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Abstract Arrhythmia is one of the preventive cardiac
problems frequently occurs all over the globe. In order to
screen such disease at early stage, this work attempts to
develop a system approach based on registration, feature
extraction using discrete wavelet transform (DWT), feature
validation and classification of electrocardiogram (ECG).
This diagnostic issue is set as a two-class pattern classifi-
cation problem (normal sinus rhythm versus arrhythmia)
where MIT-BIH database is considered for training, testing
and clinical validation. Here DWT is applied to extract
multi-resolution coefficients followed by registration using
Pan Tompkins algorithm based R point detection. More-
over, feature space is compressed using sub-band principal
component analysis (PCA) and statistically validated using
independent sample t-test. Thereafter, the machine learning
algorithms viz., Gaussian mixture model (GMM), error
back propagation neural network (EBPNN) and support
vector machine (SVM) are employed for pattern classifica-
tion. Results are studied and compared. It is observed that

both supervised classifiers EBPNN and SVM lead to higher
(93.41% and 95.60% respectively) accuracy in comparison
with GMM (87.36%) for arrhythmia screening.
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Introduction

The human circulatory system consists of heart, which
contracts and expands to pump the oxygenated blood into
the vascular system, receives deoxygenated blood from
various parts of the body and routes it into the lungs [1]
where it gets oxygenated. Generally the sinus node acts as
the source of impulse signal in the heart during normal
operation. During abnormal conditions sinus node will not
function, instead there will be other sources of impulse
generation in the heart, a condition called arrhythmia is said
to exist. One of the most occurring abnormalities of the
heart is arrhythmia. It occurs due to the change in rhythm of
heart. If it is identified well within time, the disease can be
very well controlled and better healthcare could be
provided to the patient, whereas on the other hand the
arrhythmias are life-threatening and may lead to fatal
abnormalities like ventricular tachycardia followed by
fibrillations and if not therapeutically intervened at proper
time, it may take the life of the patient.

Due to the increased incidence of arrhythmia, it has
drawn attention worldwide including in the developing
countries. Hence detecting arrhythmia at an early stage is
necessary to provide the quality healthcare and prognostic
diagnosis.

Electrocardiogram (ECG) is one of the popular nonin-
vasive tool for the diagnosis of heart related diseases, which
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is the electrical pulsation captured at the human body
surface, representative of the functional dynamics [2] of the
heart. These activities are almost repetitive and have a
normal pattern with different amplitudes and corresponding
intervals and morphology, in relation to the normal
functioning of the heart. The ECG from a normal heart is
called normal sinus rhythm. When the heart departs from its
normal function, the ECG also changes in its character-
istics. So the prognostic information given by the ECG has
to be utilized properly for better diagnostics.

The different computational tools and algorithms are
also can be used for automated diagnosis and early
detection of heart related abnormalities. Towards this
direction, an attempt is made towards automated classi-
fication of ECG belonging to normal sinus rhythm and
arrhythmia classes.

Different techniques have been used to extract the R
point in the ECG. Recently quadratic spline wavelet is used
for ECG delineation [3, 4], where individual waves and
amplitudes are extracted. Even the traditional Pan and
Tompkins [5] algorithm is also computationally effective.
Among other features extracted are time frequency features
[6, 7] and higher order cumulants [8]. Among various
classification methods discriminant analysis [9], error
backpropagation neural network [10], self organizing
feature maps using neural networks [11], probabilistic
neural networks [12], support vector machines [13],
independent component analysis and Gaussian mixture
model [14].

There are automated methods for classification of
arrhythmic beats [15, 16] in the ECG using different
techniques. But most of the methods use compression of
time domain features using Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA) etc [14]. In the
proposed method features are compressed using PCA on
Discrete Wavelet Transform (DWT) sub bands. Since the
DWT gives sparse representation of the data, PCA or any
other feature compression technique should condense the
features better than the time domain counterpart method.

In the proposed methodology the DWT sub band
principal components are used for classification using three
different algorithms, i.e., Gaussian mixture model (GMM),
error back propagation neural network (EBPNN) and
support vector machine (SVM) classifiers. The results are
shown, compared and discussed.

Materials

In this work we have used open source data from www.
physionet.org from MIT BIH arrhythmia database and MIT
BIH normal sinus rhythm database which are described
following.

MIT BIH arrhythmia database

It consists of 48 half hour excerpts of two channel ambulatory
ECG data obtained from 47 subjects studied by the BIH
arrhythmia Laboratory between 1975 and 1979. Twenty three
recordings were randomly taken from a set of 4,000 twenty
four hour ambulatory ECG data collected from a mixed
population including both inpatients (approximately 60%)
and outpatients (approximately 40%) at Boston’s Beth Israel
Hospital. Remaining 25 recordings were selected from the
same set to include less common but clinically significant
arrhythmias. The ECG recordings are sampled at 360 Hz. per
channel with 11 bit resolution over 10 mV range.

MIT BIH normal sinus rhythm database

It consists of 18 long term ECG recordings of subjects
referred to the Arrhythmia Laboratory at Boston’s Beth
Israel Hospital. Subjects included in this database were
found to have had no significant arrhythmias; they include
5 men, aged 26 to 45, and 13 women, aged 20 to 50. It is
digitized at 128 Hz.

Methodology

The proposed methodology consists of four steps, prepro-
cessing, registration, feature extraction and classification of
ECG signal. We have employed three different classifiers;
Gaussian mixture model (GMM), error back propagation
neural network (EBPNN) [17] and support vector machine
(SVM) [18] classifier. Figure 1 shows the block diagram of
the proposed system.

In the preprocessing stage re-sampling, noise filtering
and baseline drift removal are done. The preprocessed ECG
signal is subjected to extract the R point. From the detected
R point a 200 sample window having R point at its 100th
sample is segmented. On each of the window of 200
samples, DWT is applied and the four sub bands are
subjected to PCA. After PCA, appropriate number of
principal components (PCs) from each sub band is chosen
such that they contain 98% of data variability. These PCs
are used for statistical validation against the PCs of time
domain windowed signal having 200 samples. After
statistical validation the significant features are used to
classify into normal sinus rhythm and arrhythmia using
three different classifiers, viz. GMM, EBPNN and SVM.
The results are tabulated and compared.

Preprocessing

Each of the datasets used are sampled at different rates, so a
common sampling rate is chosen to be 250 Hz and re-
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sampled using standard re-sampling techniques [19]. Also
the ECG signal suffers from baseline drift, which is
corrected by standard filtering [20] techniques.

R point detection and segmentation

The R point is the characteristic of the ECG signal which
can be used for registration before feature extraction and
subsequent classification. There are many methods avail-
able in the literature for registration of ECG, Pan and
Tompkins [5] work is simplest, even the wavelet based
technique using quadratic spline wavelet [3] is computa-
tionally exhaustive. Here in our analysis Pan Tompkins
algorithm is been used for detecting R point for ECG
registration [14, 25]. It uses derivative, smoothing, sum-
ming and threshold operators in its architecture. Derivative
gives the slope information; smoothing operation removes
the high frequency noise. Finally the group delay incurred
by all involved filters is compensated by advancing in time,
and the middle point of the rectangular pulses after
threshold operation is the R point.

If n is the number of points in the ECG data, and only
first derivative is computed, then computation of first
derivative is done in O(n) number of operations. Similar
way rectification is done in O(n) operations. On the same
lines smoothing, second derivative computation, rectifica-
tion, smoothing, summing and threshold operations each
require O(n) operations. Hence total complexity of Pan
Tompkins algorithm is O(dkn) where d is the number of
blocks present, k is the order of the individual filters (in this
case it is 1) and n is the number of points in ECG signal.
When d and k are very small compared to n, the total
complexity would be O(n) i.e., linear order.

Based on the detected R point 100 points are taken to the
right of R point and 99 points before R point with R point
itself, altogether 200 point window is taken and used for
subsequent discrete wavelet transform (DWT) [21] compu-
tation and pattern classification.

Discrete Wavelet Transform (DWT) computation

Fourier transform [20] is a very good tool to analyze the
global frequency present in the signal; the transform has

good frequency resolution but no time resolution. The time
resolution may be increased at the expenditure of reduced
frequency resolution. This intuition is incorporated in
wavelet transform. It decomposes a signal in time-
frequency components, and provides multi resolution
analysis (MRA) [21] with different resolution at different
levels of decomposition. Thus it can discriminate two
signals having same frequency components occurring at
different times. The wavelet transform consists of translates
and dilates of a basis function called as mother wavelet,
such a basis function at scale a and translation b is given by
wavelet equation as follows

ya;bðtÞ ¼
1ffiffiffi
a

p y
t � b

a

� �
ð1Þ

When the scale and translation variables are sampled on
a dyadic grid, it results in discrete wavelet transform
(DWT), whose wavelet equation is given by

ym;nðtÞ ¼ 2�m=2y 2�mt � nð Þ ð2Þ

The wavelet function is associated with a component of
the signal having higher frequencies, called as detail of the
signal. Using the family of translates and dilates of mother
wavelet, we can express the detail coefficients of the DWT
of signal x(t) as,

Tm;n ¼
Z1
�1

xðtÞym;nðtÞdt ð3Þ

i.e, detailed coefficients of a signal is given by the inner
product between the signal and the wavelet function at
different m and n.

Associated with low frequency components of a signal
(similar to signal detail), there is another basis function
which is orthogonal to the corresponding wavelet function
called as scaling function. Using scaling function the
approximation coefficients of the signal is given by,

Sm;n ¼
Zþ1

�1
xðtÞfm;nðtÞdt ð4Þ

ECG 
Pre-processing Registration Feature 

Extraction 

GMM 

Neural Network 

SVM 

Classifiers 
Fig. 1 Block diagram of the
proposed scheme of
classification
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where

fm;nðtÞ ¼ 2�m=2f 2�mt � nð Þ and

Zþ1

�1
f0;0ðtÞdt ¼ 1

ð5Þ
There are many wavelet families. Among them Daube-

chies 4 (db-4) is used for our study. The ECG signal is
decomposed in time frequency using db-4 wavelet for a
depth of 4 levels. The frequency components in each sub
band are shown in Fig. 2. In the first level of decomposition
the approximation signal will contain frequencies up to
62.5 Hz, where as detail signal will contain frequencies
from 62.5 Hz till 125 Hz, and so on for other levels of
decomposition as shown in Fig. 2.

The computational complexity of DWT using Mallat’s
algorithm is O(2d nk)where d is the depth of decomposition,
n is the number of points in ECG data and k is the number
of filter coefficients in approximation or detail filters. In our
case n=200, d=4, k=8.

In order for a simple and effective feature vector , the
reduced principal components of wavelet sub-bands a4,d4,d3,
d2 are used as features for statistical test of significance and
subsequently classification by three classifiers independently.

Principal Component Analysis (PCA) on wavelet sub band
features

In order to compress the features of ECG sub bands, PCA
[22] is applied on each of the sub band of interest. We have
considered four sub bands, a4, d4, d3, d2; as most of the
signal frequencies of interest lies in these bands. PCA is an
orthogonal transformation which transforms the sub band
coefficients into those directions of maximum variance. The
procedure consists of finding data covariance matrix by
subtracting mean of the features as,

Σ ¼ 1

N
d � d
� �

d � d
� �Tn o

; 1 � i; j � N ð6Þ

where d is the feature mean vector and N is the number of
samples(observations) considered including both arrhyth-
mia and normal sinus rhythm signals. In this study we have
included 548 observations including 274 from each of the
classes.

The covariance matrix is positive definite. The eigen
values and eigen vectors of Σ are computed. The eigen
vectors are sorted in the descending order of eigen values.
Finally the data is projected into the directions of eigen
vectors to obtain principal components (PCs). The first few
of them will contain most of the energy contained in the
signal. The first few components are chosen on the basis
that 99% of the data energy is contained in these PCs.

PCA routine uses singular value decomposition method
to find eigen values and eigen vectors of the covariance
matrix. The SVD can be performed in O(mn2) floating
point operations, where m is total number of patterns, n is
the dimension of each pattern.

We have chosen 13 PCs based on 98% data variability
condition and the PCs of ECG sub band coefficients are
used to analyze the statistical significance and subsequent
classification.

Statistical test

A feature extraction scheme in compact supported wavelet
basis space along with principal component analysis is
proposed. Theoretically the wavelet features after PCA
should give better and compact representation than that of
time domain PCA features. Both the time domain and
wavelet domain features are subjected to F test [23] and
independent sample t-test [24] for statistical significance
study.

Independent sample t-test is performed to show the
significance of each PC in discriminating two groups with
their means. Also another discriminating criterion, i.e., ratio
of between group variance to within group variance that
leads to F-test is considered to cross validate the PCs in
time domain and DWT sub band domain.

Classification

Using the PCA features of ECG sub bands a two class
pattern classification problem is formulated. In this paper
we have considered three pattern classifiers, viz., GMM,
BPNN and SVM.

GMM

Here we have a binary class problem of classification of
normal sinus rhythm signal and arrhythmia signal. The
Gaussian mixture model assumes that the features are
drawn from a normal distribution. We have two mixing

0     7.8125  15.625  31.25     62.5      125

a1 d1

a2

a3

a4 d4

d3

d2

 

   

Frequency in Hz

Fig. 2 Wavelet decomposition
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components corresponding to normal and arrhythmia
classes respectively. Therefore we have two class condi-
tional densities, p xnjwkð Þ, 1 � k � 2 and corresponding
class prior probabilities, p(ωk), 1 � k � 2. Each of the two
mixing component has a mean vector and covariance
matrix. Since we have applied orthogonal transformation
in compact supported basis, the off diagonal elements in the
covariance matrix are all approximately zero since the data
will be highly uncorrelated. The probability density
function of such a model is given by

where

xk ¼ 1

Xkj j
X
xn2wk

xn ð8Þ

and

Σk ¼ 1

Xkj j
X
xn2wk

xn � xkð Þ xn � xkð ÞT ¼ diag s i
2

� �
; 1 � i � d

ð9Þ
The corresponding posterior probabilities are given by

Bayes’ rule as follows.

P wk xijð Þ ¼ p xi wkjð ÞP2
k¼1

p wkð Þp xijwkð Þ
ð10Þ

Since our data consists of missing observations or it does
not represent the whole of the sample space, the mean
vectors and the covariance matrices computed are not the

correct ones. Therefore the means and variances are
recomputed using Expectation Maximization (EM) algo-
rithm and using maximum likelihood estimation method.
The re-estimating formulae are following

bmj ¼
PN
i¼1

xiP wj xij
� �

PN
i¼1

P wj xij
� � ð11Þ

bs2
j ¼

PN
i¼1

xi � bmj

	 
2

P wj xij
� �

PN
i¼1

P wj xij
� � ð12Þ

p bwj

� � ¼ 1

N

XN
i¼1

P wjjxi
� � ð13Þ

The initial prior probability is taken to be 0.5 for each of
the classes. An initial model is assumed from the data. The
EM algorithm used is having two core steps; E step and M
step. During E step class conditional density is computed
according to Eq. 7, and from it posterior density according
to Eq. 10 is computed. During M step the class model is
been re-estimated according to the Eqs. 11 through 13. The
process is continued until the new estimate will not change
much from the previous estimate, and model gets stabilized.
Then the EM based GMM is said to be converged. The
logarithm of the class conditional density called as log-
likelihood is computed for each of the iteration and it will
stop increasing at convergence.
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Fig. 3 Detection of R point in normal sinus rhythm signal. The detected R point is shown in red color
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2
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@�1
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The GMM algorithm is an optimization problem which
maximizes the following objective function.

J ¼
Y
n

X
k

p wkð Þp xn wkjð Þ ð14Þ

The converged centroids are such that the product over
all the observations, the total class conditional densities
weighted with respective prior probability will be maxi-
mized. The EM algorithm determines its new estimate such
that it will be approaching to the optimum of the objective
function, so as for the algorithm to converge.

GMM is an iterative algorithm, which can be performed
in O(ndkT) floating point operations, where n is the number
of patterns, d is the total number of features in a pattern, k is
the total number of classes present in the data, and T is the
number of iterations required for convergence of the
algorithm.

Error back propagation neural network

We have used here an error back propagation neural
network [17] consisting of one input layer of 13 neurons,
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Fig. 4 Power spectra of a nor-
mal sinus rhythm signal and b
arrhythmia signal
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one layer of hidden neurons consisting of 6 nodes and one
layer of two neurons in the output layer. The neural
network is trained to adapt its weights so as to classify
the data into two classes. This is also an optimization
problem where following objective function is minimized.

JðwÞ ¼ 1

2

XN
n¼1

XN
k¼1

yk xn;wð Þ � tnk
� �2

ð15Þ

Where yk(xn;w) is the network response for kth class
neuron in the output layer and tnk is the target for k

th class of
the nth observation feature vector.

There is a bias term in the input layer. The thirteen PCs
of ECG sub band features are fed to the input layer of the
neural network, along with bias term for the training set and
the weights are adapted using gradient descent method in
order to reduce the total mean square error below a
threshold. Then the testing data is fed to the neural network
architecture based on the derived weights and the output is
noted and the data is classified into binary class.

At the input layer of the neural network there are n
inputs, n2 at the second layer, n3 at the third layer and so
on till k for the output layer. If the neural network takes
T iterations to converge the total complexity will be
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O(nn2n3...kT). In our case we have 13 neurons in the input
layer, 6 neurons in the hidden layer and 2 neurons in the
output layer, the algorithm converges in 19 epochs.
Therefore the parameters of complexity are n=13, n2=6,
k=2, T=19.

Support vector machine classifier

It is a single layer and highly non-linear network which
optimizes the class separation boundary (discriminant
hyper plane) such that the distance from the features
falling in a given class to the hyper plane gets
simultaneously maximized with respect to all the classes.
Being a supervised classifier it has generalization ability,
by which it can classify unseen data. Suppose xi; yið Þ; i ¼
1 : N is the data set, where xi is the ith feature point, yi is
the class label. For the binary classification problem, let c+

and c− are the centroids of the two classes, the classifier
response will be

yi ¼ sgn x� cð Þ:wð Þ
¼ sgn x:cþð Þ � x:c�ð Þ þ bð Þ ð16Þ
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Table 1 Sub band PCA

Number of PCs
considered

Percentage of energy
contained by PCs

Detail 2 5 98.1770

Detail 3 3 99.2262

Detail 4 2 98.5930

Approximation
4

3 98.8920

684 J Med Syst (2012) 36:677–688



where

b ¼ 1

2
c�k k2 � cþk k2

	 

ð17Þ

The optimal hyperplane separating the two classes and
satisfying condition in Eq. 16 is

minimize
1

2
wk k2

w; b

ð18Þ

such that

yi: w:xið Þ þ bð Þ � 1; i ¼ 1; : : :N ð19Þ

The Lagrangian dual of Eq. 18 is a quadratic program-
ming problem and will find the optimal hyper plane which
separate the two classes. It uses a routine called quadratic
programming whose complexity is of polynomial order.

Results and discussion

The proposed methodology has been applied on ECG from
MIT BIH arrhythmia and normal sinus rhythm databases
(described in “Materials”) to form a two class problem. The
R point in the ECG is detected by extended Pan Tompkins
algorithm, which detects almost all peaks with a good

Table 2 Statistical significance test for time domain and DWT domain features

Time domain PCs Statistical significance DWT domain PCs Statistical significance

F t p-value F t p-value

1 0.064 −4.841 0.000 1 25.163 11.092 0.000

2 65.948 −51.721 0.000 2 60.072 −1.213 0.226

3 33.932 −8.455 0.000 3 153.942 23.549 0.000

4 29.957 −1.958 0.051 4 6.250 −5.473 0.000

5 196.304 0.470 0.639 5 418.804 −2.057 0.040

6 0.012 −0.055 0.956 6 245.202 41.050 0.000

7 287.091 2.726 0.007 7 95.875 68.523 0.000

8 127.093 −0.736 0.462 8 1.560 2.898 0.004

9 94.513 −0.562 0.575 9 41.881 25.374 0.000

10 20.753 −1.369 0.171 10 88.978 −17.930 0.000

11 268.470 −0.965 0.335 11 101.547 15.886 0.000

12 88.355 1.064 0.288 12 7.355 74.441 0.000

13 304.912 −0.030 0.976 13 78.616 3.458 0.001
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detection rate. The detection of R point is shown in Fig. 3
for normal sinus rhythm signal. The choice of this
algorithm is due to its simplicity and real time implemen-
tation ability, even though more accurate delineation
algorithms [3, 7] are available in the literature.

After detecting the R point in the ECG, 99 points from the
left of R point and 100 points to the right of R point are taken

along with the R point itself as a 200 sample window
consisting of only one QRS complex. The 200 sample
window of one QRS belonging to either arrhythmia or normal
sinus rhythm will be the one pattern for the subsequent
dimensionality reduction and pattern classification.

The power spectrum of a normal sinus rhythm signal and
a arrhythmia signal is shown in Fig. 4. It is observed from
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Fig. 4, and Fig. 2 that most of the signal frequency of ECG
lies in four sub-bands, approximation 4, detail 4, detail 3
and detail 2. Hence these four sub bands are used for
subsequent sub band PCA and classification.

The wavelet decomposition at different levels of decom-
position is depicted in Fig. 5 for normal sinus rhythm signal
and Fig. 6 for arrhythmia signal. The four sub band signals
are shown, for both normal sinus rhythm and arrhythmia
signals.

Suppose if time domain segmented ECG signal after R
point detection is used for PCA extraction, the energy
profile of the principal components is shown in Fig. 7. The
13 principal components consist of 99.97% of signal energy
in these directions.

The sub bands of ECG are subjected to PCA and the
energy profile of PCs is depicted in Fig. 8. The number of
PCs considered and the energy contained in PCs directions
of the data is given in Table 1.

The segmented ECG from detected R point is decom-
posed using DWT and on this time frequency sub bands
PCA is applied. The convention for classification is that
applying PCA on time domain signal in order to compress
it. But we have applied PCA on wavelet sub bands, which
are yielding better discrimination ability between the
normal sinus rhythm and arrhythmia class features so as
to classify them. This is substantiated by the statistical
independent t test on these features given in Table 2.
Table 2 gives the independent t test for time domain PC
features and DWT sub band PC features. It is found that
from Table 2 that the significant p-value is less than 0.000
for DWT based PC features whereas for time domain PC
features only first three features are significant as can be
seen by corresponding p-value.

The Gaussian mixture model is trained and the log
likelihood profile with respect to iterations is shown in
Fig. 9. The GMM converges in 8 iterations.

The mean square error reduction during training of the
error back propagation neural network is depicted in
Fig. 10. It is seen that the neural network converges in 19
epochs. The SVM classification is shown in Fig. 11.

The sensitivity, specificity and average accuracy is
shown for the three classifiers, i.e., GMM, EBPNN and
SVM classifiers in Table 3.

Conclusion

In this study, a system approach has been developed in
order to screen arrhythmia patients from normal ones based
on ECG signal in time frequency sub band domain. In fact,
it includes significant (lesser dimension) principal compo-
nents due to sparser representation of features in time
frequency domain. As because of the non-linearity of ECG
signal, we have employed higher order classifiers consid-
ering non-linear transformations. In case of GMM, neural
network and SVM, it is incorporated in EM algorithm,
hidden layer and kernel transformation respectively.

From the results, finally it can be interestingly observed
that the proposed system approach provides 87.36%,
93.41% and 95.60% overall accuracies for GMM, BPNN
and SVM classifiers respectively. As a future work, the
features extracted from other wavelet families can be used
in our methodology for training and testing. Simultaneous-
ly, the statistical validation needs to be verified and hence
classifiers are to be employed for final screening with
higher accuracy.
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