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Abstract Breast cancer is a leading cause of death
nowadays in women throughout the world. In developed
countries, it is the most common type of cancer in women,
and it is the second or third most common malignancy in
developing countries. The cancer incidence is gradually
increasing and remains a significant public health concern.
The limitations of mammography as a screening and
diagnostic modality, especially in young women with dense
breasts, necessitated the development of novel and more
effective strategies with high sensitivity and specificity.
Thermal imaging (thermography) is a noninvasive imaging
procedure used to record the thermal patterns using Infrared
(IR) camera. The aim of this study is to evaluate the
feasibility of using thermal imaging as a potential tool for
detecting breast cancer. In this work, we have used 50 IR
breast images (25 normal and 25 cancerous) collected from
Singapore General Hospital, Singapore. Texture features
were extracted from co-occurrence matrix and run length
matrix. Subsequently, these features were fed to the Support
Vector Machine (SVM) classifier for automatic classification
of normal and malignant breast conditions. Our proposed
system gave an accuracy of 88.10%, sensitivity and
specificity of 85.71% and 90.48% respectively.
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Introduction

Breast cancer is one of the leading causes of cancer
death in women. The development of the malignancy
among women in developed countries is very common,
and it continues to rise in less developed countries [1]. It
is the most common cancer in women worldwide,
comprising 16% of all female cancers [2]. Although breast
cancer is thought to be a disease of the developed world, a
majority (69%) of all breast cancer deaths occurs in
developing countries [3]. Survival rates due to breast
cancer vary greatly worldwide, ranging from 80% or over
in North America, Sweden, and Japan to around 60% in
middle-income countries and below 40% in low-income
countries [4]. The low survival rates in less developed
countries may be due to lack of early detection pro-
grammes, thereby resulting in a higher number of women
being detected with the later-stage disease. Hence, the
increase in the death rate is a big concern. Survival rate
declines as women enter further in the stages of breast
cancer. Thus, to reduce breast cancer mortality rate and
increase survival rate, early detection and treatment are
crucial.

Various modalities are available to detect the presence
of breast cancer these days. They are based on light
(optical), sound (ultrasound), heat (thermogram), magnetism,
attenuation, microwave, x-rays, nuclear, electrical impedance,
and computer modeling (inverse simulation), or a fusion of
different methods and computer-aided diagnosis exists.

Mammography is considered the gold standard screening
tool for the early detection of breast cancer. Mammography

U. R. Acharya : J.-H. Tan
Department of Electronics and Computer Engineering,
Ngee Ann Polytechnic,
535, Clementi Road,
Singapore 599489, Singapore

E. Y. K. Ng : J.-H. Tan : S. V. Sree (*)
School of Mechanical and Aerospace Engineering,
College of Engineering, Nanyang Technological University,
50, Nanyang Avenue,
Singapore 639798, Singapore
e-mail: vinithasree@ntu.edu.sg

J Med Syst (2012) 36:1503–1510
DOI 10.1007/s10916-010-9611-z



shows tumors long before they develop into later stages or
big enough to be felt by the doctor [5]. It uses doses of
ionizing radiation to form images of the breast area, which
are then used to detect abnormal breast mass. In the
procedure, different sides of breast are compressed by a
mammography machine to flatten the tissue and hold the
breast still. This increases the quality of image and prevents
motion blur. Variability in the interpretation and tissue
density may affect the results of the mammography [6, 7]. It
was shown that, Magnetic Resonance Imaging (MRI) can
be used effectively with high sensitivity in the early
detection of breast cancers, particularly in pre-menopausal
women [8] with reduced specificity [9].

The relationship between breast skin temperature and
breast cancer was studied [10, 11]. They have detected and
measured changes in skin temperature of clinically healthy
and cancerous breasts. The use of infrared imaging is based
on the principle that the metabolic activity and vascular
circulation in pre-cancerous tissue and its surrounding area
are often higher than in normal breast tissue [12]. The
cancerous tumors increase circulation to their cells in order
to supply nutrients by opening existing blood vessels,
dormant (inactive) vessels and new ones. Thus, this results
in an increase in regional surface temperature of the breast
that can be detected by infrared imaging. This procedure
involves the use of medical infrared cameras and computers
to detect and produce high quality images of temperature
variations. Due to the sensitivity of infrared imaging,
earliest signs of breast cancer and the pre-cancerous
state of the breast can be observed in the temperature
spectrum.

Other methods of breast cancer detection such as
mammogram, ultrasound and MRI rely mostly on finding
the tumor. However, infrared imaging focuses on finding
thermal signs that suggest the presence of an early stage
tumor which cannot be detected physically or suggest a
pre-cancerous stage of the breast through minute variation in
normal blood vessel activity. X-rays scan readings are
affected by dense breasts or by hormonal changes that
occur in women who have underwent hormone replace-
ment therapy. Infrared imaging allows detection of both
breast cancer and potential breast cancer risk which
sometimes cannot be done through mammogram, MRI,
and ultrasound. In a study by Gautherie et al. [13], 1527
patients with initially healthy breasts and abnormal
thermograms were followed for a period of 12 years.
44% of the patients developed cancer within the first
5 years. The group concluded that “an abnormal thermo-
gram is the single most important marker of high-risk
category for the future development of breast cancer”.
Similar conclusion was obtained in many other studies
[14, 15]. But, the accuracy of thermography depends on
many factors such as the symmetry of the breasts'

temperature, temperature stability, physiological state,
and menstruation [16].

Establishing the surface isotherm pattern of the breast
and the normal range of cyclic variations of temperature
distribution can assist in identifying the abnormal
infrared images of diseased breasts. Therefore, Ng et al.
[16] investigated the cyclic variation of temperature and
vascularization of the normal breast thermograms under a
controlled environment. The authors presented a method
to segment the thermograms and to choose an ideal time
for thermal examination. Nowadays, IR imaging is
becoming an increasingly popular diagnostic tool to detect
various diseases. It has been widely used to detect the
malignant tumors in the breast by thermovision techniques
[16–19].

The texture of an image can be simply defined as a
function of spatial variation in pixel intensities [20].
Numerous methods have been proposed to study texture,
and these methods can be classified into four categories:
statistical methods, model based methods, geometrical
(structural, syntactic) methods, and signal processing
methods [20]. In the medical field, analysis of texture plays
an important role in a number of applications. Recently, Tan
et al., have used texture features to study the ocular
thermograms in young and elderly subjects [21]. They
have reported a significant difference in their respective
texture parameters.

Figure 1 shows the block diagram of the proposed
system used in this work. First, the thermogram image is
acquired using the IR camera. Then the image is cropped
and converted to a grayscale image. Subsequently, different
texture parameters are extracted and subjected to ‘t’-test for
selecting the best features. These selected features are fed to
the Support Vector Machine (SVM) classifier for automatic
detection.

The aim of this work is to make use of infrared imaging
to detect signs of breast cancer or abnormality automatically.
As the temperature of cancerous cells is higher compared
to normal cells, these cancer cells can be better identified
on infrared images. Texture analysis is adopted to extract
features from breast thermograms, and to detect the
presence of cancerous tumors subsequently. Different
statistical and several features of co-occurrence matrix
and run length matrix were extracted and fed into the
SVM classifier for automatic classification. The paper is
organized as follows: “Data Acquisition and Preprocessing”
provides a detailed outline on the acquisition and prepro-
cessing of the breast thermograms. A theoretical background
on the texture analysis is given in “Texture Analysis”. The
methodology, and the results obtained on evaluating the
performance of the classifier are presented in “Classification”
and “Results”, respectively. The discussion is given in
“Discussion”. Finally, the paper concludes in “Conclusion”.
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Data acquisition and preprocessing

Field data were collected from the Department of Diagnostic
Radiology, Singapore General Hospital using non-contact
thermography [22, 23]. Infrared thermograms were acquired
using NEC-Avio Thermo TVS2000 MkIIST System 3.0–
5.4 μm short wavelength (30 frames/sec), Stirling cooler,
InSb detector with (256×200) elements (Japan) (URL: www.
nec-avio.co.jp/en/contact/index.html) which has a measuring
accuracy of ±0.4% (full scale) and temperature resolution of
0.1°C at 30°C black body, with the instrument placed 1 m
away from the chest with lens (FOV15°×10°, IFOV2.2mrad)
attached. 90 patients were chosen at random to undergo the
thermography examination. Examination was done in a
temperature-controlled room with the temperature range of
20–22°C (within ±0.1°C). Humidity of the examination room
was maintained at 60%±5% [24–28]. The patients were
required to rest for at least 15 min to stabilize and reduce the
basal metabolic rate, which will result in minimal surface
temperature changes, and therefore, satisfactory thermo-
grams [29, 30]. Also, the patients were asked to wear a
loose gown that does not restrict airflow. Furthermore, it
was ensured that the patients were within the recom-
mended period of the 5th to 12th and 21st day after the
onset of menstrual cycle since during these periods the
vascularization is at basal level with least engorgement
of blood vessels [16, 31]. In this work, we have used a
total of 50 thermograms, where 25 thermograms were
from cancer patients (age: 51±8 years) and 25 were from
normal subjects (age: 46±10 years). In the malignant
class, 15 patients had stage III cancer and rest had stage
II cancer. 50% of the lumps were found in the upper-
outer quadrant, 35% in the area behind the nipple, and
15% were located in the upper-inner quadrant. We have
analyzed the cancerous breast in each of the 25
malignant cases and one normal breast in each of the
25 normal cases. Figure 2(a) shows the thermogram
image of a malignant breast, Fig. 2(b) is the corresponding
grayscale image, and Fig. 2(c) presents the 50×120
cropped images of the left and right breasts.

Texture analysis

Texture measures smoothness, coarseness, and regularity
of pixels in an image. These features describe the mutual
relationship among intensity values of neighboring pixels
repeated over an area larger than the size of the

relationship [32]. The texture recognition system can be
grouped into two main classes: structural and statistical.
Structural texture analyses are more complex compared to
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Fig. 2 Thermogram images: a Original b Grayscale version c cropped
left and right breasts
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the statistical approach [32]. Statistical approaches yield
characterization of textures as smooth, coarse, grainy etc.
These methods are based on the relationship between
intensity values of pixels; measures include entropy,
contrast, and correlation based on the gray level co-
occurrence matrix. In statistical methods, features are
described using a spatial gray level dependency matrix. Some

of the statistical features extracted from the thermograms are
described in this section.

Co-occurrence matrix

Given an M x N image, the gray level co-occurrence matrix
(GLCM) is defined [21] by

Cdði; jÞ ¼ ðp; qÞ; ðpþΔx; qþΔyÞ : Iðp; qÞ ¼ i; IðpþΔx; qþΔyÞ ¼ jf gj j ð1Þ

where ðp; qÞ; ðpþΔx; qþΔyÞ 2 M � N ; d ¼ ðΔx;ΔyÞ
and :j j denotes the cardinality of a set. Given a grey level
i in an image, the probability that a pixel at a (Δx,Δy)
distance away is j can be expressed as

Pdði; jÞ ¼ Cdði; jÞP
Cdði; jÞ ð2Þ

From the above matrix, the following moments m1, m2,
m3, and m4 can be obtained using the equation

mg ¼
X

i

X

j

ði� jÞgPdði; jÞ ð3Þ

Difference statistics is “the distribution of the probability
that the gray level difference is k between the points
separated by δ in an image” [33]. They are the subset of co-
occurrence matrix, and obtained from the matrix [33] by

PdðkÞ ¼
X

i

X

j

Cd i; jð Þ ð4Þ

where i� jj j ¼ k; k ¼ 0; 1; . . . n� 1, and n is the number
of grayscale level [34].

Run length matrix

In run length matrix, the gray level runs are characterized
by the gray tone, length and the direction of the run. Pθ

(i,j) is the run length matrix. In each entry it consists of the
number of elements where gray level “i” has the run
length “j” continuous in the direction θ [35]. Various
textural features were calculated from the run length
matrices of θ=0°, 45°, 90°, and 135° [36]. The features
computed for classification are given below.

ð5Þ

Gray level non� uniformity :

X

i

X

j

Pqði; jÞ
( )2

=
X

i

X

j

Pqði; jÞ

Run percentage :
X

i

X

j

Pq i; jð Þ=A: ð6Þ

where A is the area of the image of interest. Normalization
is performed to scale down the values of the computed
features.

Classification

After normalizing the features, they were fed to the
classifier. In this work, the Support Vector Machine
(SVM) classifier was used for the automated diagnosis of
the breast cancer. The SVM classifier has illustrated
excellent performance in a great deal of pattern recognition
problems. The SVM is a supervised learning method which
aims to determine a separating hyperplane that distin-
guishes positive examples from negative examples. Given a
set of labeled training data, it generates input-output
mapping functions which can either be used for classification
or for regression. For classification, input data are often
transformed to high-dimensional feature space with the use of
nonlinear kernel functions, so that the transformed data
becomes more separable compared to the original input data.

Results

We have extracted 16 texture features: homogeneity,
energy, entropy, moment1, moment2, moment3, moment4,
entropy, angular second moment, contrast, mean, short runs
emphasis, long runs emphasis, run percentage, gray level
non-uniformity, and run length non-uniformity. But, only
four features: moment1, moment3, run percentage, and gray
level non-uniformity were selected as they were clinically
significant (low p-values) compared to the other features.
Table 1 shows the ranges of the selected four texture
features for normal and malignant breast thermograms. The
results show that, the four features are clinically significant
(p value is low).

Three-fold stratified cross validation method was used to
test the SVM classifier. The whole dataset was split into
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three parts (roughly) such that each part contains approx-
imately the same proportion of class samples as the original
dataset. Two parts of the data (training set) were used for
classifier development and the built classifier was evaluated
using the remaining one part (testing data). This procedure
was repeated three times (folds) using a different part for
testing in each case. Then the average of all the three results
was calculated to get the accuracy, sensitivity, specificity
and positive predictive accuracy. Sensitivity is the proba-
bility that a test will produce a positive result when used on
diseased population. Specificity is the probability that a test
will produce a negative result when used on disease-free
population. Accuracy is the ratio of the number of correctly
classified samples to the total number of samples. The
positive predictive value is the proportion of patients with
positive test results who are correctly diagnosed. A
Receiver Operating Characteristic (ROC) curve is obtained
by calculating the sensitivity and specificity of a diagnostic
test at different threshold values and plotting sensitivity vs.
(1 – specificity). A test that perfectly discriminates between
the two groups (normal and abnormal) would yield a curve
that coincides with the left and top sides of the plot.
Generally, the goodness of a diagnostic test is assessed by
determining the Area under the ROC curve (AUC), which
can vary between 0.5 and 1. In practice, the closer the area
is to 1.0, the better the test is, and the closer the area is to
0.5, the worse the test is.

Table 2 shows the results of the classification. 36 images
(18 normal and 18 malignant) were used for training. 14
thermograms (7 in each class) were used for testing. Our
SVM classifier is able to classify with a classification
accuracy of 88.10%. Table 3 shows the values of
sensitivity, specificity, positive predictive accuracy, and
the AUC. It can be seen from the Table 3 that, we are able
to identify the unknown class with a high sensitivity and
specificity of 85.71% and 90.48%. This can be further

improved by taking more diverse thermograms and better
texture features.

Figure 3 shows the snap shot of graphical user interface
developed for our proposed system. There is a Load Image
button provided to load the test thermogram image. Once
that button is clicked, the selected image is displayed. The
grayscale images of the left and right breasts are also
displayed. The patient information corresponding to the
selected image (Name, Age, and Gender) are also displayed
on the top left hand side. On clicking the Support Vector
Machine (SVM) push button, the features are automatically
extracted from the image, fed into the SVM classifier, and
the final class of the thermogram is displayed in the Result
section. In the illustration, the class is Malignant.

Discussion

Mammogram is the most commonly recommended diag-
nostic modality for breast cancer detection. It is able to
identify about 61–87% of breast cancer cases [37].
However, it has a lower sensitivity in women of aged less
than 50 years because of its inability to effectively image
dense breast tissue that younger women have [37].
Moreover, the false negative rates of mammogram are
between 5% and 15%. Using mammography it is also
difficult to differentiate tumor from postoperative breast
scar. Thus, despite being the primary imaging method,
mammography has its own limitations. In addition, ultra-
sound and mammogram can only detect an already
developed cancer that is big enough to be detected in the
obtained images [37].

Owing to these limitations of the current popular
imaging modalities, several other modalities are being
continuously evaluated for breast cancer screening and
diagnosis. One of the most popular modalities under study

Features Normal Abnormal p-value

Moment1 41.0±16.9 68.3±26.1 less than 0.0001

Moment3 5.625E+04±8.240E+04 2.515E+05±2.531E+05 0.0006

Run Percentage 0.404±2.119E-02 0.420±1.958E-02 0.0088

Gray Level Non-uniformity 8.506E+03±668 9.114E+03±868 0.0078

Table 1 Selected features with
the least p-values

Table 2 Results of classification

Classes No. of
training data

No. of
testing data

Accuracy (%)
SVM

Normal 18 7 90.48

Abnormal 18 7 85.71

Average 88.10

Table 3 Values of sensitivity, specificity, positive predictive accuracy,
and area under the ROC curve for the SVM classifier

Classifier Sensitivity Specificity Positive
Predictive
Accuracy

Area under
the ROC
curve

SVM 85.71% 90.48% 81.07% 0.8810
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is the infrared thermogram. In a recent study by Schaefer et
al. [38], the features derived from cross co-occurrence
matrix, coupled with fuzzy classification were utilized to
analyze breast thermogram for cancer diagnosis. Their
proposed algorithm was able to identify the malignancies
with an accuracy of 80%. Tan et al. [39] proposed a
Complementary Learning Fuzzy Neural Network (CLFNN),
as a Computer-Assisted Intervention (CAI) tool for breast
thermogram analysis. Experimental results show that the
confluence of breast thermography and CLFNN not only
provides a low cost alternative but also aids the physician
in breast cancer detection and thermogram analysis with
relatively superior accuracy. Application of k- and fuzzy
c-means for color segmentation of thermal infrared breast
images was reported by EtehadTavakol et al. [40]. They
suggested that fuzzy c-means is preferred because the
fuzzy nature of IR breast images helps it to provide more
accurate results with no empty cluster. Recently, Wiecek
et al. [41] used Discrete Wavelet Transform (DWT) with
biorthogonal and Haar mother wavelets, and neural
networks to classify the normal and benign thermograms.
They were able to classify accurately with an efficiency of
86.6%.

In another study [5], discrete temperature readings
were recorded by placing 16 temperature sensors on the
surface of the breast to detect normal, benign, cancer, and
suspected cancer stages [5]. They used five classifiers
namely, back-propagation algorithm, probabilistic neural
network, fuzzy, Gaussian mixture model, and support
vector machine for classification. They were able to

achieve more than 80% accuracy in classifying the four
different classes.

Similar to the results of the above mentioned studies,
in this work, we have also demonstrated the utility of
breast surface temperature as an indicator for malignancy.
This method is suitable for young women for whom
mammography has proved to be not very efficient. A
thermogram presents a visual representation of ‘hot spots’ of
the breast, and hence, the interpretation may be subjective.
Therefore, we extracted texture features from the thermo-
grams in order to feed into classifiers for automatic classifi-
cation. This makes the interpretation more objective and
automatic, and therefore, inter-observer variability of diag-
nostic prediction is highly reduced. By using the SVM
classifier and the texture features, we have demonstrated that
our proposed technique has a higher classification accuracy of
88.10% in differentiating normal and malignant breasts. The
sensitivity and specificity were also high (85.71% and
90.48%, respectively).

Out of the 25 cancerous cases studied here, there were
10 carcinoma patients with stage II cancer and 15 with
stage III cancer. To make the proposed approach more
useful, more thermograms have to be obtained from women
with early stage I small malignancies, and texture features
should be extracted from them and fed to the SVM
classifier. Besides, detection of malignant breasts using
infrared thermography can be further improved by devel-
oping an algorithm that analyzes the relevant segmented
part of the breast area instead of using the cropped image.
Moreover, the accuracy and reliability of the system can be

Fig. 3 Graphical user interface of the proposed system
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improved by increasing the number of training images used
for classification.

Conclusion

We have developed an automatic diagnosis technique for
the assessment of breast cancer based on thermograms
using texture features and the SVM classifier. In this work,
we have proposed the use of four texture features namely
moment1, moment3, run percentage, and gray level non-
uniformity for representing the thermograms. These fea-
tures reflect the pixel variation and contours in the images.
On evaluating an SVM classifier with these features, a high
accuracy of 88.10%, sensitivity and specificity of 85.71%
and 90.48% respectively were obtained. The accuracy of a
diagnostic tool that uses classifiers depends on several
factors such as the size and quality of the training data and
features chosen as classifier inputs. The accuracy can be
further improved by extracting better texture features and
by using a larger sample size. To summarize, we have
demonstrated that infrared thermography with the help of
an automatic classification algorithm can prove to be a
valuable and reliable adjunct tool for physicians to detect
the breast cancer.
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