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Abstract Segmentation of medical images is a difficult and
challenging problem due to poor image contrast and
artifacts that result in missing or diffuse organ/tissue
boundaries. Many researchers have applied various tech-
niques however fuzzy c-means (FCM) based algorithms is
more effective compared to other methods. The objective of
this work is to develop some robust fuzzy clustering
segmentation systems for effective segmentation of DCE -
breast MRI. This paper obtains the robust fuzzy clustering
algorithms by incorporating kernel methods, penalty terms,
tolerance of the neighborhood attraction, additional entropy
term and fuzzy parameters. The initial centers are obtained
using initialization algorithm to reduce the computation
complexity and running time of proposed algorithms.
Experimental works on breast images show that the
proposed algorithms are effective to improve the similarity
measurement, to handle large amount of noise, to have
better results in dealing the data corrupted by noise, and
other artifacts. The clustering results of proposed methods
are validated using Silhouette Method.

Keywords Fuzzy c-means . Kernel method . Spatial
information . Dynamic contrast-enhanced breast MRI .

Image segmentation

Introduction

Breast cancer is the most common cancer and the second
leading cause of cancer death for American women today.
Medical imaging is essential for screening and diagnosing
the breast cancer. Magnetic resonance imaging holds great
potential as a non-invasive tool for the detection and
diagnosis of breast lesions. Conventional MRI [1, 4]
techniques attempt to characterize tissues based on proton
density signal intensity (essentially, the water content), as
modulated by effects of the molecular structure and
associated microscopic magnetic field environment. The
signal intensity of breast lesions [6, 7] is predominantly
determined by the water content and fibrous cell matter of
individual tissues, rather than by specific cellular charac-
teristics. Because both benign and malignant lesions may
have high water content and cellular or fibrous content,
they exhibit similar signal behaviors and consequently have
similar T1-weighted and T2-weighted measurements [5].
This also accounts for the wide variations in signals within
benign and malignant classes of lesions. These various
studies have now led to the conclusion that reliable tissue
characterization for detection and diagnosis of breast
lesions, based on tissue contrast by plain MRI is not
feasible. Over the last decade attention has shifted from
plain MRI to contrast-enhanced MRI using paramagnetic
contrast agents, typically Gadolinium chelates. Dynamic
contrast-enhanced MRI (DCE-MRI) [3, 10, 32] of breast
has been increasingly used in clinical practice for diagnostic
imaging and post-treatment evaluation, but its specificity is
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still limited. DCE-MRI makes it possible to evaluate the
architectural features of a breast lesion in several orienta-
tions, and also enables the radiologist to analyze the
dynamic contrast enhancement [22, 23] characteristics of
the lesion.

Due to the movement of patients, partial volume effects,
intensity in-homogeneity, and limitation in imaging equip-
ments are the well-known artifacts arise in imaging modality
during the process of imaging. So it is very important to
segment the DCE-MRI before diagnosing breast cancer, as
the diagnosis based DCE-MRI image with well-known
artifacts some times cause death [13]. There are a lot of
methods available for MR image segmentation [27, 30].
Among them, fuzzy segmentation [14, 17, 20, 26] methods
are of considerable benefits, because they could retain much
more information from the original image than hard
segmentation methods. The Fuzzy C-Means (FCM) [2, 25]
algorithm, assigns pixels to fuzzy clusters without labels.
Unlike the hard clustering methods which force pixels to
belong exclusively to one class, FCM allows pixels to
belong to multiple clusters with varying degrees of member-
ship. The main disadvantages of fuzzy clustering technique
are its need for a large amount of time to converge and it is
more sensitive to the noise and outliers in the data, because
of squared-norm to measure similarity between prototypes
and data points.

To cluster more general dataset, a lot of algorithms have
been proposed by replacing the squared-norm with other
similarity measures. A recent development is to use kernel
method to construct the kernel versions of the FCM
algorithm. Zhang and Chen [33] proposed KFCM for
clustering the incomplete data and medical image segmen-
tation. However, a disadvantage of KFCM in segmentation
of medical images is not to consider any spatial information
in image context, which makes it very sensitive to noise
and other imaging artifacts. Hence researchers have
incorporated the local spatial information [15, 16, 28, 29]
into the conventional FCM and KFCM [8] algorithm to
improve the performance of image segmentation [24, 25].
One disadvantage of FCM_S is that it computes the
neighborhood term in each step, which is very time
consuming. In order to reduce the computation time, Chen
and Zhang [31, 34] proposed modified KFCM_S by adding
the spatial penalty term. But the disadvantage of KFCM_S
is that it computes the neighborhood term in each iteration
step, which is very time-consuming.

In this paper, we proposed three new robust algorithms
for DCE-breast MR Image segmentation based on the
concept of KFCM, Tolerance [5], additional penalty term,
and Entropy [11, 18, 19]. The tolerance vector [9, 21]
improves the similarity between each data and cluster centers
in the proposed algorithm. The proposed objective functions
with the penalty term, extended additional penalty term and

additional entropy term are mainly developed for effective
image segmentation, robustness to noise and outliers, desir-
able memberships, and advance the similarity measurement.

In order to reduce the number of iteration, these
algorithms select the initial centers by using dist-max
initialization method and these algorithms incorporate the
spatial information. The experimental results show that the
proposed algorithms are effective and more robust to reduce
the noise, and outliers. Further the experimental results give
the suggestion for selecting the best algorithm for segmen-
tation of DCE-breast MR Image.

The structure of the paper is as follows: “Traditional
KFCM” describes the traditional KFCM algorithm. The
proposed new fuzzy clustering algorithms are presented in
“Robust KFCM with spatial informations (RKFCM_S)”
which is used to alleviate the drawbacks of the existing
algorithms. The experimental results are described and
analyzed in “Results and discussions” and conclusions are
presented in “Conclusion” according to the discussions in
the previous sections.

Traditional KFCM

Given a dataset X ¼ x1; x2; . . . ; xnf g � Rp , the basic FCM
algorithm partitions the dataset X into c fuzzy subsets by
minimizing the following objective function

Jfcm U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik xi � vkk k2 ð1Þ

Here, the number of clusters denoted by c and the
number of data points denoted by n.

U represents the matrix of uik, the membership of xi in
class k.

V represents the set of cluster centers or prototypes (vk ∈ Rp).

The parameter m is a weighting exponent on each fuzzy
membership and determines the amount of fuzziness of the
resulting classification.

The objective function J is minimized by a famous
iterative algorithm subject to the constraintsXc
k¼1

uik ¼ 1 8i ð2Þ

Define a nonlinear map as f : x ! fðxÞ 2 F, where x ∈
X. X denotes the data space, and F the transformed feature
space with higher even infinite dimension. KFCM mini-
mizes the following objective function

Jkfcm U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik f xið Þ � f vkð Þk k2 ð3Þ
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where

f xið Þ � f vkð Þk k2 ¼ K xi; xið Þ þ K vk ; vkð Þ � 2K xi; vkð Þ ð4Þ

where K x; yð Þ ¼ fðxÞTfðyÞ is an inner product kernel
function. If we adopt the Gaussian function as a kernel
function, i.e., K x; yð Þ ¼ exp � x�yk k2

s2

� �
, then K(x, x)=1,

according to Eqs. 4 and 3 can be rewritten as

Jkfcm U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� K xi; vkð Þð Þ ð5Þ

Minimizing Eq. 5 under the constraints of uik, we have

uik ¼
1

1�K xi;vkð Þ
� � 1

m�1

Pc
j¼1

1
1�K xi;vjð Þ
� � 1

m�1

ð6Þ

vk ¼
Pn
i¼1

umikK xi; vkð ÞxiPn
i¼1

umikK xi; vkð Þ
ð7Þ

Here we just use the Gaussian kernel function for
simplicity. If we use other kernel functions, there will be
corresponding modifications in Eqs. 6 and 7.

Robust KFCM with spatial informations (RKFCM_S)

Initialization

FCM is a local search optimization algorithm, which is very
sensitive to the initial centers. The algorithm will get the
local optimum solution easily if the initial centers are
produced random. In order to avoid the blindness of
evaluate random and make the initial centers approach the
globally optimum solution, we propose the following
initialization method for our proposed algorithms.

Stage 1: Let X ¼ x1; x2; . . . ; xnf g � Rp be a p-dimensional
data set. Find m1,m2,.....,mn, where mi ¼
xi1þxi2þ...þxip

p , i=1,2,...n. Arrange mi’s in ascending
order.

Stage 2: Rearrange the data matrix in respect of its relabel-
ing mean value. (i.e) X 0 ¼ x01; x

0
2; . . . x

0
n

� �
. Parti-

tion the data into c groups.

Find s ¼ n
c

� 	
, where s is the number of elements in each

group. The number of cluster “c” is specified according to
the nature of the dataset.

Case 1: Suppose s is an integer, then s elements exist in
each cluster.

Case 2: Suppose s is not an integer. Consider s = s.d,
where d is decimal point. If the decimal d<
0.5, then s.d has been rounded as s. If the
decimal d>=0.5, then s.d has been rounded as
s+1.

First group contains first s data of X’. Second group
contains second s data of X’

:
:
:

(c-1)th group contains remaining (c-1)th s data of X’. cth
group contains remaining all the elements.

Stage 3: Making the distance tables that show the
distance between the elements within each
group. (ie) If group k ¼ xk1; x

k
2; . . . x

k
s

� �
, the

distance table is

xk1 xk2 .............. xks
xk1 dk11 dk12 dk1s
xk2 dk21 dk22 dk2s
.

.

.

.

xks dks1 dks2 ................... dkss

Stage 4: Select maximum distance from each distance
table of groups. If dkij is maximum distance of
kth group, find the mean value Mk of the
elements xki and xkj . kth cluster center = Mk. k=
1, 2,..., c

Objective function of robust KFCM with spatial
information (RKFCM_S)

Although KFCM can be directly applied to image segmen-
tation like FCM, it would be helpful to consider some
spatial constraints on the objective function. We propose a
modification to Eq. 5 by introducing a penalty terms
containing spatial neighborhood information. In order to
avoid poor result when having to deal with data corrupted
by noise, and other artifacts, this paper is considered
additional penalty term.

The additional penalty term of the proposed objective
function of this subsection is extended by considering
neighborhood attraction of each pixel. This penalty terms
act as a regularizer and biases the solution toward
piecewise-homogeneous labeling. Such regularization is

J Med Syst (2012) 36:321–333 323



helpful in segmenting images corrupted by Gaussian noise.
The modified objective function is given by

Jrkfcm s U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� K xi; vkð Þð Þ

þ g1
Xn
i¼1

Xc
k¼1

umik 1� K xi; vkð Þð Þ

þ g2
Xn
i¼1

Xc
k¼1

umik 1� K exi; vkð Þð Þ ð8Þ

Where, xi and exi are the means and median of
neighboring pixels lying within a window around each
pixel xi in given image for segmentation, respectively, and
g1, g2>0. The parameter g1 and g2 controls the effect of the
neighborhood terms for each pixel to have desirable
memberships. Further the parameters and the neighborhood
terms are diminishing the effect of noise on a pixel. Hence
the proposed objective function with the penalty term is
effective for image segmentation, robustness to noise &
outliers, and it is computationally less time taking.

Membership value evaluation

The objective function (8) will be minimized subject to the
constraint (2) by using Lagrangian multipliers method.

Lrkfcm s U ;V ; lð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� K xi; vkð Þð Þ

þ g1
Xn
i¼1

Xc
k¼1

umik 1� K xi; vkð Þð Þ

þ g2
Xn
i¼1

Xc
k¼1

umik 1� K exi; vkð Þð Þ

�
Xn
i¼1

li
Xc
k¼1

uik � 1

 !
ð9Þ

Here l ¼ l1; l2; . . . ; lnð Þ represents the Lagrangian
multipliers.

Taking the derivative of (9) with respect to uik and
setting the result to zero, we have, for m>1,

@Lrkfcm s

@uik
¼ mum�1

ik 1� K xi; vkð Þð Þ

þ g1mu
m�1
ik 1� K xi; vkð Þð Þ

þ g2mu
m�1
ik 1� K exi; vkð Þð Þ � li

¼ 0 ð10Þ

Solving for uik, we have

uik ¼ li
m 1� K xi; vkð Þð Þ þ g1 1� K xi; vkð Þð Þ þ g2 1� K exi; vkð Þð Þð Þ
� �1=m�1

ð11Þ

Since
Pc
j¼1

uij ¼ 1 8i,

Xc
j¼1

li
m 1� K xi; vj


 �
 �þ g1 1� K xi; vj

 �
 �þ g2 1� K exi; vj
 �
 �
 � !1=m�1

¼ 1 ð12Þ

Or

li=mð Þ1=m�1 ¼
Xc
j¼1

m

1� K xi; vj

 �
 �þ g1 1� K xi; vj


 �
 �þ g2 1� K exi; vj
 �
 �
 �1=m�1
ð13Þ
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Substituting into (11), the zero-gradient condition for the
membership estimator can be rewritten as

uik ¼ 1Pc
j¼1

1�K xi;vkð Þð Þþg1 1�K xi;vkð Þð Þþg2 1�K exi;vkð Þð Þ
1�K xi;vjð Þð Þþg1 1�K xi;vjð Þð Þþg2 1�K exi;vjð Þð Þ

� �1=m�1

ð14Þ

Updating cluster center

The objective function (8) can be rewritten as

Jrkfcm s U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� exp � xi � vkk k2=s2
� �� �

þ g1
Xn
i¼1

Xc
k¼1

umik 1� exp � xi � vkk k2=s2
� �� �

þ g2
Xn
i¼1

Xc
k¼1

umik 1� exp � exi � vkk k2=s2
� �� �

ð15Þ
Taking the derivative of (15) with respect to vk and

setting the result to zero, we have

Xn
i¼1

umikK xi; vkð Þxi þ g1
Xn
i¼1

umikK xi; vkð Þxi þ g2
Xn
i¼1

umikK exi; vkð Þexi
" #

� vk
Xn
i¼1

umik K xi; vkð Þ þ g1K xi; vkð Þ þ g2K exi; vkð Þð Þ
" #

¼ 0

ð16Þ

Solving for vk, we have

vtþ1
k ¼

Pn
i¼1

umik K xi; vtk

 �

xi þ g1K xi; vtk

 �

xi þ g2K exi; vtk
 �exi
 �
Pn
i¼1

umik K xi; vtk

 �þ g1K xi; vtk


 �þ g2K exi; vtk
 �
 �
ð17Þ

where t is the iteration count. At t=0 the initial centers
occurred.

RKFCM_S algorithm

The RKFCM_S algorithm for segmenting the breast MR
Images into different region can be summarized in the
following steps.

Stage 1: Select initial cluster centers vkf gc1 by using dist-
max initialization method.

Stage 2: Compute the partition matrix using (14).
Stage 3: Update the centers of the clusters using (17).
Stage 4: Estimate objective function using (8).
Stage 5: Repeat Steps (2)–(4) till termination. The termi-

nation criterion is as follows:

Jt � Jt�1k k < x ð18Þ

where t is the iteration count, where :k k is the Euclidean
norm, J is a objective function, and J is a small number
that can be set by the user.

Improved RKFCM_S with tolerance (IRKFCM_ST)

This section proposed an improved IRKFCM_S to
improve the similarity measurement of the pixel intensity
and the centers of clusters by considering neighborhood
attraction. The improved RKFCM_S from (8) contains
new distance with tolerance ε of the neighborhood attrac-
tion which is given by

Jirkfcm st U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� K xi þ "i; vkð Þð Þ

þ g1
Xn
i¼1

Xc
k¼1

umik 1� K xi þ "i; vkð Þð Þ

þ g2
Xn
i¼1

Xc
k¼1

umik 1� K xi þ "i; vk
� �� �

ð19Þ

where, xi þ "i and xi þ "i are the mean and median of the
neighboring pixels lying within a window around xi with
tolerance term εi, respectively. The parameters g1, g2 and m
are the same as in RKFCM_S. The tolerance term εi is
corresponding to a boundary condition for the error of the
data element xi. That is, the tolerance of xi have the upper
bounds of the tolerance κi.

The above objective function satisfies the conditions (2)
and

"ik k2 � kik k2; ki > 0ð Þ ð20Þ

Membership value evaluation

The objective function (19) is minimized subject to the
constraints (2) and (20) by using Karush Kuhn-Tucker
method. Taking the first derivatives of (19) with respect to
uik and vk, and zeroing them, respectively, two necessary
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but not sufficient conditions for (19) to be at its local
extrema will be obtained as follows:

The Lagrangian function of (19) is

Lrkfcm st U ;V ; lð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� K xi þ "i; vkð Þð Þ

þ g1
Xn
i¼1

Xc
k¼1

umik 1� K xi þ "i; vkð Þð Þ

þ g2
Xn
i¼1

Xc
k¼1

umik 1� K xi þ "i; vk
� �� �

�
Xn
i¼1

li
Xc
k¼1

uik � 1

 !

�
Xn
i¼1

di "ik k2 � kik k2
� �

ð21Þ

Taking the derivative of (21) with respect to uik and
setting the result to zero, we have, for m>1,

@L

@uik
¼ mum�1

ik 1� K xi þ "i; vkð Þð Þ

þ g1mu
m�1
ik 1� K xi þ "i; vkð Þð Þ

þ g2mu
m�1
ik 1� K xi þ "i; vk

� �� �
� li ¼ 0

Solving for uik, we have

uik ¼ li

m 1� K xi þ "i; vkð Þð Þ þ g1 1� K xi þ "i; vkð Þð Þ þ g2 1� K xi þ "i; vk
� �� �� �

0@ 1A1=m�1

ð22Þ

Since
Pc
j¼1

uij ¼ 1 8i,

Xc
j¼1

li

m 1� K xi þ "i; vkð Þð Þ þ g1 1� K xi þ "i; vkð Þð Þ þ g2 1� K xi þ "i; vk
� �� ��

0@ 1A1=m�1

¼ 1

Or

li=mð Þ1=m�1 ¼
Xc
j¼1 1� K xi þ "i; vj


 �
 �þ g1 1� K xi þ "i; vj

 �
 �þ g2 1� K xi þ "i; vj

� �� �� �1=m�1

Substituting into (22), the zero-gradient condition for the
membership estimator is expressed as

uik ¼ 1Pc
j¼1

1�K xiþ"i;vkð Þð Þþg1 1�K xiþ"i;vkð Þð Þþg2 1�K xiþ"i;vk

 �
 �

1�K xiþ"i;vjð Þð Þþg1 1�K xiþ"i;vjð Þð Þþg2 1�K xiþ"i;vj

 �
 �� �1=m�1

ð23Þ
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Updating cluster center

The objective function (19) can be rewritten as

Jrkfcm st U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

umik 1� exp � xi þ "i � vkk k2=s2
� �� �

þ g1
Xn
i¼1

Xc
k¼1

umik 1� exp � xi þ "i � vkk k2=s2
� �� �

þ g2
Xn
i¼1

Xc
k¼1

umik 1� exp � xi þ "i � vk
��� ���2=s2

� �� � ð24Þ

Taking the derivative of (24) with respect to vk and
setting the result to zero, we have

Xn
i¼1

umikK xi þ "i; vkð Þ xi þ "ið Þ þ g1
Xn
i¼1

umikK xi þ "i; vkð Þxi þ "i þ g2
Xn
i¼1

umikK xi þ "i; vk
� �

xi þ "i

" #

� vk
Xn
i¼1

umik K xi þ "i; vkð Þ þ g1K xi þ "i; vkð Þ þ g2K xi þ "i; vk
� �� �" #

¼ 0

ð25Þ

Solving for vk, we have

vt¼1
k ¼

Pn
i¼1

umik K xi þ "i; vtkð Þ xi þ "ið Þ þ g1K xi þ "i; vtk

 �

xi þ "i þ g2K xi þ "i; vtk

� �
xi þ "i

� �
Pn
i¼1

umik K xi þ "i; vtk

 �þ g1K xi þ "i; vtk


 �þ g2K xi þ "i; vtk

� �� � ð26Þ

where t is the iteration count. At t=0 the initial centers
occurred.

Tolerance evaluation

Taking the derivative of (21) with respect to εi under the
constraint (20) and setting result to zero we get,

"i ¼ �ai xi
Xc
k¼1

umik xi � vkð Þ
 !

ð27Þ

where ai ¼ min ki
Pc
k¼1

umik xi � vkð Þ
���� �����1

;
Pc
k¼1

umik

� ��1
( )

Improved RKFCM_S with tolerance algorithm
(IRKFCM_ST)

The algorithm for IRKFCM_S T for segmenting breast
MRI into different regions can be summarized as follows:

Stage 1: Select initial cluster centerss vkf gc1 by using dist-
max initialization method and give the value for
κi and εi.

Stage 2: Calculate the partition matrix using (23).
Stage 3: Update the centers of the clusters using (26).
Stage 4: Calculate the tolerance value using (27).
Stage 5: Estimate the objective function using (19).
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Stage 6: Repeat Steps (2)–(5) till termination. The
termination criterion is as follows:

Jt � Jt�1k kx ð28Þ

where t is the iteration count, where :k k is the Euclidean
norm, J is an objective function, and ξ is a small number
that can be set by the user.

Novel RKFCM_S with entropy term (NRKFCM_SE)

This subsection derives a novel RKFCM_S from Eq. 8 with
additional entropy term to incorporate both local spatial
contextual information and feature space information into
the image segmentation. To handle large amount of noise
and to ensure effective fuzzification, additional entropy
term is included with the proposed novel penalty FCM. In
order to control the degree of membership and centers in
the resulting objective function, parameters g1, g2 are
included with the proposed objective function.

The proposed objective function of Novel RKFCM_S
with Entropy term method is

Jnrkfcm se U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

uik 1� K xi; vkð Þð Þ

þ g1
Xn
i¼1

Xc
k¼1

uik 1� K xi; vkð Þð Þ

þ g2
Xn
i¼1

Xc
k¼1

uik 1� K exi; vkð Þð Þ

þ b�1
Xn
i¼1

Xc
k¼1

uik log uik ð29Þ

Where, xk and exk are the mean and median of
neighboring pixels lying within a window around xk,

respectively. At m=1 the above objective function gives
almost same effect of RKFCM_S while β approaches ∞.
With the high value of β the distribution of the member-
ships will be uniform.

Membership value evaluation

The objective function (29) is minimized under the constraints
of (2) by using Lagrangian multipliers method. For getting
membership value and updating cluster center equation, the
first derivation of (29) with respect to uik and vk, equals to
zero respectively and two necessary but not sufficient
conditions for (29) to be at its local extrema is obtained as
follows:

The Lagrangian function of (29) is

Lnrkfcm se U ;V ; lð Þ ¼
Xn
i¼1

Xc
k¼1

uik 1� K xi; vkð Þð Þ

þ g1
Xn
i¼1

Xc
k¼1

uik 1� K xi; vkð Þð Þ

þ g2
Xn
i¼1

Xc
k¼1

uik 1� K exi; vkð Þð Þ

þ b�1
Xn
i¼1

Xc
k¼1

uik log uik

�
Xn
i¼1

li
Xc
k¼1

uik � 1

 !
ð30Þ

Taking the derivative of (30) with respect to uik and
setting the result to zero, we have, for m>1,

@L

@uik
¼ 1� K xi; vkð Þð Þ þ g1 1� K xi; vkð Þð Þ

þ g2 1� K exi; vkð Þð Þ þ b�1 1þ log uikð Þ � li ¼ 0

Solving for uik, we have

uik ¼ exp bli � 1ð Þ: exp �b 1� K xi; vkð Þð Þ þ g1 1� K xi; vkð Þð Þ þ g2 1� K exi; vkð Þð Þ½ �½ � ð31Þ

Since
Pc
j¼1

uij ¼ 1 8i,

exp bli � 1ð Þ ¼ 1PC
j¼1

exp �b 1� K xi; vj

 �
 �þ g1 1� K xi; vj


 �
 �þ g2 1� K exi; vj
 �
 �� �� �
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Substituting into (31), the zero-gradient condition for the
membership estimator can be rewritten as

uik ¼ exp �b 1� K xi; vkð Þð Þ þ g1 1� K xi; vkð Þð Þ þ g2 1� K exi; vkð Þð Þ½ �½ �PC
j¼1

exp �b 1� K xi; vj

 �
 �þ g1 1� K xi; vj


 �
 �þ g2 1� K exi; vj
 �
 �� �� � ð32Þ

Updating cluster center

The objective function (29) can be rewritten as

Jnrkfcm s U ;Vð Þ ¼
Xn
i¼1

Xc
k¼1

uik 1� exp � xi � vkk k2=s2
� �� �

þ g1
Xn
i¼1

Xc
k¼1

uik 1� exp � xi � vkk k2=s2
� �� �

þ g2
Xn
i¼1

Xc
k¼1

uik 1� exp � exi � vkk k2=s2
� �� �

þ b�1
Xn
i¼1

Xc
k¼1

uik log uik

ð33Þ
Taking the derivative of (33) with respect to vk and

setting the result to zero, we have

Xn
i¼1

uikK xi; vkð Þxi þ g1
Xn
i¼1

uikK xi; vkð Þxi þ g2
Xn
i¼1

uikK exi; vkð Þexi
" #

� vk
Xn
i¼1

uik K xi; vkð Þ þ g1K xi; vkð Þ þ g2K exi; vkð Þð Þ
" #

¼ 0

ð34Þ
Solving for vk, we have

vtþ1
k ¼

Pn
i¼1

uik K xi; vtk

 �

xi þ g1K xi; vtk

 �

xi þ g2K exi; vtk
 �exi
 �
Pn
i¼1

uik K xi; vtk

 �þ g1K xi; vtk


 �þ g2K exi; vtk
 �
 �
ð35Þ

where t is the iteration count. At t=0 the initial centers
occurred.

NRKFCM_S with entropy term algorithm (NRKFCM_SE)

The algorithm of NRKFCM_SE for the segmentation of
breast MRI can be summarized in the following steps

Stage 1: Select initial cluster centers vkf gc1 by using dist-
max initialization method.

Stage 2: Calculate the partition matrix using (32).
Stage 3: Update the centers of the clusters using (35).

Stage 4: Estimate objective function using (29).
Stage 5: Repeat Steps (2)–(4) till termination. The termi-

nation criterion is as follows:

Jt � Jt�1k kx ð36Þ
where t is the iteration count, where :k k is the Euclidean
norm, J is an objective function, and ξ is a small number
that can be set by the user.

Results and discussions

In this section, we describe some experimental works on
real breast images corrupted with Gaussian noise to
compare the segmentation performance of the following
algorithms: (i) FCM, (ii) KFCM [33], (iii) Spatial con-
strained KFCM [34] (KFCM_S) (iv) RKFCM_S (v)
IRKFCM_ST (vi) NRKFCM_SE. We test the six algo-
rithms under noises on DCE-breast MR images given in
Fig. 1(a–b) and the real contrast – enhanced-Breast
Magnetic Resonance Images (ce-BMRI) given in
Fig. 2(a–b). The algorithms are coded in [R] programming
language and they ran on a 2.66 GHz, Intel Core 2 Duo
personal computer with a memory of 500 GB. Here we
choose the parameters g1=0.7, g2=0.9, ξ1=0.001. Fig. 1(c–
n) show the segmentation results of, FCM, KFCM,
KFCM_S, RKFCM_S, IRKFCM_ST, and NRKFCM_SE
respectively. As shown in Figs. 1 and 2(c–h), without
spatial constraints, neither FCM nor KFCM can separate
the four classes, while SKFCM nearly and proposed
methods give better results to succeed in correcting and
classifying the data as shown in Figs. 1 and 2(i–n). From
the images, we can see that without spatial constraints, both
FCM and KFCM are affected by the noise badly, while
KFCM_S partially and our proposed methods almost
eliminate all the noises in given images. Our proposed
algorithms give the better segmentation results than existed
algorithm and these are having more effectiveness to reduce
the noise and outlier of pixel data. Especially, the method
NRKFCM_SE gives the best segmentation result in a
minimum iteration.

Table 1 gives the segmentation accuracy of the six
algorithms on two different noisy images, where segmentation
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accuracy is defined using silhouette value in(S R Kannan [12,
13]). These silhouette average values measures the degree of
confidence in the clustering assignment of a particular
observation, with well-clustered observations having values
near 1 and poorly clustered observations having values near
−1. The silhouette accuracy s(i) of the object i is derived by

the equation sðiÞ ¼ vðiÞ�wðiÞ
max vðiÞ;wðiÞf g. For each object we denote

by the cluster to which it belongs, and compute

vðiÞ ¼ 1

Gj j � 1
X

j2A;i6¼j

d i; jð Þ

Fig. 1 Comparison of Segmentation result on DCE-breast MRI (a–b)
Pre-contrast & Post contrast Image corrupted by Gaussian noise (c–d)
Segmented image by FCM (e–f) Segmented image by KFCM (g–h)

Segmented image by KFCM_S (i–j) Segmented image by RKFCM_S
(k–l) Segmented image by IRKFCM_ST (m–n) Segmented image by
NRKFCM_SE
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The equation v(i) is the average distance between the ith
data and all other objects in the cluster G. Now consider a
second cluster H different from G and put

d i;Hð Þ ¼ 1

Hj j
X
j2H

d i; jð Þ ¼ average dissimilarity of : i to all objects of H and H 6¼ G:

Fig. 2 Comparison of Segmentation result on ce-left and right
BMRI. (a–b) corrupted by Gaussian noise (c–d) Segmentation results
by FCM (e–f) Segmentation results by KFCM (g–h) Segmentation

results by KFCM_S (i–j)Segmentation results by RKFCM_S (k–l)
Segmentation results IRKFCM_ST (m–n)Segmentation results
NRKFCM_SE.

Names Computation time (Minutes) Silhouette value Accuracy

FCM 98 0.41 41%

KFCM 91 0.66 66%

KFCM_S 81 0.74 74%

RKFCM_S 64 0.84 84%

IRKFCM_ST 67 0.88 88%

NRKFCM_SE 61 0.89 89%

Table 1 Segmentation
accuracies
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After computing d(i, H) for all H we take the smallest of
those.

wðiÞ ¼ min
C 6¼A

d i;Hð Þ

The clusterB which attains this minimum [that is d(i, H) =
w(i)] is called the neighborhood of object i, this is the second
best cluster for object i.

From Table 1, the best clustering validity 0.89 was
obtained for our NRKFCM_SE during the experimental
work on breast image data. Further, it is clear from
Fig. 2(m–n) that our NRKFCM_SE method completely
succeeded in correcting and classifying the breast data and
almost it eliminated completely the effect of noise in
images. NRKFCM_SE method is essentially different from
existed method and our other proposed methods.

Conclusion

The new algorithms for DCE-breast MR Images segmen-
tation based on kernalized fuzzy c-means with spatial
information, tolerance, and entropy terms are proposed in
this paper. The algorithms selected the initial cluster centers
using dist-max initialization method. To enhance the noise
immunity, the clustering of centre pixel is influenced by the
neighborhood mean value and median value. Also, these
algorithms incorporated the spatial information into the
membership function to improve the segmentation result.
This neighboring effect reduces the number of spurious blobs
and biases the solution towards piecewise homogeneous
labeling. To show the effectiveness of our proposed methods,
the algorithms FCM, KFCM, KFCM_S and our proposed
methods were applied on DCE-breast and ce-breast images
and the proposed methods compared with other three
methods. The experimental results indicate that the proposed
algorithms are more robust to the noises and faster than many
other segmentation algorithms. Particularly, the method
NRKFCM_SE provided the well accurate segmentation result
among the other methods.
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