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Abstract Methods that can accurately predict breast
cancer are greatly needed and good prediction techniques
can help to predict breast cancer more accurately. In this
study, we used two feature selection methods, forward
selection (FS) and backward selection (BS), to remove
irrelevant features for improving the results of breast
cancer prediction. The results show that feature reduction
is useful for improving the predictive accuracy and
density is irrelevant feature in the dataset where the data
had been identified on full field digital mammograms
collected at the Institute of Radiology of the University of
Erlangen-Nuremberg between 2003 and 2006. In addition,
decision tree (DT), support vector machine—sequential
minimal optimization (SVM-SMO) and their ensembles
were applied to solve the breast cancer diagnostic problem
in an attempt to predict results with better performance.
The results demonstrate that ensemble classifiers are more
accurate than a single classifier.
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Introduction

Breast malignancy is one of the most common cancers
among women. It is a major health problem and represents
a significant worry for many women and their physicians
[1]. During the last decade with development of more
effective diagnostic techniques and improvements in
treatment methodologies, breast cancer outcomes have
improved. An important factor in this disease is the early
detection and accurate diagnosis. The long-term survival
rate for women with breast cancer is improved by
detecting the disease in its early stage [2].

Mammography is the screening modality proven to
detect breast cancer at early stage and diagnosis of breast
cancer in women [3–5]. The efficacy of mammography is
limited in extremely dense breasts where sensitivity to
detect cancer maybe as low as 60–70% [6]. Both digital
and film mammography use X-rays to produce an image
of the breast. Pisano [7, 8] provided the overall diagnostic
accuracy of digital and film mammography as a means of
screening for breast cancer is similar. However, digital
mammography performed better than film for pre- and
perimenopausal women younger than 50 years with dense
breasts [8]. In addition, digital mammography allows
improvement in image storage and transmission because
images can be stored and sent electronically. Diagnostic
mammography is done for women with signs or symptoms
of breast cancer. Any sign of cancer should be communi-
cated to the radiologist with the referral for a diagnostic
mammogram. Radiologists basically look for two types of
patterns in mammography: micro-calcifications and
masses [9].

Some researchers have developed a variety of statistical
methods for mammographic diagnosis of breast cancer
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[10–14]. Rakowski and Clark utilized multiple logistic
regression to select significant correlates of screening
mammogram and used classification-tree (CHAID) to
combine the significant correlates into exclusive and
exhaustive subgroups [13]. In addition, Chhatwal et al.
reported that logistic regression model can discriminate
between benign and malignant in decision making for the
early detection of breast cancer and identify the most
important features associated with breast cancer [14].
Moreover, Heine and colleagues show how parametric
statistical methods can be useful for in identifying normal
tissue in mammograms [12].

Recently, many studies have been made on the
problem of breast cancer diagnosing based on digital
mammography [15, 16]. Some scholars applied data
mining techniques to predict diagnossis for digital mam-
mography [17, 18]. Data mining techniques offer precise,
accurate, and fast algorithms for such classification
using dimensionality reduction, feature extraction, and
classification routines. Neural networks have improved
accuracy rate for the classification of benign and
malignant patterns in digitized mammography [19–21].
Recently, the fashionable technique support vector
machine (SVM) [22, 23] have been applied for mammo-
gram classification and have improved the prediction
performance of breast cancer diagnosis.

Feature selection is also commonly used in machine
learning. It has already seen application in statistics, pattern
recognition, and data mining. The aim of feature selection
is to filter out redundant or irrelevant features from the
original data [24]. Feature selection, a pre-processing step
in the data mining process, is the step to select and extract
more valuable information in massive related materials. It
can improve the model’s performance as well as reduce the
effort of training the model.

Ensemble classifier is now an active area of research in
machine learning and pattern recognition [25]. Many
studies have been published, both theoretical and empirical,
which demonstrate the advantages of the combination
paradigm over the individual classifier models [26].
Recently, two ensemble methods, Bagging and Boosting,
have also obtained wide popularity [27]. Bagging uses
the predictions of multiple base classifiers through majority
voting. Boosting, a meta-classifier, combines weak classi-
fiers and takes a weighted majority vote of their predictors.

This study aimed to calculate and compare the degree of
importance for the features of the dataset. In addition, we
tried to remove least important features to check whether it
could help improve the results of breast cancer prediction. In
this study, decision tree (DT) and support vector machine—
sequential minimal optimization (SVM-SMO) and their
ensembles were employed to solve the problem in an attempt
to predict results with better performance. A large publicly

available mammography reference database was adopted to
evaluate and compare our proposed approaches.

Methods

Decision tree

Decision tree (DT) provides a powerful technique for
classification and prediction. Since DT includes both data
exploration to identify relationships and modeling to
provide decision rules that can be expressed in natural
language, they are an insightful first step in the modeling
process, even if another methodology is used for the final
model. The DT is conceived in order to maximize the
correct classification of all the training examples provided.
The generated structure is thus subject to over fitting, in
which the classifier specializes to the training examples,
showing poor performance on new data. One benefit of
using DT is that the extracted knowledge is organized in a
structure that can be easily explainable by humans [28]. In
this study, a predictive model was made by applying DT to
the prepared data. DT was carried out using the J48
algorithm in WEKA (Waikato environment for knowledge
analysis) [29]. WEKA is the software can either be applied
directly to a dataset or called from other programs and it is
a set of machine learning algorithms for data mining tasks
[30]. We adopted WEKA for mining (applying the J48
algorithm) breast cancer register data. The application
contains tools for data preparation, classification, clustering
and visualization. In WEKA, the J48 algorithm is the
equivalent of the C4.5 algorithm written by Quinlan [31].

Support vector machine-sequential minimal optimization
(SVM-SMO)

Support vector machine (SVM) represents a learning
technique which follows principles of statistical learning
theory [32]. It is a supervised machine-learning tool with
wide application in classification studies. For example,
it has been widely used for solving problems in pattern
recognition, classification and regression. Generally,
the main idea of SVM comes from binary classification,
namely to find a hyperplane as a segmentation of the two
classes to minimize the classification error. The Sequential
Minimal Optimization (SMO) algorithm proposed by John
Platt in 1998 [33], is a simple and fast method for training
a SVM. The main idea is derived from solving dual
quadratic optimization problem by optimizing the minimal
subset including two elements at each iteration. The
advantage of SMO is that it can be implemented simply
and analytically. There are different kernel functions used
in SVM. The selection of the appropriate kernel function
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is very important, since the kernel defines the feature
space in which the training set examples will be classified.
Using of different kernel functions in SVM will lead to
different performance results. In this study, the best result
was obtained using radial kernel functions.

Ensemble constructing techniques

Ensemble methods in machine learning aim to induce a
collection of diverse predictors which are both accurate
and complementary, so that, better prediction accuracy on
previously unseen data is obtained when the decisions of
the different learners are combined. The goal is to generate
from a given training dataset a collection of diverse
predictors whose errors are uncorrelated. Ensembles built
in this manner often exhibit significant performance
improvements over a single predictor in many regression
and classification problems [34]. Ensembles can be built
using different base classifiers: decision stumps [35]
decision trees [36] support vector machines [37, 38], etc.
In this work, we adopted the ensemble constructing
techniques. All of the techniques combine DT and SVM
classifiers to form different ensemble classifiers.

Bagging

Bagging, which is also known as bootstrap aggregating, is a
method that repeatedly samples from a dataset according to
uniform probability distribution. It is a meta-algorithm to
improve classification and regression models in terms of
stability and classification accuracy. Although Bagging is
usually applied to decision tree classifiers, it can be used with
any type of model. Bagging improves generalization error by
reducing the variance of the base classifiers [39]. If a base
classifier is unstable, Bagging helps to reduce the errors
associated with random fluctuations in the training data. If a
base classifier is stable, then the error of the ensemble is
primarily caused by bias in the base classifier.

AdaBoost

Freund and Schapire [40] formulated AdaBoost, short for
Adaptive Boosting. It is a well known, effective technique

for increasing the accuracy of learning algorithms. Howev-
er, it has the potential to over-fit the training set because its
objective is to minimize error on the training set. The
sequence of base classifiers, produced by AdaBoost from
the training set, is applied to the validation set, creating
a modified set of weights. The training and validation sets
are switched, and a second pass is performed. Re-weighting
and re-sampling are two methods implemented in
AdaBoost. The fixed training sample size and training
examples are re-sampled according to a probability distri-
bution used in each iteration. In term of re-weighting, all
training examples with weights assigned to each example
are used in each iteration to train the base classifier [41].
There are many variants on the idea of Boosting. We
describe a widely used method called AdaBoostM1 that is
designed specifically for classification.

MultiBoosting

MultiBoosting is an extension to the highly successful
AdaBoost technique for forming decision committees and
can be viewed as combining AdaBoost with wagging. It is
able to harness both AdaBoost’s high bias and variance
reduction with wagging’s superior variance reduction [42].

Model evaluation step

Empirical studies adopted k-fold cross validation that in
order to obtain a reliable result with low mean square error
(MSE) and bias [43]. The performance of each classifier
was assessed with a stratified 10-fold cross validation
method. Each run of cross validation is comprised of an
independent training and testing database, where 90% of
the data is put in the training set and the remaining 10% of
the data is put into the test set. For each classification
model, statistical results of 10 repetitions of 10-fold cross
validation were averaged and calculated. In addition, the
following statistics were calculated: sensitivity, specificity
and accuracy.

ROC Curve has been widely accepted as the standard for
describing and comparing the accuracy of diagnostic tests
[44]. It can also be constructed from clinical prediction rules.
The accuracy of the test depends on how well the test

Table 1 Mammographic mass dataset: description of attributes

Attribute Range and description

BI-RADS assessment (ordinal, non-predictive) The ranging from 1 (definitely benign) to 5 (highly suggestive of malignancy).

Age (integer) The patient’s age has been widely distributes from 18 to 96 (in years).

Shape (nominal) mass shape: round=1, oval=2, lobular = 3, irregular = 4

Margin (nominal) mass margin: circumscribed=1, microlobulated=2, obscured = 3, ill-defined = 4, spiculated = 5

Density (ordinal) mass density high=1, iso=2, low = 3, fat-containing = 4
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separates the group being tested into those with and without
the disease in question. An ROC curve is constructed by
plotting the sensitivity versus 1-specificity, for varying cutoff
values. The area under the curve (AUC) is the evaluation
criteria for the classifier. It can be statistically interpreted as
the probability of the classifier to correctly classify malignant
cases and benign cases. In this work, the AUC is obtained by
a nonparametric method based on the Wilcoxon statistic,
using the trapezoidal rule, to approximate the area [45, 46].
AUC can be used for comparing two different ROC curves
from the same samples of cases.

Experiments and methodologies

Database overview

In this study, a real-world breast cancer database from the UCI
repository ofmachine learning databases [47] was chosen and
the description of attributes of the dataset was illustrated in
Table 1. The database was used to predict the severity
(benign or malignant) of a mammography mass lesion from
breast imaging reporting data system (BI-RADS) attributes
and the patient’s age. The BI-RADS, developed by the
American College of Radiology, provides a standardized
classification for mammographic studies. It was designed to
reduced variability in mammography practice and used by a
number of computerized mammography tracking systems. In
addition, BI-RADS is a quality assurance tool, reduce
confusion in breast imaging interpretations, and facilitate
outcome monitoring [48]. The database contains a BI-RADS
assessment, the patient’s age and three BI-RADS attributes

(mass shape, mass margin, mass density) and is based on
digital mammograms collected at the Institute of Radiology
of the University of Erlangen-Nuremberg between 2003 and
2006 [49]. It consists of 961 records and each record in the
database has one dependent and five independent variables.
There are 516 benign and 445 malignant masses. The
database does not reflect all variables that are collected by
radiologists during mammography practice, hence, it is one
of the limitations of this work.

Feature selection

Feature selection is an important issue in building
classification systems. It is advantageous to limit the
number of input features in a classifier in order to have a
good predictive and less computationally intensive model
[50]. In this study we used two well-known feature
selection techniques, which are forward selection (FS),
and backward selection (BS) [51]. The statistical software
SPSS was adopted for applying feature selection methods
(FS and BS).

Forward selection and backward selection select the least
important descriptors based on stepwise addition or
elimination of features. In forward selection, variables are
progressively incorporated into larger and larger subsets. In
backward selection, the values of the selection criterion
using all the features are calculated. Then starting from the
initial set of features the algorithm temporarily deletes each
feature, calculates the value of the selection criterion, and
deletes the feature with the largest value of the selection
criterion from the set.

Experimental validation

An experiment was set up to compare DT and SVM with
Bagging, AdaBoost, and MultiBoosting. In all ensemble
methods, DT and SVM were used as the base classifiers. In
implementing of the experiment, we used the WEKA
software to gain access to different classifiers. DT
construction method was the J48 algorithm and SVM
construction method was SMO algorithm from the WEKA.
We adopted the 10-fold cross-validation method to
evaluate the prediction performance in this study.

Table 2 The attributes obtained by feature selection methods

Used METHODS Attributes

BIRADS Age Shape Margin Density

FS 4 2 3 1 /

BS 4 3 2 1 /

/: The attribute was omitted

5-attributes 4-attributes

Classifiers Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

DT 0.829 0.836 0.831(0.005) 0.832 0.835 0.831(0.006)

Bagging DT 0.836 0.833 0.833(0.004) 0.835 0.835 0.834(0.004)

AdaboostM1 DT 0.809 0.811 0.808(0.007) 0.814 0.816 0.815(0.009)

MultiBoosting DT 0.822 0.820 0.821(0.006) 0.823 0.821 0.822(0.005)

Table 3 Summary of perfor-
mance using single DT and DT
ensembles

The numbers in parentheses are
the standard errors
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Results

Selected features using feature selection methods

By setting some criteria for the two feature selection
methods to take irrelevant features out, thus improving
the results of breast cancer prediction, Table 2 shows the
attributes that were extracted from the mammographic
mass dataset using FS and BS. As seen in Table 2, FS and
BS both reduced the attribute, density. Each feature is
ranked respectively with two feature selection methods
and the number in the column represents the degree of
importance. The result shows margin is the most impor-
tant attribute and density is the least important attribute
(Table 2).

Diagnostic accuracy

The performance using single SVM-SMO, DT and their
ensembles for 5- and 4- attributes (omitted density) were
shown in Tables 3 and 4. The items of the tables include
total accuracy (i.e., the percentage of correctly classified
patterns), sensitivity (i.e., the probability that a case
identified as malignant is indeed malignant), and specific-
ity (i.e., the probability that a case identified as benign is
indeed benign). In addition, the accuracy comparisons of
these methods were illustrated in Figs. 1 and 2. As shown
in Fig. 1, the results demonstrate that ensembles are not

always better than a single DT classifier. However, the
accuracy of AdaBoostM1 DT was slightly worse than
those of ensembles DT and single DT. In addition, after
applying FS and BS to remove least important feature
(4-attributes), the accuracy rates were better than original
features (5-attributes) except single DT. Feature selection
is thus useful for improving the result of accuracy in our
experiment. The Bagging DT adopting 4 attributes had the
best performance (accuracy: 0.834) among all these
approaches.

As shown in Fig. 2, the results indicate that SVM-SMO
ensembles were also not always better than a single SVM-
SMO classifier. However, the accuracy of AdaBoostM1
SVM-SMO was slightly worse than those of ensembles
SVM-SMO and single SVM-SMO. Feature selection is
also positive for improving the result of accuracy as using
SVM-SMO. The accuracy rates of after removing
the density attribute was better than those adopting
5-attributes when using Bagging SVM-SMO, Ada-
BoostM1 SVM-SMO and MultiBoosting SVM-SMO,
except SVM-SMO. The Bagging SVM-SMO adopting
4-attributes had the highest accuracy (0.820) among all
these approaches.

Model evaluation

The average of AUC (AUC), the corresponding standard
error (S.E. derived from 30 AUC values), and 95%

5-attributes 4-attributes

Classifiers Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

SVM-SMO 0.815 0.817 0.812(0.005) 0.816 0.814 0.812(0.004)

Bagging SVM-
SMO

0.823 0.814 0.818(0.009) 0.824 0.813 0.820(0.013)

AdaboostM1
SVM-SMO

0.811 0.808 0.808(0.007) 0.813 0.813 0.813(0.005)

MultiBoosting
SVM-SMO

0.815 0.811 0.811(0.007) 0.816 0.811 0.812(0.005)

Table 4 Summary of perfor-
mance using single SVM-SMO
and SVM-SMO ensembles

The numbers in parentheses are
the standard errors
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Fig. 2 The results of using single SVM-SMO and SVM-SMO
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Fig. 1 The results of using single DT and DT ensembles
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confidence interval (CI) using different classifiers (DT,
SVM-SMO and their ensembles) are shown in Table 5. In
addition, the performance measures using DT, CBR and
ANN reported in [49] were compared with the methods we
proposed in this study. Among the classifiers, the Bagging
DT has the best performance of the 5-attributes and
4-attributes, respectively. The results of using DT method
were not alike, 0.866 (0.004) vs. 0.838 (0.017), because the
algorithms were different. The algorithm we adopted was the
C4.5 algorithm, however, it was the ID3 algorithm in [49].

Tables 6, 7 and 8 show the comparisons and significance
level of eight different methods. When the two classifiers
are significant or close to significant, p-values are indicated
in bold. (p-value from pairwise two-tailed z-test) in these
three tables. Both under 5- and 4- attributes, the AUC of
SVM-SMO is all significant different with the others
classifiers (p-values<0.001), so, it is the worst method in
our experiment. In addition, there are significant difference

between SVM-SMO and its three ensembles. The AUC
value of SVM-SMO is lower than those of its ensembles,
hence, the proposed ensemble are significantly helpful
to improve the prediction performance. Under under
5-attributes, only Bagging DT has significant difference
(p-values=0.004) as compared to DT. However, there under
4-attributes, the difference between DT and its three
ensembles are significant (p-values=0.001, 0.077, 0.013).
Hence, the effects of ensemble methods are more obvious
when under 4-attributes.

Discussion

Mammography is used to aid in the early detection and
diagnosis of breast diseases in women. Diagnostic breast
cancer is widely used to facilitate the diagnosis of breast
cancers in women who present with symptoms or signs of

Table 6 Significance level when two AUCs on the test set are compared under 5-attributes

DT Bagging
DT

AdaboostM1
DT

Multiboosting
DT

SVM-
SMO

Bagging
SVM-SMO

AdaboostM1
SVM-SMO

Multiboosting
SVM-SMO

DT NA 0.004 0.160 0.187 <0.001 0.876 0.112 0.527

Bagging DT NA 0.086 0.477 <0.001 0.003 0.052 0.343

AdaboostM1 DT NA 0.698 <0.001 0.258 1.000 0.939

Multiboosting DT NA <0.001 0.244 0.685 0.739

SVM-SMO NA <0.001 <0.001 <0.001

Bagging SVM-
SMO

NA 0.212 0.590

AdaboostM1
SVM-SMO

NA 0.937

Multiboosting
SVM-SMO

NA

Classifiers Estimated AUC 95% confidence intervals

5-attributes 4-attributes 5-attributes 4-attributes

DT 0.866 (0.004) 0.866 (0.004) 0.865–0.867 0.858–0.874

Bagging DT 0.886 (0.004) 0.885 (0.004) 0.884–0.888 0.881–0.891

AdaBoostM1 DT 0.875 (0.005) 0.876 (0.004) 0.873–0.877 0.871–0.879

MultiBoosting DT 0.879 (0.009) 0.880 (0.004) 0.876–0.882 0.876–0.882

SVM-SMO 0.813 (0.005) 0.813 (0.004) 0.811–0.815 0.812–0.814

Bagging SVM-SMO 0.867 (0.005) 0.869 (0.005) 0.865–0.869 0.865–0.869

AdaBoostM1 SVM-SMO 0.875 (0.004) 0.876 (0.005) 0.873–0.876 0.873–0.877

MultiBoosting SVM-SMO 0.874 (0.012) 0.877 (0.004) 0.870–0.878 0.872–0.876

Elter et.al (2007)

DT 0.838 (0.017) – – –

CBR 0.857 (0.016) – – –

ANN 0.847 (0.017) – – –

Table 5 Comparison of the
AUC using the different
classifiers (standard error)
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the disease. A meaningful and reproducible evaluation
of diagnostic methods was necessary and building an
effective breast cancer diagnostic model has been an
important task. In previous studies [1–5], the issue has
attracted a lot of researchers’ interest. In the past, the breast
cancer diagnostic problem has been one of the main
application areas of classification problems [19–23]. Many
modeling, like statistical methods [10–14] are becoming
a very popular alternative in handling breast cancer
diagnostic tasks. Over the last few years, many studies
have shown that data mining techniques such as Artificial
Neural Network [19–21] and Support Vector Machine [22,
23] achieved better performance than did statistical meth-
ods. Recently, classifier combination is now an active area
of research in Machine Learning [24].

Many approaches cannot filter irrelevant or correlated
information in the representation and quality of data will
affect their performance. Feature selection methods applied
on selecting more representative variables certainly
improve the performance of prediction. In this work, we
adopted two feature selection methods, FS and BS, to take

out irrelevant features thus improving the results of breast
cancer prediction. FS and BS both reduced the density
attribute and kept the others. The results shown in Figs. 1
and 2 indicated that the performances of 4-attributes are
better than those of 5-attributes, except in terms of the
single classifier (DT, SVM-SMO) was be equal to accuracy.
In this study, the result demonstrates that the margin is the
most important attribute and the density is the least
important attribute in the mammographic mass dataset.

Feature selection in data mining has been well studied,
where the main goal is to find a feature subset that
produces higher classification accuracy. The main idea of
feature selection is to choose a subset of input variables by
eliminating features with little or no predictive informa-
tion. It can significantly improve the comprehensibility of
the resulting classifier models and often build a model that
generalizes better to unseen points. Thus it may find a
good subset of features that forms high quality of clusters
for a given number of clusters. In this work, feature
selection is helpful for improving the results of accuracy
of the problem. Therefore, it can thus provide clinicians

Table 8 Significance level when two AUCs on the test set are compared between 5-attributes and 4-attributes

4-attributes 5-
attributes

DT Bagging
DT

AdaboostM1
DT

Multiboosting
DT

SVM-
SMO

Bagging
SVM-SMO

AdaboostM1
SVM-SMO

Multiboosting
SVM-SMO

DT 1.000 0.001 0.001 0.013 <0.001 0.693 0.118 0.052

Bagging DT <0.001 0.860 0.077 0.724 <0.001 0.008 0.118 0.112

AdaboostM1 DT 0.160 0.118 0.876 0.377 <0.001 0.349 0.888 0.755

Multiboosting DT 0.187 0.542 0.761 0.919 <0.001 0.331 0.771 0.839

SVM-SMO <0.001 <0.001 <0.001 <0.001 1.000 <0.001 <0.001 <0.001

Bagging SVM-
SMO

0.876 0.005 0.160 0.042 <0.001 0.777 0.203 0.118

AdaboostM1
SVM-SMO

0.112 0.077 0.860 0.377 <0.001 0.349 0.876 0.724

Multiboosting
SVM-SMO

0.527 0.385 0.874 0.635 <0.001 0.701 0.878 0.813

Table 7 Significance level when two AUCs on the test set are compared under 4-attributes

DT Bagging
DT

AdaboostM1
DT

Multiboosting
DT

SVM-
SMO

Bagging
SVM-SMO

AdaboostM1
SVM-SMO

Multiboosting
SVM-SMO

DT NA 0.001 0.077 0.013 <0.001 0.639 0.118 0.086

Bagging DT NA 0.112 0.377 <0.001 0.013 0.160 0.157

AdaboostM1 DT NA 0.480 <0.001 0.274 1.000 0.860

Multiboosting DT NA <0.001 0.086 0.532 0.596

SVM-SMO NA <0.001 <0.001 <0.001

Bagging SVM-
SMO

NA 0.322 0.212

AdaboostM1
SVM-SMO

NA 0.876

Multiboosting
SVM-SMO

NA
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with insight into their databases and lead to further
understanding of the disease manifestation.

Ensemble classification has received much attention in
the machine learning community and has demonstrated
promising capabilities in improving classification accuracy.
The results revealed that the ensemble method also improves
the performance of prediction. Generally, ensembles can be
built using different base classifiers that are more accurate
than a single classifier. In this study, the results of AUC
demonstrate ensemble classifiers are more accurate than a
single classifier.

Moreover, from the results in Tables 3 and 4, we also
found that single DT outperformed single SVM-SMO and
DT ensembles outperformed SVM-SMO ensembles. Clas-
sifier performance depends greatly on the characteristics of
the data to be classified. There is no single classifier that
works best on all given problems. It is not easy to
determine a suitable classifier for a given problem. The
DT concept is much easier to comprehend than SVM-SMO.
While SVM-SMO generally requires some kernels and their
related parameters to be selected in order to get better
performance. In contrast DT is an easy algorithm to use
for classification and does not need excessive complex
knowledge. In addition, ensemble classifiers are powerful
tools for diagnostic in breast cancer performance measure-
ment. Therefore it might be the fitting assistance to predict
diagnostic for clinicians.

In this study, our results were compared with those of Elter
and collogues’ work [49]. The comparisons are shown in
Table 5. In most of cases, our results are better than those of
[49] for the same dataset. The AUC results of DT, SVM-
SMO and their ensembles of this work outperformed than
those of DT, CBR and ANN in [49], but the performance of
SVM-SMO was slightly worse. Previous researches for
diagnostic prediction of digital mammography have not
employed feature selection to improve the performance. In
our experiment, the most results of 4-attributes outperformed
than those of 5-attributes. Therefore, feature selection and
ensemble methods we proposed in this study can effectively
improve the performance in this problem.

Conclusions

In this work, we compared two well-known feature
selection methods (FS and BS) used in the mammographic
mass dataset. The results show that density is irrelevant
feature and the accuracy rates are better than those of
adopting all original features. Feature selection is useful for
improving the performance in our experiment. In addition,
this study employed DT, SVM-SMO and their ensembles to
solve breast cancer diagnostic problem in an attempt to
predict accuracy with better performance. The results reveal

ensemble classifiers outperformed than single classifiers,
hence, ensembles are also beneficial for clinicians in
predicting breast cancer diagnosis. The proposed
approaches, feature selection and ensemble methods, by
this study really improve the predictive performance for the
mammograms dataset.
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