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Abstract Listening via stethoscope is a primary method,
being used by physicians for distinguishing normally and
abnormal cardiac systems. Listening to the voices, coming
from the cardiac valves via stethoscope, upon the flow of the
blood running in the heart, physicians examine whether there is
any abnormality with regard to the heart. However, listening via
stethoscope has got a number of limitations, for interpreting
different heart sounds depends on hearing ability, experience,
and respective skill of the physician. Such limitations may be
reduced by developing biomedical based decision support
systems. In this study, a biomedical-based decision support
system was developed for the classification of heart sound
signals, obtained from 120 subjects with normal, pulmonary
and mitral stenosis heart valve diseases via stethoscope.
Developed system was mainly comprised of three stages,
namely as being feature extraction, dimension reduction, and
classification. At feature extraction stage, applying Discrete
Fourier Transform (DFT) and Burg autoregressive (AR)
spectrum analysis method, features, representing heart sounds
in frequency domain, were obtained. Obtained features were
reduced in lower dimensions via Principal Component Anal-
ysis (PCA), being used as a dimension reduction technique.
Heart sounds were classified by having the features applied as
input to Artificial Neural Network (ANN). Classification
results have shown that, dimension reduction, being conducted
via PCA, has got positive effects on the classification of the
heart sounds.
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Introduction

Heart is one of the vital centers for human life. Since the
year 1985, deaths from heart diseases have been ranked
second worldwide, right after those from brain infarction
[1]. Thus, it is critical to diagnose any disease to occur
related with the heart.

Correlation between the volume, pressure, and flow of
blood in the heart determines opening and closing of cardiac
valves. Normal heart sound comes from closing of the valves.
Besides, sounds, coming from flow of blood inside the heart
and vessels, are components of heart sounds [2]. Heart sounds
and murmurs come in general from the movements of
myocardial walls, opening and closing of valves, as well as
from the flow of blood in and out of chambers [3]. The
sound emitted by a human heart during a single cardiac cycle
consist of two dominant events, known as the first heart
sound S1 and second heart sound S2. While S1 comes from
closing of mitral and tricuspid valves, S2 comes from closing
of aortic and pulmonary valves [4].

For the analysis of heart sounds, and for their naming
within the literature as well, heart has been divided into
four regions. These are named as mitral, tricuspid,
pulmonary, and aortic regions. These regions are not the
anatomical locations of the heart valves, but the direction of
blood flow through these valves. Comparing the sounds
coming from each region with those coming from other
regions, troubled region, and reason of the related trouble
are attempted to be identified [5]. In our study, having made
use of heart sounds obtained from mitral and pulmonary
regions, diagnoses of mitral stenosis and pulmonary
stenosis diseases were conducted.

Mitral stenosis occurs from the declination in the
opening of mitral valve, leading the way of the blood in
the left atrium to left ventricle, and blocking its return [5].
Many conditions, having occurred from birth, or thereafter,
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may end up with failure in filling of left ventricle, and cause
mitral stenosis. Rheumatic valve disease is the primary
cause of mitral stenosis in adults [6].

Pulmonary stenosis, on the other hand, occurs from
pulmonary valve’s (located between right ventricle and lung
artery) hampering the flow of blood into the lungs [5].
Pulmonary stenosis is the second most endemic congenital
disease among adults. While most of them progress lightly,
without necessitating any treatment, they frequently coin-
cide with congenital heart diseases. Having pulmonary
stenosis not undergone any treatment, right ventricle failure
may develop [6].

Abnormalities in the structure of the heart are mostly
reflected in the heart sounds [7]. Thus, in order to have the
abnormalities in the structure of the heart identified,
physicians listen to mitral, tricuspid, pulmonary, and aortic
sections respectively. Nowadays, the most common method
being used by physicians in diagnosing cardiac diseases is
listening via stethoscope [8]. Listening to the voices,
coming from the cardiac valves via stethoscope, upon the
flow of the blood running in the heart, physicians examine
whether there is any abnormality with regard to the heart.
However, there are numerous limitations on the method of
listening via stethoscope. Listening via stethoscope is
dependent on the physician’s ability to interpret different
heart sounds, on his/her hearing ability, experience, and
skill [9]. The required experience and skill are obtained
through examinations, being conducted over long years.
While there are experience and skill difficulties being
encountered particularly with respect to newly graduated
and intern physicians, inappropriate environmental condi-
tions, and patient nonconformity as well may lead to
insufficient diagnoses [10]. Development of decision
support systems will be helpful for the physicians in
diagnosing the heart sounds against the possibility of
encountering such deficiencies. Decision support systems,
being developed via signal processing, pattern recognition
and classification methods, will be helpful for physicians in
interpreting the heart sounds, and in diagnosing heart
diseases consequently. Besides, those developed systems
are accurate, easy-to-use, and cost-efficient. In case that
heart sounds may be identified, or diagnosed via computer
softwares, the abovementioned problems would significant-
ly become solved.

There are a lot of studies in the literature, having been
conducted for the diagnosis of heart diseases with the help
of heart sounds. In their study, Sharif et al. have achieved a
success in classification via frequency estimation from heart
sound signals at a rate of 70% for normal heart sound,
mitral stenosis, and mitral regurgitation [11]. Segaier et al.
have developed an algorithm for ascertaining first (S1) and
second (S2) heart sound. They have made use of DFT for
the analysis of heart signals from patients, at their study

among pediatrics department patients [12]. Folland et al.
have applied Fast Fourier Transform and Levinson-Durbin
algorithms on the heart sounds, for the analysis of
abnormalities in heart sounds. They have classified the
obtained features by making use of Multi Layer Perceptron
(MLP) and Radial Basis Function (RBF) Neural Network
Classifiers. Consequently, classification successes by 84%
and 88% have been obtained consecutively from MLP and
RBF neural networks [13]. Bhatikar et al. have aimed at
developing a reliable screening device for diagnosis of
heart murmurs in pediatrics. They were used Fast Fourier
Transform to extract the energy spectrum in frequency
domain. Heart murmurs were classified by having the
features applied as input to ANN. With this classifier, they
were able to achieve classification accuracy of 83%
sensitivity and 90% specificity in discriminating between
innocent and pathological heart murmurs [14]. Reed et al.
have made use of wavelet transform and ANN for the
analysis and classification of heart sounds [15]. Sinha et al.
have analyzed heart sounds, obtained from healthy persons,
and from mitral stenosis patients via wavelet transform
technique, and ANN [16]. Voss et al. have classified the
features, obtained from normal and aortic heart sound
signals via wavelet and Fourier transform, via linear
discriminant function analysis method [17]. Pavlopoulos
et al. have developed a decision tree-based method by
making use of heart sounds, for the diagnosis of aortic
stenosis and mitral regurgitation diseases [18].

In this study, a biomedical-based application has been
developed for the classification of heart sound signals,
obtained from 120 subjects with normal, pulmonary and
mitral stenosis heart valve diseases via stethoscope.
Application is mainly comprised of three stages, namely
as being feature extraction, dimension reduction, and
classification. At the feature extraction stage, frequency
spectrum of heart sound signals has been obtained by
making use of DFT. In addition to DFT, power spectrum
density of each signal has been calculated using the Burg
AR method for compare to feature extraction methods.
Thus, having heart sound signals converted from time
domain to frequency domain, features representing the
heart sounds will be obtained. Having the obtained features
applied as input to ANN, classification stage of heart will
be proceeded to. However, due to the presence of numerous
variables, over-fitting should be avoided in the choice of
ANN input variables [19]. Data set may become lower-
dimensioned via PCA, being used as a dimension reduction
technique. While “over-fitting” may be avoided by having
the reduced features applied as input to ANN, ANN with
reduced parameters will also shorten the training period.
For these reasons, features, having been obtained via DFT
and Burg AR method, have been applied, in a form reduced
via PCA, as input to ANN. Classification success at a rate
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by 95% has been achieved in our purposed system for both
feature extraction methods. Classification results have
displayed the fact that, purposed system is effective in the
classification of heart sounds.

Rest of the article was organized as follows. In
“Materials and methods”, by the obtainment of heart sound
signals, background theory of DFT, PCA, and ANN
methods was explained. The efficiency of the method,
intended for the classification of heart sound signals, being
used in the diagnosis of heart valve diseases, was
introduced in “Experimental results”. “Discussion and
conclusion” was comprised of the conclusion, as well as
the recommendations.

Materials and methods

Figure 1 shows the procedure used in the development of
the classification system. It consist of five parts: (a)
measurement of heart sound signals with stethoscope, (b)
feature extraction of heart sound signals by using DFT and
Burg AR mehod, (c) dimension reduction with PCA (d)
classify heart sound signals, (e) classification results (as
normal, mitral stenosis or pulmonary stenosis).

Raw data obtainment

In this study, heart sounds, having been obtained by
Güraksın from the cardiology clinic of the Medicine
Faculty of Afyon Kocatepe University, during the course
of Master thesis works [20], have been made use of. Heart
sounds are being listened simply by having the stethoscope
slightly contact the chest wall. For the obtainment of heart

sounds, a Littman 4100-model electronic stethoscope has
been made use of. It is possible to record six different
sounds via Littman 4100-model stethoscope. By this way, it
is possible to have heart sounds from six patients saved
within the stethoscope itself. Heart sounds, obtained via
stethoscope, have been exemplified in 8 kHz. Making use
of the noise reduction technology within the body of the
stethoscope, surround sounds have been reduced averagely
by 75% (−12 dB), without eliminating critical body sounds.
Sounds, having been recorded via Littman 4100-model
electronic stethoscope, are being kept in “e4k” format [20].
While this format has been converted into “wav” format, by
making use of a program given by Littman, the heart
sounds in wav format have thereafter been converted into
digital form via an input C# application.

Discrete fourier transform (DFT)

Having the signals, to be used in applications, reviewed,
numerous signals, being come by in practice, are time
domain signals, and their measured size is a function of
time. Thus, it is necessary to transfer the signal to a
different domain via a mathematical transform, and infor-
mation on the signal is obtained from the components,
representing the signal in this domain. Via Fourier
transform, frequency spectrum of the signal is obtained.
By this way, the information hidden in the time domain is
brought into open in frequency domain [5].

Contrary to some of the theoretically-described series, it
is impossible to calculate Fourier transforms of real series.
Thus, use of Fourier transform is not suitable for digital
signals. Analog display of frequency and the need for
infinite examples as well, are the main reasons for this
unsuitability. Besides, while Fourier transform examines
which frequency components are embedded in the signal, it
does not contain any information on which moment of time
that these components are brought into open. In this
condition, sounds with the same frequency, but generated
in regions other than time domain, will correspond to the
same region within the frequency spectrum. This will, then,
lead to yield of inaccurate results from the classifier.
According to these difficulties, a more applicable transform
should be identified by having the importance of Fourier
transform in signal processing into consideration. This
more practical solution, having been identified for the
evenly-spaced N frequency point around the unit circle, and
for the example N of x(n) series, is named as DFT [20].

DFT calculations are used in numerous engineering
applications. The reverse for the time series can also be
gained and its feature of transform is quite acute. It has
mathematical features exactly similar to those of Fourier
integral transform. It particularly identifies the spectrum of
a time series [21]. The most important two features of DFTFig. 1 The structure of the suggested classification system
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are that, correspondence of multiplication of two DFT’s in
the time domain is equal to the convolution sum of the
series. Besides, numerous spectrum analysis methods are
based on DFT [20].

DFT is identified via Eq. 1:

Ar ¼
XN�1

k¼0

Xk expð�2p jrk=NÞ r ¼ 0; :::;N � 1 ð1Þ

where, Ar represents DFT’s rth coefficient, Xk represents kth
example of a time series made of N example. While Xk may
be complex numbers, Ar’s are always complex numbers.

Burg autoregressive (AR) method

Different spectrum estimation methods fall under either the
nonparametric or parametric method categories. In Non-
parametric methods, it is the signal that is used directly in
the estimation of power spectral density (PSD). Periodo-
gram is the easiest method that can be given as an example
to that. Whereas, in Parametric methods, a model is used in
the process of estimating the power spectrum. Burg, Welch,
and Yule Walker methods are the most common parametric
methods used.

There are two steps for estimating the spectrum in the
parametric methods. Method parameters are estimated
according to the data series x(n),0 � n � N � 1. PSD
estimate is computed using the estimations obtained here.
As stated above, AR method is preferred as a spectrum
analysis technique, due to the simplification of the
estimation of AR parameters (such as Yule–Walker, Burg,
covariance, least squares, and maximum likelihood estima-
tion). Unlike other AR estimation methods, Burg method
doesn’t calculate the autocorrelation function but directly
estimates the reflection coefficients. Because of the fact that
PSD estimates are close to the true values in the AR case, to
resolve closely spaced sinusoids in signals with low noise
levels and to estimate short data records can be stated as the
main advantages of the Burg’s method [22]. Moreover,
Burg AR method is efficient giving stable estimates. On the
grounds of these advantages, in our study Burg method is
used. In Burg method, PSD estimation can be defined as
Eq. 2.

bPxxð f Þ ¼ bep
1þPp

k¼1 bapðkÞe�j 2p fk
�� ��2 ð2Þ

where bapðkÞ is AR parameters to reflection coefficients, bep
is total least-squares error, p denotes model order, f denotes
frequency.

Selecting the model order makes up a key component in
parametric methods. Through various techniques, the
optimal model order can be determined [23–25]. Akaike
proposed a better criterion for choosing the model order,

namely the Akaike information criterion (AIC) [25]. In
AIC, the model order is selected through the minimization
of Eq. 3.

AICðpÞ ¼ ln bs2 þ 2p=N ð3Þ

where bs 2 is the estimated variance of the linear prediction
error. In this study, model order of the AR method was
taken as 12 by using Eq. 3.

Artificial neural network (ANN)

ANN is a calculation system, having been developed
through inspiration from the structure, as well as from the
learning characteristics of neural cells. It is similarly and
successfully applied on the functional features of human
brain, in terms of such aspects as learning, optimization,
prediction, clustering, generalization, and classification.
Main reasons of the frequent use of ANN in classification
applications are as follows: (a) ANN’s simple structure for
easier use in hardware platform; (b) ANN’s easier mapping
of complex class-distributed features; (c) ANN’s general-
ization feature. Its generation of results appropriate for
input vectors unavailable in training set; (d) Weights
indicating the result are found via repeated trainings [26].

ANNs’ physical structure is important in fulfillment of
their duties. Different structures are originated from the
connection of neurons, as well as from the applied training
rule. A group of neurons get together, and generate a layer.
In general, there are three layers available in ANNs. These
layers are consecutively as follows: input layer, establishing
the connection with the outer world; hidden layer, with the
ability to process the incoming information; output layer,
transmitting the decisions of ANN to outer world. Process
elements in the input layer transmit the given information to
the neurons in the hidden layer, without subjecting to any
change. Information, as being mentioned herein, means to
be the weights found on the connection lines between the
neurons. These information constitute the memory of ANN,
in other words the database for the system, in which ANN
will be used after being trained [27]. The number of the
layers of ANN’s structure, and number of neurons therein
are in general dependent to the applications. In Fig. 2,
structure of an ANN with 1 input, 1 hidden, and 1 output
layer.

While it is possible to use all ANN models as classifiers,
the most widely-used model is the feed-forward neural
network of Multi-Layer Perceptron (MLP). While various
training algorithms are being made use of in the training of the
feed-forward neural networks MLPs, best results have been
attained from back-propagation algorithm. Back-propagation
algorithm depends on gradient-descent method [28]. Upon
calculating the error in the output of the network, Back-
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propagation algorithm rearranges the weights of neurons
thereafter. Having the rearrangement extended through
layers, it is attempted to reduce errors in output [28, 29]. In
our study, 3-layered “MLP feed-forward neural network with
back-propagation algorithm” structure was used.

Principal component analysis (PCA)

PCA is a statistical technique, being used for extracting
information from multi-variety data set. This process is
performed via having principal components of original
variables with linear combinations identified. While the
original data set with the maximum variability is repre-
sented with first principal component, the data set from the
remaining with the maximum variability is represented with
second principal component. The process goes on consec-
utively as such, with the data set from the remaining with
the maximum variability being represented with the next
principal component. While m represents the number of all
principal components, and p represents the number of the
significant principal components among all principal
components, p may be defined as the number of those
principal components of the m-dimensional data set with
the highest variance values. It is clear therein that, p≤m.
Therefore, PCA may be defined as the data-reducing
technique. In other words, PCA is a technique, being used
for producing the lower-dimensional version of the original
data set [30].

Let’s take a p-dimensional data set as X, and p number of
principal axes as T1,T2,...,Tp. In accordance with 1≤p≤m,
T1,T2,...,Tp are identified by the eigenvectors of sample
covariance matrix in Eq. 4.

S ¼ 1=Nð Þ
XN

i¼1
xi � mð ÞT xi � mð Þ ð4Þ

where xi ∈ X, μ is the sample mean, and N is the number of
samples, so that:

STi ¼ liTi; i 2 1; . . . ; p ð5Þ

where li is the largest eigenvalue of S. The p number of
principal components of a given observation vector xi ∈ X is
as follows:

y ¼ y1; y2; :::; yp
� � ¼ TT

1 ; T
T
21; :::; T

T
p

h i
¼ TTx ð6Þ

In multi-classed problems, while the variations of the
data are taken as general principals, principal axes are
subtracted from the global covariance matrix.

bS ¼ 1

N

XK
j¼1

XNj

i¼1

ðxj � bmÞðxj � bmÞT ð7Þ

where µ is global mean off all samples. K is number of
classes, Nj is the number of samples in class j; N ¼ PK

j¼1 Nj

and xji represents the ith observation from class j. The
principal axes T1,T2,...,Tp are the p leading eigenvectors of bS.
bSTi ¼ bliTi; i 2 1; :::; p ð8Þ
where bli is the ith largest eigenvalue of bS [31].

Evaluation of performance

The performance analysis of the proposed system has been
performed according to the techniques given below.

Classification accuracy, sensitivity and specificity analysis

In this study, the classification accuracy of for the dataset
was evaluated according to Eq. 9.

accuracyðTÞ ¼
P Tj j

i¼1
asses tið Þ
Tj j ; ti 2 T

asses tið Þ ¼ 1 if classifyðtÞ � t:c
0 otherwise

� ð9Þ

where T is the test dataset, t is a data item of T (t∈T), t.c is the
class of the item t, and classify(t) returns the classification of
t by ANN method in our study.

Sensitivity and specificity analysis are important mea-
sure for performance of diagnostic tests. The sensitivity and
specificity are defined as:

Sensitivity ¼ TP

TPþ FN
� 100 ð10Þ

Specificity ¼ TN

TNþ FP
� 100 ð11Þ

where TP, TN, FP and FN denotes true positives, true
negatives, false positives and false negatives, respectively.

Confusion matrix

A basic methodology called a confusion matrix is used to
display the classification results of a classifier. Labeling the

Fig. 2 Structure of ANN
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requested classification on the rows and the actual classifier
outputs on the columns forms a confusion matrix. In each
exemplar, the cell entry defined by the requested classification
and the actual classifier outputs is increased by 1. Since it is
desired to have actual classifier outputs and the requested
classification identical, the optimum is attained when all the
exemplars are located diagonally on the matrix [32].

Experimental results

In this study, for the diagnosis of a heart valve disease, a PCA-
ANN-based biomedical system has been developed by
making use of the heart sounds, having been obtained from a
total of 120 subjects. Among the heart sounds obtained from
120 subjects, 40 of them are normal, 40 of them are mitral
stenosis, and the remaining 40 are pulmonary stenosis. The
group consists of 55 males, and 65 males within an age range
of 4 to 65. The study is mainly comprised of three stages,
namely as being feature extraction, dimension reduction, and

classification. At the feature extraction stage, features,
representing heart sound signals, are obtained by making use
of DFT and Burg AR spectrum analysis method. Obtained
features have been reduced in lower dimensions via PCA,
being used as a dimension reduction technique. Having the
reduced features applied as inputs to ANN, heart sounds have
been divided into three classes, as being normal, mitral
stenosis, and pulmonary stenosis. Stages of feature extraction,
dimension reduction, and classification have been realized by
making use of Matlab software package.

Feature extraction via DFT

In real life, calculations are made in computer environment,
and reviewed signals are converted into digitals upon being
sampled accordingly. Mathematical transformations, being
used for conversion of signals into digitals, should therefore
be applicable to these signals comprised of discrete
elements. DFT has been developed for this purpose. DFT
enables the Fourier transformation from finite number of
samples of a signal.

Fig. 3 a Example of waveform normal heart sound signal in one
cycle. b DFT spectra of normal heart sound signal in (a)

Fig. 4 a Example of waveform heart sound signal with mitral stenosis
in one cycle. b DFT spectra of heart sound signal in (a)
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At the feature extraction stage, frequency spectrum of
heart sound signals has been obtained by making use of
DFT. Thus, having heart sound signals converted from time
domain to frequency domain, features representing the
heart sounds will be attained. 0–300 Hz of frequency
spectrum, obtained from DFT application has been chosen
as feature, in the form having been used in [4].

In the Fig. 3(a) and (b), graphics of the heart sound,
obtained from a normal subject, are seen consecutively in
its example of waveform, and as being applied DFT.

While in Fig. 4(a) and (b), graphics of the heart sounds,
obtained from subjects with mitral stenosis disease, are seen
consecutively in their examples of waveform, and as being
applied DFT, similarly in Fig. 5(a) and (b), those of the
heart sounds, obtained from subjects with pulmonary
stenosis disease, are seen consecutively in their examples
of waveform, and as being applied DFT. Graphics in
Figs. 3, 4, and 5 are drawn alongside a period of one cycle.

As seen in Figs. 3, 4, and 5, there are apparent
differences between the graphics of the heart sound of a
normal subject, and those from patients with mitral and
pulmonary stenosis diseases. These differences, being
reflected to heart sound graphics, are also reflected largely
to DFT graphics. While heart sound graphics of a disease
vary according to that particular disease, and such a
condition also varies DFT graphics as per each particular
disease. Therefore, such a classification system, being
established by taking such variances in DFT graphics into
consideration, enables for deciding on respective diseases.

Feature extraction via Burg AR method

In our study, before the Burg AR spectrum analysis method
is applied to the heart sound signals, sampled heart sound
signals are grouped by frames comprising specific sample
numbers. The most common frame lengths are 64,128 and
256. The optimal length of the used frame depends upon
the durability of the signal and sampling frequency. In this
study, frame length is taken as 64 because sample numbers
were few [33]. Subsequently, the power spectrum density of
each window was calculated using the Burg AR method.
Hence, number of samples for each subject was reduced to
33. 33 characteristics of the heart sound signals obtained by
calculating the PDSs of heart sound signals were taken as
ANN input parameters.

Figure 6(a), (b) and (c) present the sample PSDs of the
heart sound signals for the normal and the abnormal
subjects, respectively. According to Fig. 6, heart sound
PSD values of normal subject and abnormal subjects, who
suffer from mitral stenosis and pulmonary stenosis, show
different characteristics.

Fig. 5 a Example of waveform heart sound signal with pulmonary
stenosis in one cycle. b DFT spectra of heart sound signal in (a)

Fig. 6 PSD estimations of heart
sound signals for (a) abnormal
subject suffering from
pulmonary stenosis, b abnormal
subject suffering from mitral
stenosis, and c normal subject
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Dimension reduction via PCA

0–300 Hz of frequency spectrum, obtained from DFT
application has been chosen as feature, in the form having
been used in [4]. In addition to DFT, the power spectrum
density of each signal has been calculated using the Burg
AR method for compare to feature extraction methods. 33
features have been extracted via Burg AR method.
However, due to the numerous input variables, over-fitting
should be avoided in the choice of ANN input variables
[19]. Besides, presence of excess number of redundant,
irrelevant, and noisy input variables may hide the mean-
ingful variables in the data set. Excess number of input
parameters may further hinder the determination of the
optimum ANN model [34]. As a linear technique, being
used in dimension reduction, PCA transforms the data set
from its space m-dimensional original form to its space
p-dimensional new form. While over-fitting may be avoided
by making use of a lower-dimensional data set, thanks to
ANN with reduced number of parameters, training period
will be shortened. For these reasons, reducing input variables
in the data set via PCA will enable an increase in the
classification performance of ANN [30].

The number of principal components, being obtained
from PCA, will be equal to that of the variables. One of the
basic advantages of PCA is that, it may represent m number
of variables, as p≤m, by p number of variables. However,
the p number of principal components to be chosen among
the all principal components should be the principal
components to represent the data at their very best. There
are certain criteria in determining the optimal number of
principal components. “Broken-stick model, Velicier’s
partial correlation procedure, cross-validation, Barlett’s test
for equality of eigen-values, Kaiser’s criterion, Cattell’s
screen-test, and cumulative percentage of variance” are a
group of such criteria [35]. In our study, cumulative
percentage of variance criteria has been applied in
determining the number of principal components, for its
simplicity, and eligible performance [36]. According to this

criterion, principal components, with their cumulative
percentage of variance is higher than a prescribed threshold
value, are being chosen. The sensible threshold value can
be selected between 70% and 90%. The best value for
threshold will generally become smaller as p increases.
Although a sensible threshold is very often in the range
70% to 90%, it can sometimes be higher or lower
depending on the practical details of a particular data set.
However, it should be noticed that some authors point out
that there is no ideal solution to the problem of dimension-
ality in a PCA [37]. Therefore, the choice of threshold is
often selected heuristically [38]. In this study, threshold
value has been specified as 75%.

For 300 features, having been obtained from DFT, 300
principal components have been obtained from PCA
analysis. As being seen in Table 1, cumulative percentage
variance of the first 8 of 300 principal components exceeds
the threshold value of 75%. This means the data are highly
correlated and can be indicated by the eight principal
components. A further 292 principal components contrib-
uted only %25 of the variation and were not considered of
importance. In this way, obtained 300 features from DFT,
was reduced eight features.

In similar way, for 33 features, having been obtained
from Burg AR method, 33 principal components have been
obtained from PCA analysis. As being seen in Table 2,
cumulative percentage variance of the first 6 of 33 principal
components exceeds the threshold value of 75%. This
means the data are highly correlated and can be indicated
by the ten principal components. In this way, obtained 33
features from Burg AR method was reduced six features.

Table 1 Variance, proportion, and cumulative values of the first
8 principal components for DFT

Principal component Variance Proportion Cumulative

I 119.38 0.398 0.398

II 33.664 0.112 0.510

III 27.274 0.091 0.601

IV 14.626 0.049 0.650

V 12.248 0.041 0.691

VI 8.801 0.029 0.72

VII 7.763 0.026 0.746

VIII 6.876 0.023 0.769

Table 2 Variance, proportion, and cumulative values of the first 6
principal components for Burg AR method

Principal component Variance Proportion Cumulative

I 82,66 0.369 0.369

II 29,23 0.131 0.500

III 24,02 0.107 0.607

IV 16,88 0.076 0.683

V 12,59 0.056 0.739

VI 9,62 0.043 0.782

Table 3 Training and test sets

Class Training set Test set Total

Normal 20 20 40

Mitral stenosis 20 20 40

Pulmonary stenosis 20 20 40

Total 60 60 120
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Classification using artificial neural network

From the dimension reduction step via PCA application, it
was proceeded to the classification stage of heart sounds.
For this process, MLP ANN structure, classification
successes of which have been mentioned above, has been
made use of. Normal heart sounds, as well as diseases of
mitral and pulmonary stenosis have been reviewed at the
classification via ANN.

In Table 3, distribution of the training, and test sets to be
used as input at ANN structure is being seen. Training and
test set distribution is similar to that in [4]. Its reason is the
exact comparability of the proposed method with [4].

Feature vectors from the training set via DFT-PCA and
Burg AR-PCA method, distribution of which has been
performed according to Table 3, have been applied as
inputs for ANN classifier. Training parameters, having been
applied herein, as well as the structure of ANN are revealed

in Table 4. Table 4 has been established by having such
parameters, as number of hidden layers, learning rate and
momentum constant value, and activation functions type
modified, with the intent of obtaining the best classification
performance. Besides, classification process has been
replicated 30 times with random initially weight values.

In Fig. 7, training performance of DFT-PCA-ANN is
being seen. As a result of the replicated 30 times, it has
been found out that, mean-squared error is reduced lower to
10−5 in an average of 35 steps. At the end of training, DFT-
PCA-ANN classifier training set has been classified as
100% correct.

In Fig. 8, training performance of Burg AR-PCA-ANN
is being seen. As a result of the replicated 30 times, it has
been found out that, mean-squared error is reduced lower to
10−5 in an average of 28 steps. At the end of training, Burg
AR-PCA-ANN classifier training set has been classified as
100% correct.

ANN architecture

The number of layers: 3

The number of neuron on the layers (DFT-PCA/Burg AR-PCA): Input: 8/6

Hidden: 80

Output: 3

The initial weights and biases: The Nguyen-Widrow method

Activation functions: Log-sigmoid

ANN training parameters

Learning rule: Back-propagation

Adaptive learning rate: Initial: 0.0001

Increase: 1.05

Decrease: 0.7

Momentum constant: 0.95

Mean-squared error: 0.00001

Max. Epoch (Stopping criterion) 1,000

Table 4 ANN architecture and
training parameters

Fig. 8 The Burg AR-PCA-ANN training performanceFig. 7 The DFT-PCA-ANN training performance
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Following the training stage, feature vectors from 60 test
sets have been applied as inputs for trained DFT-PCA-ANN
and Burg AR-PCA-ANN classifiers. Classification results
have shown the performances of these two different feature
extraction based classifiers are same. The confusion matrix,
revealing the obtained classification results, is given in
Table 5.

According to the confusion matrix, one normal subject was
incorrectly classified as pulmonary stenosis, one subject with
mitral stenosis was incorrectly classified as normal subject,
and one subject with pulmonary stenosis was incorrectly
classified as patient suffering from mitral stenosis.

Besides, by making use of statistical sensitivity and
specificity parameters, successes of DFT-PCA-ANN and
Burg AR-PCA-ANN based methods in classification have
been compared with that of DFT-ANN-based method [4] in
classification. In these studies, training and test data sets, as
well as feature extraction with DFT stage are exactly the
same. Comparison results are seen in Table 6.

According to Table 6, our results show the performances
of purposed DFT-PCA-ANN and Burg AR-PCA-ANN
based classifiers are same. But, classification success of
the purposed DFT-PCA-ANN/Burg AR-PCA-ANN based
methods have achieved much better results, in comparison
with those of the classification success of DFT-ANN based
method, having been applied in [4]. According to classifi-
cation results have shown that, dimension reduction, being
conducted via PCA, has got positive effects on the
classification of the heart sounds signals.

The ROC curves were plotted in order to compare the
performance of the classifiers using sensitivity and specificity
values. ROC curves provide a view of this whole spectrum of
sensitivities and specificities because some sensitivity/speci-
ficity pairs for a test set are plotted [39]. A classifier has good
classification performance, when sensitivity rises rapidly.
Specificity does not almost increase at all until sensitivity
becomes high. ROC curve which is shown in Fig. 9

demonstrates DFT-PCA-ANN/Burg AR-PCA-ANN method
classification performance on the test data set. In addition the
ROC curve, the areas under the ROC curves were calculated.
The areas under the ROC curves were found to be 0.925 for
DFT-ANN and 0.950 for DFT-PCA-ANN/Burg AR-PCA-
ANN methods. According to these results, the classification
performances of purposed methods were better than DFT-
ANN classification method in [4].

Discussion and conclusion

In this study, a biomedical-based system has been developed
for the classification of heart sound signals, obtained from 120
subjects with normal, pulmonary and mitral stenosis heart
valve diseases via stethoscope. Developed system is mainly
comprised of three stages, namely as being feature extraction,
dimension reduction, and classification. At the feature
extraction stage, features, representing heart sound signals,
are obtained by making use of Fourier transform. In addition
to DFT, power spectrum density of each signal has been
calculated using the Burg AR method for compare to feature
extraction methods. Obtained features have been reduced in
lower dimensions via PCA, being used as a dimension
reduction technique. Consequently, having the process load
of ANN lessened, it has been intended to avoid over-fitting.
Heart sounds have been classified by having the reduced
features applied as entry to ANN. Classification results have

Output/Desired Normal Mitral stenosis Pulmonary stenosis

Normal 19 1 0

Mitral stenosis 0 19 1

Pulmonary stenosis 1 0 19

Table 5 Confusion Matrix for
the DFT-PCA-ANN/Burg AR-
PCA-ANN with classification
results

Table 6 The statistical parameters of the classifiers methods

Classifier Specificity
%

Sensitivity
%

Total accuracy
(%)

DFT-PCA-ANN/Burg
AR-PCA-ANN
(purposed methods)

90.48 97.44 95

DFT-ANN [4] 82.60 97.29 91.67
Fig. 9 ROC curve for DFT-PCA-ANN/Burg AR-PCA-ANN classifier
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shown the performances of purposed DFT-PCA-ANN and
Burg AR-PCA-ANN based classifiers are same. But, classi-
fication success of the purposed DFT-PCA-ANN/Burg AR-
PCA-ANN based methods have achieved much better results,
in comparison with those of the classification success of DFT-
ANN based method. As an outcome of purposed methods,
heart sounds, obtained from three classes, namely as normal,
mitral stenoses, and pulmonary stenosis, have been classified
at correctness rates of 95%. In conclusion, classification
results have shown that, dimension reduction, being con-
ducted via PCA, has got positive effects on the classification
of the heart sounds. Above all, development of this kind of
decision-support systems will provide assistance to physicians
with lacking experience, and skill in diagnosing the heart
sounds, by simplifying this diagnosis process.
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