0.4 124 0.2 0.4 74 0.2 0.4 124 0.2 0.4 0.918

74 0.3 0.4 124 0.3 0.4 74 0.3 0.4 124 0.3 0.4 0.927

75 0.1 0.2 125 0.1 0.2 75 0.1 0.2 125 0.1 0.2 0.995

75 0.2 0.2 125 0.2 0.2 75 0.2 0.2 125 0.2 0.2 0.975

75 0.3 0.2 125 0.3 0.2 75 0.3 0.2 125 0.3 0.2 0.972

75 0.1 0.3 125 0.1 0.3 75 0.1 0.3 125 0.1 0.3 0.974

75 0.2 0.3 125 0.2 0.3 75 0.2 0.3 125 0.2 0.3 0.981

75 0.3 0.3 125 0.3 0.3 75 0.3 0.3 125 0.3 0.3 0.989

75 0.1 0.4 125 0.1 0.4 75 0.1 0.4 125 0.1 0.4 0.982

75 0.2 0.4 125 0.2 0.4 75 0.2 0.4 125 0.2 0.4 0.969

75 0.3 0.4 125 0.3 0.4 75 0.3 0.4 125 0.3 0.4 0.989

76 0.1 0.2 126 0.1 0.2 76 0.1 0.2 126 0.1 0.2 0.972

76 0.2 0.2 126 0.2 0.2 76 0.2 0.2 126 0.2 0.2 0.927

76 0.3 0.2 126 0.3 0.2 76 0.3 0.2 126 0.3 0.2 0.919

76 0.1 0.3 126 0.1 0.3 76 0.1 0.3 126 0.1 0.3 0.913

76 0.2 0.3 126 0.2 0.3 76 0.2 0.3 126 0.2 0.3 0.935

76 0.3 0.3 126 0.3 0.3 76 0.3 0.3 126 0.3 0.3 0.929

76 0.1 0.4 126 0.1 0.4 76 0.1 0.4 126 0.1 0.4 0.922

76 0.2 0.4 126 0.2 0.4 76 0.2 0.4 126 0.2 0.4 0.975

76 0.3 0.4 126 0.3 0.4 76 0.3 0.4 126 0.3 0.4 0.937

Table 3 Analysis of fuzzy sets
for glucose data
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and

mLðxÞL ¼ min
1

1þ e
ðx�ðc1þΔ1ÞÞ

w1

;
1

1þ e
ðx�ðc1�Δ1ÞÞ

w1

 !
ð16Þ

Right edge fuzzy sets (increasing sigmoids) represented by:

mH ðxÞU ¼ max
1

1þ e
c2þΔ2ð Þ�xð Þ

w2

;
1

1þ e
c2þΔ2ð Þ�xð Þ

w2

0
@

1
A ð17Þ

and

mH ðxÞL ¼ min
1

1þ e
ððc2þΔÞ�xÞ

w2

;
1

1þ e
ððc2�ΔÞ�xÞ

w2

 !
ð18Þ

Middle edge fuzzy sets represented by:

mM ðxÞU¼ max
1

1þ e
ðx�ðc3þΔ3ÞÞ

w3

� 1

1þ e
ððc4þΔ4Þ�xÞ

w4

;
1

1þ e
ðx�ðc3�Δ3ÞÞ

w3

� 1

1þ e
ððc4�Δ4Þ�xÞ

w4

 !
ð19Þ

and

mM ðxÞL ¼ min
1

1þ e
ðx�ðc3þΔ3ÞÞ

w3

� 1

1þ e
ððc4þΔ4Þ�xÞ

w4

;
1

1þ e
ðx�ðc3�Δ3ÞÞ

w3

� 1

1þ e
ððc4�Δ4Þ�xÞ

w4

 !
ð20Þ

c1 Δ1 w1 c2 Δ2 w2 c3 Δ3 w3 c4 Δ4 w4 <L0>

6 0.1 0.2 19 0.1 0.2 6 0.1 0.2 19 0.1 0.2 0.919

6 0.2 0.2 19 0.2 0.2 6 0.2 0.2 19 0.2 0.2 0.912

6 0.3 0.2 19 0.3 0.2 6 0.3 0.2 19 0.3 0.2 0.905

6 0.1 0.3 19 0.1 0.3 6 0.1 0.3 19 0.1 0.3 0.927

6 0.2 0.3 19 0.2 0.3 6 0.2 0.3 19 0.2 0.3 0.919

6 0.3 0.3 19 0.3 0.3 6 0.3 0.3 19 0.3 0.3 0.913

6 0.1 0.4 19 0.1 0.4 6 0.1 0.4 19 0.1 0.4 0.935

6 0.2 0.4 19 0.2 0.4 6 0.2 0.4 19 0.2 0.4 0.929

6 0.3 0.4 19 0.3 0.4 6 0.3 0.4 19 0.3 0.4 0.922

7 0.1 0.2 20 0.1 0.2 7 0.1 0.2 20 0.1 0.2 0.982

7 0.2 0.2 20 0.2 0.2 7 0.2 0.2 20 0.2 0.2 0.976

7 0.3 0.2 20 0.3 0.2 7 0.3 0.2 20 0.3 0.2 0.972

7 0.1 0.3 20 0.1 0.3 7 0.1 0.3 20 0.1 0.3 0.959

7 0.2 0.3 20 0.2 0.3 7 0.2 0.3 20 0.2 0.3 0.994

7 0.3 0.3 20 0.3 0.3 7 0.3 0.3 20 0.3 0.3 0.993

7 0.1 0.4 20 0.1 0.4 7 0.1 0.4 20 0.1 0.4 0.995

7 0.2 0.4 20 0.2 0.4 7 0.2 0.4 20 0.2 0.4 0.996

7 0.3 0.4 20 0.3 0.4 7 0.3 0.4 20 0.3 0.4 0.975

8 0.1 0.2 21 0.1 0.2 8 0.1 0.2 21 0.1 0.2 0.913

8 0.2 0.2 21 0.2 0.2 8 0.2 0.2 21 0.2 0.2 0.935

8 0.3 0.2 21 0.3 0.2 8 0.3 0.2 21 0.3 0.2 0.929

8 0.1 0.3 21 0.1 0.3 8 0.1 0.3 21 0.1 0.3 0.922

8 0.2 0.3 21 0.2 0.3 8 0.2 0.3 21 0.2 0.3 0.919

8 0.3 0.3 21 0.3 0.3 8 0.3 0.3 21 0.3 0.3 0.913

8 0.1 0.4 21 0.1 0.4 8 0.1 0.4 21 0.1 0.4 0.935

8 0.2 0.4 21 0.2 0.4 8 0.2 0.4 21 0.2 0.4 0.929

8 0.3 0.4 21 0.3 0.4 8 0.3 0.4 21 0.3 0.4 0.935

Table 4 Analysis of fuzzy sets
for urea data
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Where, ci’s are the centers of the sigmoids, Δi’s are the
width of boundaries of the membership functions representing
the range of membership function values and wi’s are arbitrary
values, which determine width of the sigmoid (i=1,2,3,4).

Figure 3 shows the type II fuzzy sets for B.M.I. The
range of values of the membership functions of low (left
edge), moderate (middle edge) and high (right edge) fuzzy
sets fall within the limits prescribed by Eqs. 15 to 20.

Similarly, we can get fuzzy sets for the other five
pathophysiological parameters. In each fuzzy set, the upper
blue edge corresponds to the upper limit of membership
value. The lower boundary of the grey edge corresponds to
the lower limit of the membership function value in the
universe of discourse of the inputs.

The rule base contains rules for approximate reasons in
medical diagnosis. Typical rules take the form [17]:

R1 If (Body Mass Index is High) and (Glucose is High) and
(Urea is High) and (Creatinine is High) and (Systolic
Blood Pressure is High) and (Diastolic Blood Pressure
is High) then the (Renal condition of Patient is severe)

R2 If (Body Mass Index is High) or (Glucose is High) or
(Urea is High) or (Creatinine is High) or (Systolic Blood
Pressure is High) or (Diastolic Blood Pressure is High)
then the (Renal condition of Patient is moderately critical)

R3 If (Glucose is High at time Ti) and (Glucose is Low at
time Tj) and (Ti≠Tj) then the (Patient can be
suggested to go for Glycosylated Haemoglobin)

R4 If (Body Mass Index is Moderate) or (Glucose is
Moderate) or (Urea is Moderate) or (Creatinine is
Moderate) or (Systolic Blood Pressure is Moderate) or
(Diastolic Blood Pressure is Moderate) then the
(Renal condition of Patient is normal)

Determination of appropriate type I fuzzy sets
from analysis of type II fuzzy sets and application
in FPGA

It is essential to determine the appropriate values of ci, Δi and
wi, i=1,2,3,4. To do so the B.M.I., glucose, urea, creatinine,
systolic and diastolic blood pressure data of 80 patients has

c1 Δ1 w1 c2 Δ2 w2 c3 Δ3 w3 c4 Δ4 w4 <L0>

0.73 0.01 0.02 1.33 0.01 0.02 0.73 0.01 0.02 1.33 0.01 0.02 0.919

0.73 0.02 0.02 1.33 0.02 0.02 0.73 0.02 0.02 1.33 0.02 0.02 0.912

0.73 0.03 0.02 1.33 0.03 0.02 0.73 0.03 0.02 1.33 0.03 0.02 0.905

0.73 0.01 0.03 1.33 0.01 0.03 0.73 0.01 0.03 1.33 0.01 0.03 0.927

0.73 0.02 0.03 1.33 0.02 0.03 0.73 0.02 0.03 1.33 0.02 0.03 0.919

0.73 0.03 0.03 1.33 0.03 0.03 0.73 0.03 0.03 1.33 0.03 0.03 0.913

0.73 0.01 0.04 1.33 0.01 0.04 0.73 0.01 0.04 1.33 0.01 0.04 0.935

0.73 0.02 0.04 1.33 0.02 0.04 0.73 0.02 0.04 1.33 0.02 0.04 0.929

0.73 0.03 0.04 1.33 0.03 0.04 0.73 0.03 0.04 1.33 0.03 0.04 0.922

0.75 0.01 0.02 1.35 0.01 0.02 0.75 0.01 0.02 1.35 0.01 0.02 0.975

0.75 0.02 0.02 1.35 0.02 0.02 0.75 0.02 0.02 1.35 0.02 0.02 0.983

0.75 0.03 0.02 1.35 0.03 0.02 0.75 0.03 0.02 1.35 0.03 0.02 0.995

0.75 0.01 0.03 1.35 0.01 0.03 0.75 0.01 0.03 1.35 0.01 0.03 0.989

0.75 0.02 0.03 1.35 0.02 0.03 0.75 0.02 0.03 1.35 0.02 0.03 0.985

0.75 0.03 0.03 1.35 0.03 0.03 0.75 0.03 0.03 1.35 0.03 0.03 0.982

0.75 0.01 0.04 1.35 0.01 0.04 0.75 0.01 0.04 1.35 0.01 0.04 0.984

0.75 0.02 0.04 1.35 0.02 0.04 0.75 0.02 0.04 1.35 0.02 0.04 0.988

0.75 0.03 0.04 1.35 0.03 0.04 0.75 0.03 0.04 1.35 0.03 0.04 0.981

0.77 0.01 0.02 1.37 0.01 0.02 0.77 0.01 0.02 1.37 0.01 0.02 0.905

0.77 0.02 0.02 1.37 0.02 0.02 0.77 0.02 0.02 1.37 0.02 0.02 0.927

0.77 0.03 0.02 1.37 0.03 0.02 0.77 0.03 0.02 1.37 0.03 0.02 0.919

0.77 0.01 0.03 1.37 0.01 0.03 0.77 0.01 0.03 1.37 0.01 0.03 0.913

0.77 0.02 0.03 1.37 0.02 0.03 0.77 0.02 0.03 1.37 0.02 0.03 0.935

0.77 0.03 0.03 1.37 0.03 0.03 0.77 0.03 0.03 1.37 0.03 0.03 0.929

0.77 0.01 0.04 1.37 0.01 0.04 0.77 0.01 0.04 1.37 0.01 0.04 0.922

0.77 0.02 0.04 1.37 0.02 0.04 0.77 0.02 0.04 1.37 0.02 0.04 0.929

0.77 0.03 0.04 1.37 0.03 0.04 0.77 0.03 0.04 1.37 0.03 0.04 0.919

Table 5 Analysis of fuzzy sets
for creatinine data
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been separately analyzed to determine the accuracy value
<L0>. The data of a sample patient of age 42 years and
height 5.0 ft taken at 10 days interval is provided in Table 1.

The height data has been given as an input to the system.
The weight data has been provided at 10 days interval of time.
Using the height and weight data, the B.M.I. is computed at
10 days interval of time. The other data are directly provided
as input to the system. The values of ci, Δi and wi, are varied
heuristically and the values of <L0> is computed for different
cases using Eq. 14. Table 2 shows the results for B.M.I. data.
From Table 2, we can determine the optimum values of
different parameters of type II fuzzy sets, viz. ci, Δi and wi,
i=1, 2, 3, 4 for which the values of <L0> for B.M.I. data is
maximum. Similar tables are computed for glucose, urea,
creatinine, systolic and diastolic blood pressure data and
shown as Tables 3, 4, 5, 6 and 7. Similar analyses have been
done for glucose, urea, creatinine, systolic and diastolic
blood pressure. The maximum value of <L0> is shown in
bold in each case. As discussed in “Estimation of error in
diagnosis by analytical approach”, the maximum value of
<L0> corresponds to maximum accuracy. Based on the
maximum values of <L0>, we can determine the parameters

of the type-1 fuzzy sets, viz. ci, Δi and wi, i=1, 2, 3, 4 for
which the medical diagnostic decision making will possibly
be the most accurate.

The appropriate values of ci, Δi and wi, i=1, 2, 3, 4
obtained for the six pathophysiological parameters are
shown in Table 8.

For determining the optimized type-1 fuzzy sets, we
assume that the type-1 membership function values within
the type-2 fuzzy sets assume a normal distribution (which
lets us to accurately define the edge within the range),
which is reasonably correct [22]. The optimal type-1 fuzzy
sets are determined from their type-2 counterparts using
Mendel’s type reduction procedure [16].

Using the optimum values of ci, Δi and wi, i=1, 2, 3, 4,
the fuzzy processor has been implemented on a field
programmable gate array (FPGA) chip using the procedure
described in [11]. For piecewise linear approximation of
fuzzy sets, each sigmoid edge of fuzzy sets are approximated
by eight linear segments between the two extremes of
membership function values. The resource utilization sum-
mary of the processor on the FPGA chip is given in Table 9.

The picture of the experimental set up is shown in Fig. 4.

c1 Δ1 w1 c2 Δ2 w2 c3 Δ3 w3 c4 Δ4 w4 <L0>

104 0.1 1.7 134 0.1 1.7 104 0.1 1.7 134 0.1 1.7 0.913

104 0.2 1.7 134 0.2 1.7 104 0.2 1.7 134 0.2 1.7 0.935

104 0.3 1.7 134 0.3 1.7 104 0.3 1.7 134 0.3 1.7 0.929

104 0.1 1.8 134 0.1 1.8 104 0.1 1.8 134 0.1 1.8 0.922

104 0.2 1.8 134 0.2 1.8 104 0.2 1.8 134 0.2 1.8 0.919

104 0.3 1.8 134 0.3 1.8 104 0.3 1.8 134 0.3 1.8 0.913

104 0.1 1.9 134 0.1 1.9 104 0.1 1.9 134 0.1 1.9 0.935

104 0.2 1.9 134 0.2 1.9 104 0.2 1.9 134 0.2 1.9 0.929

104 0.3 1.9 134 0.3 1.9 104 0.3 1.9 134 0.3 1.9 0.922

105 0.1 1.7 135 0.1 1.7 105 0.1 1.7 135 0.1 1.7 0.979

105 0.2 1.7 135 0.2 1.7 105 0.2 1.7 135 0.2 1.7 0.984

105 0.3 1.7 135 0.3 1.7 105 0.3 1.7 135 0.3 1.7 0.989

105 0.1 1.8 135 0.1 1.8 105 0.1 1.8 135 0.1 1.8 0.991

105 0.2 1.8 135 0.2 1.8 105 0.2 1.8 135 0.2 1.8 0.990

105 0.3 1.8 135 0.3 1.8 105 0.3 1.8 135 0.3 1.8 0.989

105 0.1 1.9 135 0.1 1.9 105 0.1 1.9 135 0.1 1.9 0.987

105 0.2 1.9 135 0.2 1.9 105 0.2 1.9 135 0.2 1.9 0.981

105 0.3 1.9 135 0.3 1.9 105 0.3 1.9 135 0.3 1.9 0.975

106 0.1 1.7 136 0.1 1.7 106 0.1 1.7 136 0.1 1.7 0.913

106 0.2 1.7 136 0.2 1.7 106 0.2 1.7 136 0.2 1.7 0.935

106 0.3 1.7 136 0.3 1.7 106 0.3 1.7 136 0.3 1.7 0.929

106 0.1 1.8 136 0.1 1.8 106 0.1 1.8 136 0.1 1.8 0.922

106 0.2 1.8 136 0.2 1.8 106 0.2 1.8 136 0.2 1.8 0.919

106 0.3 1.8 136 0.3 1.8 106 0.3 1.8 136 0.3 1.8 0.913

106 0.1 1.9 136 0.1 1.9 106 0.1 1.9 136 0.1 1.9 0.935

106 0.2 1.9 136 0.2 1.9 106 0.2 1.9 136 0.2 1.9 0.929

106 0.3 1.9 136 0.3 1.9 106 0.3 1.9 136 0.3 1.9 0.935

Table 6 Analysis of fuzzy sets
for systolic blood pressure data
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The heart of the instrument comprises of an Altera
EP1C6Q240C8 FPGA chip which handles computation of
the system which is interfaced in parallel with a CMOS
flash memory for storing patient data. The system accepts
inputs through push button switches and produces output
through LED 7 segment displays. There are two LEDs that
indicate whether the condition of the patient is moderately
critical or severely critical. The FPGA receives its config-
uration information from a EPCS1 configuration PROM
chip. The whole system receives its clock signals from a
piezoelectric oscillator.

The binary data entered through push button switch array
have been converted into real numbers for computation using
conversion-weights stored in a ROM. Using these parameter
values, the corresponding membership function values μl, μm,

and μh are computed. μl, μm and μh refers to the membership
of a pathological parameter value in the ‘low’, ‘moderate’
and ‘high’ fuzzy set respectively. Based on these member-
ship function values, the possibilities the values of the
different physiological parameters will be low, moderate or
high has been computed by the system. The maximum of
these three possibilities at any instant of time suggests the

c1 Δ1 w1 c2 Δ2 w2 c3 Δ3 w3 c4 Δ4 w4 <L0>

74 0.1 0.7 94 0.1 0.7 74 0.1 0.7 94 0.1 0.7 0.941

74 0.2 0.7 94 0.2 0.7 74 0.2 0.7 94 0.2 0.7 0.933

74 0.3 0.7 94 0.3 0.7 74 0.3 0.7 94 0.3 0.7 0.954

74 0.1 0.8 94 0.1 0.8 74 0.1 0.8 94 0.1 0.8 0.959

74 0.2 0.8 94 0.2 0.8 74 0.2 0.8 94 0.2 0.8 0.941

74 0.3 0.8 94 0.3 0.8 74 0.3 0.8 94 0.3 0.8 0.924

74 0.1 0.9 94 0.1 0.9 74 0.1 0.9 94 0.1 0.9 0.918

74 0.2 0.9 94 0.2 0.9 74 0.2 0.9 94 0.2 0.9 0.917

74 0.3 0.9 94 0.3 0.9 74 0.3 0.9 94 0.3 0.9 0.917

75 0.1 0.7 95 0.1 0.7 75 0.1 0.7 95 0.1 0.7 0.979

75 0.2 0.7 95 0.2 0.7 75 0.2 0.7 95 0.2 0.7 0.984

75 0.3 0.7 95 0.3 0.7 75 0.3 0.7 95 0.3 0.7 0.982

75 0.1 0.8 95 0.1 0.8 75 0.1 0.8 95 0.1 0.8 0.988

75 0.2 0.8 95 0.2 0.8 75 0.2 0.8 95 0.2 0.8 0.993

75 0.3 0.8 95 0.3 0.8 75 0.3 0.8 95 0.3 0.8 0.989

75 0.1 0.9 95 0.1 0.9 75 0.1 0.9 95 0.1 0.9 0.987

75 0.2 0.9 95 0.2 0.9 75 0.2 0.9 95 0.2 0.9 0.981

75 0.3 0.9 95 0.3 0.9 75 0.3 0.9 95 0.3 0.9 0.975

76 0.1 0.7 96 0.1 0.7 76 0.1 0.7 96 0.1 0.7 0.913

76 0.2 0.7 96 0.2 0.7 76 0.2 0.7 96 0.2 0.7 0.935

76 0.3 0.7 96 0.3 0.7 76 0.3 0.7 96 0.3 0.7 0.929

76 0.1 0.8 96 0.1 0.8 76 0.1 0.8 96 0.1 0.8 0.922

76 0.2 0.8 96 0.2 0.8 76 0.2 0.8 96 0.2 0.8 0.919

76 0.3 0.8 96 0.3 0.8 76 0.3 0.8 96 0.3 0.8 0.913

76 0.1 0.9 96 0.1 0.9 76 0.1 0.9 96 0.1 0.9 0.935

76 0.2 0.9 96 0.2 0.9 76 0.2 0.9 96 0.2 0.9 0.929

76 0.3 0.9 96 0.3 0.9 76 0.3 0.9 96 0.3 0.9 0.935

Table 7 Analysis of fuzzy sets
for diastolic blood pressure data

Table 8 Appropriate values of parameters of fuzzy sets of pathophysiological parameters determined

Pathophysiological parameter c1 Δ1 w1 c2 Δ1 w2 c3 Δ1 w3 c4 Δ1 w4

B.M.I. 10 0.2 0.6 30 0.2 0.6 10 0.2 0.6 20 0.2 0.6

Glucose 75 0.1 0.2 125 0.1 0.2 75 0.1 0.2 125 0.1 0.2

Urea 7 0.2 0.3 20 0.2 0.3 7 0.2 0.3 20 0.2 0.3

Creatinine 0.75 0.03 0.02 1.35 0.03 0.02 0.75 0.03 0.02 1.35 0.03 0.02

Systolic Blood Pressure 105 0.1 1.8 135 0.1 1.8 105 0.1 1.8 135 0.1 1.8

J Med Syst (2012) 36:1607–1620 1617



probable next physiological state of the patient. The output
therapeutic decision has been displayed on LED 7-segment
display. The 7 segment displays indicate the possibilities of
low, moderate and high values of the different pathological
parameters at the next physiological state of the patient.

Since, there are four seven segment displays for output in the
final system, and there is only one port available for display,
hence a four bit output called SCAN (0 to 3) is used.
Actually the different bit lines of the SCAN are connected to
cathodes of different common cathode LED 7 segment
displays so as to select the 7 segment LED in time shared
mode. The display codes corresponding to the 7-segment
display has been stored in a ROM. The system can be reset
at any point in time by a reset input which has been
implemented using a push button switch. Two LEDs
connected in the common anode mode indicate whether the
condition of the patient is moderately critical (MC) or
severely critical (SC). The whole system is provided with a
battery back-up.

The FPGA based fuzzy processor has been imple-
mented for medical diagnostic applications. The proposed
system could have also been implemented using soft-
ware. But the main disadvantage of the software solution
is that a powerful computer is to be used to run the
software for achieving reasonable speed and accuracy.
However, employing a powerful computer would be too
costly a solution and would require a steady supply of
electricity in rural sectors. The enormity of the cost could
impede the implementation of the smart diagnostic
system in the rural health care centres in the third world
countries. The main reason for a hardware based
implementation is the need for an inexpensive portable
diagnostic system. The main disadvantage of an ASIC

Table 9 Resource utilization summary

Resource Usage

Logic Cells 5,967/5,980 (99%)

Registers 3,245/6,523 (50%)

Total LABs 596/598 (99%)

Logic elements in carry chains 2359

User inserted logic cells 0

I/O pins 27/185 (14%)

Virtual pins 0

Clock pins 1/2 (50%)

Global signals 2

M4Ks 15/20 (75%)

Total memory bits 4,096/92,160 (4%)

Total RAM block bits 46,084/92,160 (50%)

Global clocks 2/8 (25%)

Maximum fan-out node Clk

Maximum fan-out 1047

Total fan-out 17700

Average fan-out 3.32

Fig. 4 Picture of the experi-
mental set up
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based hardware is the high development cost and the low
reconfigurability it allows for. The FPGA solution
ensures that new changes in the proposed diagnostic
algorithm can be mapped onto the hardware without
having to make costly changes.

Bayesian analysis

Bayesian analysis has been carried out on the population
under study to estimate the reliability of the system. In
order to estimate the reliability of diagnosis, the definitions
of statistical terms used in [29] have been used. As follows
from the application of Bayes’ theorem, the predictive
value of any diagnostic test is influenced by the prevalence
among the tested population, and by the sensitivity and
specificity of the test [30]. In our particular case, the total
population under study was 80.

Let a be the number of patients where the diagnostic
test yields a positive result and the patient really has a
disease, b be the number of patients where the diagnostic
test yields a positive result and the patient does not have a
disease, c be the number of patients where the diagnostic
test yields a negative result and the patient really has a
disease and d be the number of patients where the
diagnostic test yields a negative result and the patient
does not have a disease.

Hence, aþ bþ cþ dð Þ ¼ 80.
Using the appropriate values of ci, Δi and wi, i=1, 2, 3, 4

for which the values of <L0> are maximum, we get for the
population under study, a=24, b=1, c=0, d=55.

Therefore

Prevalence of disease; P ¼ ðaþ cÞ
ðaþ bþ cþ dÞ ¼ 0:3

Sensitivity of diagnosis; Se ¼ a

ðaþ cÞ ¼ 1:0000

Specificity of diagnosis; Sp ¼ d

ðbþ dÞ ¼ 0:9821

False positive rate ¼ 1� Sp ¼ b

ðbþ dÞ ¼ 0:0179

False negative rate ¼ 1� Se ¼ c

ðaþ cÞ ¼ 0:0000

Accuracy of diagnosis ¼ ðaþ dÞ
ðaþ bþ cþ dÞ � 100% ¼ 98:75%

Compared to our earlier work in [11] where using
sigmoid fuzzy sets of pathophysiological parameters, a
diagnostic accuracy of 97.5% has been obtained, the
present work further optimizes the sigmoid fuzzy sets to
yield a diagnostic accuracy of 98.75%.

Conclusion

The current work aims at mathematically modeling the
human decision making process using type 2 fuzzy sets. An
index of accuracy has been determined analytically and
statistically. Moreover, it has been ascertained that there
exists only one rule in the rule base whose associated
mapping for the ith linguistic variable maps to the same
value as the maximum value of the membership function
for the ith linguistic variable. Based on the accuracy
estimations applied over a set of inputs, optimal type-1
fuzzy sets have been determined assuming normal distri-
bution of type-1 membership function values in type-2
fuzzy sets. Using the accuracy estimations, most appropri-
ate type-1 fuzzy sets of pathophysiological parameters for
medical diagnosis have been determined. Based on the
accuracy estimations applied over a set of pathophysiological
parameters, viz. body mass index, glucose, urea, creatinine,
systolic and diastolic blood pressure, appropriate type-1 fuzzy
sets of these parameters have been determined. Using the
type-1 fuzzy sets, a fuzzy processor has been prototyped on an
FPGA. The processor has been tested for renal diagnostic
applications and has been found to give diagnostic decisions
with an accuracy of up to 98.75%.
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