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Abstract This paper presents automatic detection and
localization of myocardial infarction (MI) using K-nearest
neighbor (KNN) classifier. Time domain features of each
beat in the ECG signal such as T wave amplitude, Q wave
and ST level deviation, which are indicative of MI, are
extracted from 12 leads ECG. Detection of MI aims to
classify normal subjects without myocardial infarction and
subjects suffering from Myocardial Infarction. For further
investigation, Localization of MI is done to specify the
region of infarction of the heart. Total 20,160 ECG beats
from PTB database available on Physio-bank is used to
investigate the performance of extracted features with KNN
classifier. In the case of MI detection, sensitivity and
specificity of KNN is found to be 99.9% using half of the
randomly selected beats as training set and rest of the beats
for testing. Moreover, Arif-Fayyaz pruning algorithm is
used to prune the data which will reduce the storage
requirement and computational cost of search. After
pruning, sensitivity and specificity are dropped to 97%
and 99.6% respectively but training is reduced by 93%.

Myocardial Infarction beats are divided into ten classes
based on the location of the infarction along with one class
of normal subjects. Sensitivity and Specificity of above
90% is achieved for all eleven classes with overall
classification accuracy of 98.8%. Some of the ECG beats
are misclassified but interestingly these are misclassified to
those classes whose location of infarction is near to the true
classes of the ECG beats. Pruning is done on the training
set for eleven classes and training set is reduced by 70%
and overall classification accuracy of 98.3% is achieved.
The proposed method due to its simplicity and high
accuracy over the PTB database can be very helpful in
correct diagnosis of MI in a practical scenario.
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Introduction

Myocardial Infarction (MI) results from death of the heart
muscle due to lack of blood supply to the heart (Ischemia)
because of blockage in the coronary artery. MI leads to heart
attack and is a potentially lethal disease. MI produces certain
changes in the ECG signal (Qwave, ST deviation, and Twave
inversion), using which medical doctors are able not only to
properly diagnose it but they can also localize the part of the
coronary artery that has been blocked and the part of the heart
muscle which has been affected.

Several research groups have used ECG to detect and
locate myocardial infarction. In [1], Reddy et al. proposed a
classification method based on QRS measurement and
neural networks to classify healthy and patients with
myocardial infarction. Their accuracy was 79% with a
specificity of 97%. Zheng et al. [2] used 192 lead body
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surface specific potential maps to detect myocardial
infarction using support vector machines (SVM), Naïve
Bayes (NB) and random forecast (RF) methods. Optimized
accuracies for these classifiers are 81.9% for NB, 82.8% for
SVM and 84.5% for RF. Using 192 leads for the detection
is not practical for detection of myocardial Infarction. Yang
et al. [3] used Dower transformation that linearly transforms
a 12-lead ECG signals into 3-lead vector-cardiogram. Using
Radial basis neural networks, testing accuracy of MI was
97% and accuracy of normal was 75%. Discrete wavelet
transform [4] is used to discriminate the ECGs of normal
and MI. ROC analysis is used to report the discrimination
power which is found to be about 75%. In [5], Jayachn-
drum et al. used energy-entropy characteristics using
discrete wavelet transform to achieve MI detection accuracy
of 95%. Nugent et al. [6] used the concept of classifier
fusion for detection of MI using standard 12 leads ECG.
Fusion of classifiers produced a MI detection accuracy of
81.3%. A neural-fuzzy approach for classifying myocardial
Infarction in [7] uses ST elevation as an input parameter.
The accuracy of detecting healthy patients was 89.4% and
accuracy of detecting infarction was 95.0%. Sadao and
Senya [8] used Purpose oriented feature extraction method
to classify three classes of myocardial infarction (Anterior
Mi, Inferior MI and Flat T wave) and normal subjects. Only
15 records per class of 12 lead ECG are used and
sensitivities of 86% for normal, 93% for Anterior, 80%
for Inferior and 93% for Flat T are achieved. Matveev et al.
[9] used Signal-averaged electrocardiography to evaluate
acute myocardial infarction. They have achieved classifica-
tion accuracy of about 90% for Healthy, Anterior ST
Elevation MI and Inferior ST Elevation MI using QRS and
T vectors in vector cardiography patterns. O’Dwyer [10]
have used number of feature sets including wavelet based
and standard cardiology features to detection different types
of MI. Overall accuracy of seven classes for different
feature sets and classifier model combinations ranged
between 60% and 75%. Bozzola et al. [11] proposed a
hybrid neuro-fuzzy system for classification of Inferior,
Anterior and Combined Myocardial Infarction along with
other class including normal and hypertrophy cases. Total
accuracy of 88% is reported for all classes using fuzzy
multi-layer perceptron. As time domain features are
considered by the cardiologist as an indicator of myocardial
infarction and by using efficient signal processing techni-
ques, it is possible to extract time domain features from
ECG. In this paper time domain features are used for
detection and localization of myocardial infarction. Under-
standability of time domain features by cardiologists is an
advantage of the proposed method. Moreover, simple K
nearest neighbor (KNN) classifier is used with pruning to
classify different location of myocardial infarction. In KNN
classifier, no training is required and addition of new data

points is easy. KNN classifier stores example data points for
comparison and hence requires large memory and search
time may be a problem for online classification. Pruning
method is proposed to overcome these limitations of KNN
classifier. By using our proposed pruning method, a fraction
of data points are selected by removing redundant or less
important data points from the stored examples without
compromising the classification accuracy. Hence memory
requirement to store the examples can be reduced drasti-
cally and search time can also be reduced. Moreover, new
data point insertion policy is devised so that only important
examples can be added. Ten locations of myocardial
infarction are used as separate classes.

Organization of the paper is as follows; section 2 illustrates
the Materials and methods. Results and discussions are
described in section 3 and Conclusions are given in section 4.

Materials and methods

PTB ECG database is used which is available free on the
Physio-Bank [12]. The ECGs in this database were
obtained using a non-commercial prototype recorder and
were digitized at 1,000 samples per second, with 16 bit
resolution over a range of ±16.384 mV with 2000 A/D units
per mV. Data of Twelve leads ECG of Myocardial
Infarction is used in this paper. A subset of PTB database
is used and some ECGs are ignored from which time
domain features cannot be calculated due to noise. This is a
limitation of our method. If we cannot extract time domain
features accurately, classification accuracy will suffer.
Hence we need some extra processing before feature
extraction module so that noise cannot effect the detection
of time domain features. In our future research, we are
focusing on this aspect. Number of beats of ten types of
Myocardial Infarction and healthy subjects are given in
Table 1. Total of 20,160 ECG beats of healthy and ten types
of MI are used in this paper.

ECG signal pre processing

The raw ECG from the PTB database is pre processed. The
pre processing stages are QRS detection and delineation,
baseline removal, and iso-electric level detection as shown
in Fig. 1. At pre processing stage, QRS detection and
delineation is performed which include finding QRS start
point, QRS end point and QRS feducial point. These points
are used as reference when removing the baseline and
further ECG segmentation during feature extraction. Many
methods have been proposed in the literature for QRS
delineation [13] including derivative based methods, use of
digital filters and filter-banks etc. Since ECG signal is non-
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stationary, wavelet transform is also used in detection and
delineation of different waves and segments in the ECG
[14]. Some of the methods using wavelet transform for this
purpose are [15–17]. The approach given by Martínez et al.
[17] uses Dyadic Wavelet Transform (DWT) and offers
very high delineation accuracy and uses. In this paper, QRS
detection and delineation is done using wavelet transform
[14]. Wavelet transform of a signal x(t) is given by,

WaxðbÞ ¼ 1ffiffiffi
a

p
Z1

�1
xðtÞy t � b

a

� �
dt; a > 0 ð1Þ

where y t�b
a

� �
is used as bases for wavelet decomposition of

the input signal [18]. It is a shifted and scaled version of a
mother wavelet. If the wavelet y(t) is the derivative of a
smoothing function θ(t), it can be shown that the wavelet
transform of a signal x(t) at a scale a is [19]:

WaxðbÞ ¼ �a
d

db

� �Zþ1

�1
xðtÞqa t � bð Þdt ð2Þ

where qaðtÞ ¼ 1=
ffiffiffi
a

pð Þq t=að Þ is the scaled version of the
smoothing function. It can be observed from above

equation that wavelet transform at scale a is proportional
to the derivative of the filtered signal with a smoothing
impulse response at scale a. Therefore, local maxima or
minima of the smoothed signal will occur on the zero
crossings of the wavelet transform at different scales.
Maximum absolute values of the wavelet transform will
show the maximum slopes in the filtered signal.

In dyadic wavelet transform, scale and the translation
parameters are discretized such that a=2k and b=2kl, and
basis functions are defined as below

yk;lðtÞ ¼ 2�k=2y 2�k t � l
� �

k; l 2 Zþ ð3Þ

The dyadic wavelet transform can be implemented as a
cascade of identical low and high pass FIR filters as shown
in Fig. 2(a) (Mallat’s Algorithm) [20].

Redundancy in signal representation is removed by
down sampling of 1/2 after each filter. In this case, the
signal representation becomes time-variant, and temporal
resolution of wavelet coefficients for increasing scales is
reduced. In order to overcome this problem, a modified
version of this algorithm, called algorithm a’trous (see
Fig. 2(b)) [21] is used. In this algorithm, the decimation
stages have been removed and the filter impulse responses
of the previous scale are interpolated to contain twice as
many points as in the previous scale.

For the purpose of this application we have used the
same wavelet as in [17]. The wavelet is taken to be the
derivative of a low pass filter which offers inherent noise
suppression. This wavelet has been used in other works on
ECG analysis and delineation [15] and is given by,

Ψ Ωð Þ ¼ jΩ
sin Ω

4

� �
Ω
4

 !4

ð4Þ

Table 1 Number of beats for different types of MI

MI type Number of beats

Anterior 2,480

Anterio-Lateral 1,920

Anterio-Septal 3,840

Inferior 3,760

Inferio-Lateral 2,640

Inferio-Posterior 160

Inferio-Posterio-Lateral 1,200

Lateral 240

Posterior 320

Posterio-Lateral 400

Normal 3,200

TOTAL 20,160

ECG
QRS detection and 

Delineation 
Baseline 
Removal

Iso-electric  
Level Detection

QRS Start

QRS end

QRS
feducial point

Features 
Extraction 

Fig. 1 ECG pre processing steps block diagram
Fig. 2 a Mallat’s Algorithm for wavelet transform b Algorithm
a’trous for wavelet decomposition
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From the implementation viewpoint, it can be imple-
mented through FIR low pass (H) & high pass (G) filters
whose frequency responses are given by:

H e jw
� � ¼ e jw cos

w
2

� �3
ð5Þ

G e jw
� � ¼ 4je jw sin

w
2

� �
ð6Þ

These filters are adapted to a sampling frequency of
250 Hz. In order to acquire same filtering characteristics for
other sampling frequencies, we can either resample the
input signal or design filters which produce the same
analog frequency response through, for instance, frequency
sampling techniques for FIR filter design [22].

As we are dealing primarily with the QRS complex
which has significant zero crossing associated with the
maxima and minima of the small but pathologically
significant Q and S waves in the Wavelet Transform only
up to scale 22 [17]. Figure 3 shows delineation points of
QRS complex.

The algorithm keeps track of the signal derivative
information (zero crossing and threshold) to determine a
wave’s start peak point and end points. Baseline wander is
an extraneous, low-frequency artifact in the ECG which
may interfere with the signal analysis, and makes the
clinical interpretation inaccurate and misleading. In the
presence of baseline wander, iso-electric line is not well
defined and hence accurate measurements of the parameters
from ECG are not possible. Its spectral content is usually
confined to a frequency band below 1 Hz, but it may
contain higher frequencies as well. A number of different
techniques have been implemented for baseline wander
removal [23–25]. We have used cubic Spline based

technique for baseline removal [23]. This method takes
the ECG signal along with QRS delineation points such as
QRS onset as inputs. It finds the knots (i.e. the flattest point
in the PQ region as shown in Fig. 4) as the reference point
and fits a third order cubic spline polynomial on these knots
to obtain the baseline estimate which is then subtracted
from ECG signal to get baseline removed signal. Figure 5
shows ECG with baseline wandering and after the removal
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Fig. 3 ECG QRS delineation (Plus sign = QRS Onset, Circle sign =
QRS peak, Cross sign = QRS Offset)

Fig. 4 ECG baseline removal (Blue line is ECG with baseline, Red
circles are the estimated knots and blue line is the third order cubic
polynomial fitted on these knots)
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of baseline wandering. Region after the end of P wave and
before the start of the QRS complex is known as PQ
region and can be used to locate the iso-electric level.
Mean value of the flattest region in the PQ interval is
considered as the iso-electric level. The iso-electric level
detection is required because ECG amplitude at different
locations in the beat is measured relative to the iso-electric
level. We search the flattest region (where the absolute
value of the slope is minimum) about 60 millisecond
backward from the start of the QRS complex [14]. The
procedure divides the search space into small windows and
the line in each window is approximated with a first order
polynomial then the slope of the line is calculated and the
window with minimum slope (the window with slope close
to zero) is selected to be the flattest region. The mean value
of the selected window is taken as the iso electric level. In
the Fig. 6 small dots show the iso electric level points that
are detected by the algorithm. Time domain features as
described in the next section are extracted using iso electric
level points as a reference point in each beat i.e. measure-
ments such Twave amplitude is taken relative to iso electric
level.

Feature extraction

Presence or absence of myocardial infarction is characterized
by specific waves or segments in the ECG beats. The main
indicators are Q wave, T wave and ST level elevation or
depression. Two types of myocardial infarction exist. Q
wave infarction is diagnosed by the abnormality of Q wave
which is present in the ECG. Non Q wave infarction is
diagnosed by looking at ST depression and T wave
abnormalities. Location of myocardial Infarction can be
predicted by analyzing 12 leads ECG as different leads
correspond to different areas of the heart. In this paper, Q

wave amplitude, ST level deviation and T wave amplitude
are used as features extracted from the 12 leads ECG. ST
segment is from the end of the QRS complex to the start of
the T wave. ST elevation is usually measured 60 or 80 ms
after the J point depending on heart rate. We extract the ST
segment using QRS end point and T wave start point or we
can take directly the elevation point 80 ms after the J point.
Figure 7 shows ST level points in each ECG beat. After
locating the ST level points, ST deviation is measured with
respect to the iso-electric level.

The presence of Q wave is detected using DWT based
QRS detector and its amplitude is measured with reference
to the Iso electric level. Once Q wave is detected, its
amplitude is measured with reference to iso-electric level.
Figure 8 shows Q wave detection points as dots generated
by the DWT based detector.

To determine T wave amplitude, a T wave delineator
which has been implemented by using discrete wavelet
transform is used. T wave amplitude can be calculated by

2000 2100 2200 2300 2400 2500 2600
-1000

-500

0

500

1000

1500

2000

2500

3000

 Isoeletric level detection

E
C

G
 s

ig
n

al
 A

m
p

lit
u

d
e

ECG signal sample number

Fig. 6 Iso-electric level detection (Red dots are the estimated iso-
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finding extreme value (minimum in case of negative or
inverted T wave and maximum in case of positive T
wave) in the T wave start and T wave end region or
alternately the point where the derivative of the curve
(slope) is zero can be considered as T wave peak. ECG in
Fig. 9 shows location of T wave points and T wave
amplitudes.

The above mentioned three time domain features i.e. T
wave amplitude, Q wave amplitude and ST deviation
measure are extracted for each beat and combined for 12-
leads forming a 36 dimensional feature vector. These
features are used for the MI detection purpose.

Classification using K-nearest neighbor

Let a training set T composes of N data points of dimension
d×1 and class labels of training set is also available. In K-
nearest neighbor (KNN) search, training set T is stored in
the memory with class labels. Let a data point xi from
testing set whose class label is unknown. Training set is
searched for the closest K nearest neighbor set based on
Euclidean distance from the data point xi. In KNN, every
data point can belong to only one class which is the
majority class in the K-nearest neighbor set.

Arif-Fayyaz pruning method

It involves pruning of the training data set T to obtain the
prototype set P. Following steps explain Arif-Fayyaz
Pruning Algorithm [26].

Step 1: Start with an empty prototype set, P=f and
training set T.

Step 2: Find K-Nearest Neighbors, xj, j=1…K, of each
training point, x, such that c xj

� � 6¼ cðxÞ and add
them to the prototype set P. This gives us the
border points of different clusters in the data.

Step 3: Classify each training point using the prototype set
P through KNN explained earlier. If the training
point is misclassified, add it to the prototype set P
and re-evaluate class weights and membership
values of prototype set P. This is done in order to
accommodate any clusters which may have been
missed in Step 2.

Step 4: For each ith class in the training set, W(i) is
initialized for i=1,2,…,Nc

Pruned, where N
c
Pruned is

the number of prototypes in P for ith class. For
each training point in the class, find the winner
from the pruned set of same class. After all the
training points are finished, remove all the
prototype from set P whose W(i) is an empty set.

The prototype set P will be a pruned set of prototypes
obtained from the training set T.

Inclusion of new data point in the training set

When a new data point is available to be included in the
training set T, following procedure is adopted for the
inclusion of new data point.

Step 1: For a new data point y, find K nearest neighbors
from the training set T. Find majority class of K
nearest neighbors.

Step 2: If majority class is different from the class of data
point y, then include y in the training set T.

Step 3: If majority class of the K nearest neighbor set is
the same class of data point y, then check the
importance of the new data point. Let δsy is the
mean of the Euclidean distance of the majority
class of K nearest neighbor set and let δdy is the
mean of the Euclidean distance of the minority
classes of K nearest neighbor set. If ddy � dsy

		 		 �
" where ε is a user defined small number then
include the new data point y in the training set T.
Otherwise y will not increase any information in
the training set.

Results and discussions

As shown in Table 1, about 20,000 ECG beats of Normal
and different types of myocardial Infarction are used to
analyze the performance of the proposed feature set with K-
nearest neighbor classifier.

Performance measures

The classifier performance is measured in terms of
sensitivity, specificity and accuracy.
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Sensitivity (SE) is calculated by the equation,

SE ¼ TP

TP þ FN
ð7Þ

Where TP, TN, FP, and FN represents the number of true
positives, true negatives, false positives, and false negatives
respectively.

Specificity (SP) is calculated as follows,

SP ¼ TN

TN þ FP
ð8Þ

Classification accuracy is defined as follows,

ACC %ð Þ ¼ TP þ TN

TP þ FN þ TN þ FP
ð9Þ

To assess the performance of pruning method, an index γ
is defined which is the ratio of data points retained after the
pruning. It is defined as follows,

g ¼ NPruned

N
ð10Þ

Where NPruned is the number of data points in the pruned
set P and N is the total number of data points in the training
set.

Detection of MI

In this section, myocardial infarction detection is treated as
two class classification problem with infracted and non
infracted classes. T-wave amplitude, Q-wave amplitude and
ST segment deviation of each lead of 12 leads ECG are
extracted. Hence 36 dimensional feature set is formed for
one ECG beat. Feature set of all ECG beats are divided into
training set and testing set. Half of the features set is
selected as training set randomly and ten fold cross
validation are used to describe the sensitivity and specificity
of MI detection. Sensitivity and specificity of KNN for MI
detection is found to be 99.97% and 99.9% respectively.
Detailed results in the form of confusion matrix are shown
in the Table 2. Results of MI detection reported in the
literature are tabulated in Table 7. Results reported in this
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Table 2 Confusion matrix for detection of MI

Original/Predicted
class

Without pruning
(Training
Beats = 10,080)

With pruning
(Training
Beats = 711)

MI Healthy MI Healthy

MI 8,477 3 8,292 188

Healthy 1 1,599 1 1,599
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paper are better than the results of MI detection in the
literature as evident from Table 7.

One drawback of KNN classifier is the memory
requirement to store large training set. To decrease the
memory requirement for KNN and to reduce the search
time, Arif-Fayyaz pruning algorithm is used to prune the
training set. Results of classification accuracy after pruning
of training pattern are tabulated in Table 2. Sensitivity of
97±2% and specificity of 99.6±0.8% is achieved with only
about 7% (711 out of 10,080) of the training patterns with
value of γ is 0.07. Arif-Fayyaz pruning algorithm select
only those data points in the training pattern which are
important for classification and lies near the decision
boundary. Advantage of using K-nearest neighbor classifier
is the incorporation of new data points with known class
label. Procedure mentioned in “Inclusion of new data point
in the training set” will be adopted for this purpose.

Localization of MI

In this section, ECG beats mentioned in Table 1 is treated
as eleven classes. Half of the ECG beats are selected
randomly as training set and rest of the ECG beats are used
for testing. KNN classifier is applied to 36 dimensional
features vector. Confusion matrix of all classes is shown in
Table 3. We can make certain observations from Table 3. In
case of a group of Anterior (Anterior, Anterio-Lateral,
Anterio-Septal), most of the wrong beats are lying within
this group. Similarly in case of Inferior group (Inferior,
Inferio-Lateral, Inferio-Posterior, Inferio-Posterio-Lateral),
again wrongly classified beats are confused within this
group. This observation is very obvious as classes within
these groups are located close to each other. Overall
classification accuracy for eleven classes is 98.8%. Fur-
thermore, ten folds cross validation is done and sensitivity
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Table 4 Senitivity and specificity of ten fold validation test for MI
localization

Type Sensitivity Specificity

Anterior 99.5±0.13 99.09±0.25

Anterio-Lateral 99.3±0.26 98.56±0.25

Anterio-Septal 99.2±0.08 99.48±0.14

Inferior 97.95±1.17 97.63±2.03

Inferio-Lateral 96.67±0.34 99.56±0.13

Inferio-Posterior 97.13±1.32 99.62±0.61

Inferio-Posterio-Lateral 96.33±3.5 93.37±6.16

Lateral 100±0 99.92±0.26

Posterior 99.56±0.73 99.38±0.5

Posterio-Lateral 99.8±0.26 99.45±0.5

Healthy 99.95±0.04 99.80±0.06
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and specificity of each classes as mean with standard
deviation is reported in Table 4. Most of the sensitivity and
specificity of most of the classes are above 99%. Sensitivity
of Inferior group (Inferior, Inferio-Lateral, Inferio-Posterior,

Inferio-Posterio-Lateral) are about 95% due to confusion
within this group.

Pruning algorithm is applied to the training set of 10,080
ECG beats of eleven classes. The value of γ is found to be
0.3. Hence, only 30% of the training beats are retained and
confusion matrix of MI classification results on testing
ECG beats (10,080 beats) is given in Table 5. Overall
accuracy is 98.3% which is almost equals to the MI
classification without pruning. Ten fold cross validation
results of sensitivity and specificity of eleven classes is
tabulated in Table 6. Results are presented as mean with its
standard deviation. Again same behavior is observed in the
confusion matrix. Misclassified ECG beats are confused
within their respective groups, i.e. Anterior and Inferior
groups.

In Table 7, reported results of myocardial infarction
detection and localization are presented along with results
of our proposed methodology. It can be observed from the
table that our proposed methodology has achieved higher
accuracy in myocardial infarction and sensitivities and
specificities of ten locations of myocardial infarction are

Table 7 MI classification accuracies reported in the literature

Reference Classifier Number of beats Results

[1] Neural networks Accuracy = 79%

Specificity = 97%

[2] Support vector machine
(SVM), Naïve Bayes (NB)
and random forecast (RF)

116 subjects (Averaged Beat) Sensitivity = 88% (Normal), 77% (MI)

Specificity = 77% (Normal), 88% (MI)

[3] Radial Basis Neural Network 448 beats Testing Accuracy = 97% (MI), 75% (Normal)

[5] Energy entropy characteristics
(Threshold based classifier)

3,000 beats Accuracy = 96.9% (MI), 96% (Normal)

[6] Classifier fusion
(Neural Network based)

290 ECG recordings Sensitivity = 73%(IMI) 83%(AMI)
85%(CMI) 71% (CMILVH)

Specificity = 96.7%(IMI) 96.9%(AMI)
98.5%(CMI) 97% (CMILVH)

[7] Neuro-fuzzy classifier 124 beats Sensitivity = 85% (Anteroseptal),
100%(Anterolateral), 87% (Extensive
Anterior), 75% (Local Anterior),
93% (Inferior), 66% (Inferiolateral)

Specificity = 98% (Anteroseptal),
98%(Anterolateral), 100% (Extensive
Anterior), 96% (Local Anterior),
95% (Inferior), 98% (Inferiolateral)

[11] Neuro-fuzzy classifier 539 beats Sensitivity = 93%(Other) 72%(AMI)
88%(IMI) 60% (MIX)

Specificity = 93%(Other) 92%(AMI)
94%(IMI) 95% (MIX)

This paper Pruned and simple KNN 20,160 beats MI Detection

Sensitivity = 99.97%

Specificity = 99.9%

This paper Pruned and simple KNN 20,160 beats MI Localization

See Table 4

Table 6 Senitivity and specificity of ten fold validation test for MI
localization with pruning

Type Sensitivity Specificity

Anterior 98.6±1.5 98.1±0.82

Anterio-Lateral 98.5±1.3 95.34±1.94

Anterio-Septal 96.8±1.2 98.5±1.17

Inferior 97.13±1.64 96.46±1.86

Inferio-Lateral 96.0±1.23 97.68±2.14

Inferio-Posterior 97.12±1.32 100±0

Inferio-Posterio-Lateral 93.3±2.1 96.5±5.35

Lateral 100±0 96.7±3.2

Posterior 99.56±0.72 99.32±0.6

Posterio-Lateral 99.3±0.54 99.6±0.5

Healthy 99.85±0.11 98.80±1.22
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also impressive. We have used a significant number of ECG
beats and ten different locations of MI.

Conclusions

In this paper time domain features namely Q wave
amplitude, T wave amplitude and ST segment deviation
are used for myocardial infarction detection (separation of
normal subjects and subjects having myocardial infarction).
Wavelet transform is used to extract these time domain
features accurately from the ECG beats. Classification is
done by using KNN classifier. As expected these time
domain features perform very well in MI detection and
localization. High values of sensitivity and specificity are
achieved in MI detection. Localization of myocardial
infarction for ten locations treated as ten separate classes
is also performed using same time domain feature set with
KNN classifier. Arif-Fayyaz pruning algorithm is used to
reduce the computational cost of KNN classifier. A slight
decrease in the classification accuracy of MI detection is
observed with major reduction in the number of data points
in the training set (Only 7%). Furthermore, same pruning
algorithm is also applied for MI localization (Eleven classes
including Normal and ten locations of MI). Again slight
decrease in the overall accuracy is observed while using
pruned training set (only 30% of the training set). Results
mentioned in “Results and discussions” established the
effectiveness of the proposed feature set with KNN classifier.
The proposed method will be a useful component of the
clinical decision support system for the cardiologist. Since time
domain features are used for detection and localization of
myocardial infarction, descriptive nature of the features will be
cardiologist friendly. As discussed in this paper, MI detection
and localization strongly depends on correct extraction of
time domain features. Hence, robustness of the features
extraction is an issue which must be handled. In our future
research, we are focusing on ways to remove noise which is
in the frequency bandwidth of the ECG signal. Independent
Component Analysis can be used to solve this problem.
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