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Abstract There is a conflict between Data Envelopment
Analysis (DEA) theory’s requirement that inputs (outputs)
be substitutable, and the ubiquitous use of nonsubstitutable
inputs and outputs in DEA applications to hospitals. This
paper develops efficiency indicators valid for nonsubstitut-

able variables. Then, using a sample of 87 community
hospitals, it compares the new measures’ efficiency esti-
mates with those of conventional DEA measures. DEA
substantially overestimated the hospitals’ efficiency on the
average, and reported many inefficient hospitals to be
efficient. Further, it greatly overestimated the efficiency of
some hospitals but only slightly overestimated the efficiency
of others, thus making any comparisons among hospitals
questionable. These results suggest that conventional DEA
models should not be used to estimate the efficiency of
hospitals unless there is empirical evidence that the inputs
(outputs) are substitutable. If inputs (outputs) are not
substitutes, efficiency indicators valid for nonsubstitutability
should be employed, or, before applying DEA, the non-
substitutable variables should be combined using an appro-
priate weighting scheme or statistical methodology.

Keywords Data envelopment analysis . Efficiency .

Hospitals . Fixed proportion technology

Introduction

The importance of healthcare efficiency is extremely high,
given the rapid growth in healthcare costs and the increasing
numbers of people covered by publicly-financed programs.
To identify useful healthcare productivity improvements,
efficiency must be validly measured. On the other hand, if
healthcare efficiency is incorrectly measured, then govern-
mental policy makers and hospital managers may respond in
ineffective and even counterproductive ways.

In his latest review of healthcare efficiency studies,
Hollingsworth [1] reports that there has been a rapid growth
in the number of publications using Data Envelopment
Analysis (DEA), and that over half of all healthcare DEA
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publications involve hospitals. The growing list of pub-
lications using DEA to measure hospital efficiency is
mirrored in the Journal of Medical Systems, which has
published nine hospital DEA articles since 2000, with four
of the nine coming in the last 2 years [2–10].

If hospital DEA studies are to inform effective practice, we
need to assure policy makers and hospital managers that DEA
is being correctly applied [11]. Studies confirming the validity
of DEA applications to hospitals would raise the confidence of
both academic scientists and real-world practitioners in the
analytical results. For any incorrect aspects of hospital
applications that are discovered, DEA models could be
adapted to deal with the problems, or DEA could be replaced
with more appropriate efficiency indicators.

This paper considers a heretofore overlooked problem in
DEA’s application to hospitals, which nevertheless has
important consequences for the validity of DEA estimates.
The issue at hand is the conflict between DEA theory’s
requirement that inputs and outputs be substitutable, and
the ubiquitous use of nonsubstitutable inputs and outputs in
DEA hospital applications.

Input and output substitutability: Definitions and DEA
theory

When inputs are nonsubstitutable, then they cannot replace
each other in the production of a constant amount of output.
Such inputs must be utilized in a fixed proportion to
produce their output, and any quantity of an input in excess
of the required ratio is wasted. Production systems using
nonsubstitutable inputs are well-known in economics, and
are called “Fixed Factor Proportion Technologies” [12]. If
outputs are nonsubstitutable, then, for a fixed amount of
input, production of one output cannot be increased by
producing less of another. Such production systems are
“Fixed Product Proportion Technologies” [12].

When inputs are substitutable for each other in the
production of output, a fixed amount of output can be
produced with varying combinations of the inputs. When
outputs are substitutable for each other, the amount of one
output can be increased and the amount of another
decreased for a fixed amount of input by changing the
proportion of the input that each output receives.

DEA mathematical models and the economic theory
underlying them require substitutability. Farrell [13] and
Charnes, Cooper and Rhodes [14] assume substitutability,
as does Banker, Charnes and Cooper [15], Färe, Grosskopf
and Lovell [16] and more recent work [17, 18].

Input and output substitutability in DEA applications

The issue of substitutability in DEA application papers has
rarely been addressed. Although none of them involved

healthcare, we do know of two recent articles that
purposely selected inputs and outputs that avoided non-
substitutability [19, 20], and another article that used Multi-
Directional Efficiency Analysis instead of DEA partly
because of the substitutability issue [21].

In DEA applications to hospitals, Hollingsworth [1, p. 1110]
reports that inputs “are mainly measures of staff and capital
employed,” and most of the studies use output measures
“such as inpatient days or discharges.” Recent hospital DEA
articles in the Journal of Medical Systems are consistent with
the widespread use of such inputs and outputs. The nine
hospital DEA papers published in the journal since 2000 all
included staffed beds as a proxy for capital, and the number
of employees (in various categories) as a proxy for labor.
Also, all of the nine papers included outputs separately
measuring the numbers of inpatients and outpatients [2–10].

As discussed later, these labor and capital input proxies
cannot be substituted for each other in the production of a
fixed amount of output. And, although it would seem that
outputs such as inpatients and outpatients would always be
substitutes, they were not substituted for each other in our
sample hospitals. In short, the hospitals that we studied
employed fixed proportion technologies.

DEA theory vs. DEA applications to hospitals

In sum, DEA applications measuring hospital efficiency
have employed inputs and outputs that conflict with DEA
theory. This inconsistency could result in trivial effects on
DEA efficiency scores, or could cause substantial and
significant errors in DEA efficiency estimates.

The purpose of this paper is to examine the impact of DEA
theory’s substitutability requirements on its applications to
hospitals. To analyze the effects of the conflict between DEA
theory and hospital applications, we developed efficiency
indicators that assume nonsubstitutability rather than substi-
tutability. Next, using hospital-wide data supplied by the
pharmacy departments of US community hospitals, we
ascertained empirically that their inputs and outputs were
indeed nonsubstitutable, and then we compared their DEA
scores with the scores from our new efficiency measures.

For our sample hospitals, DEA resulted in severely
biased and imprecise estimates of efficiency. All hospitals
were less efficient in truth than estimated by DEA, and
DEA reported many inefficient hospitals to be efficient.
Further, the efficiency scores of some hospitals were only
slightly affected while the efficiency scores of others
showed large biases, thereby making comparisons among
hospitals unattainable. Of course, we don’t know if other
DEA hospital efficiency studies suffer to the same extent,
but we do suggest that future studies restrict DEA inputs
and outputs to substitutable variables or use efficiency
indicators not requiring substitutability.
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Methods

Location of the production frontier when inputs
are substitutable and nonsubstitutable

In DEA, the organizations being analyzed often are called
Decision Making Units (DMUs). In this paper, the organiza-
tions being analyzed are individual hospitals, so each hospital
is a DMU. In order to be consistent with the DEA literature,
we often use the term DMUs to refer to the hospitals.

Consider a hypothetical case of one output and two inputs
(a) when the inputs are substitutable, and (b) when the inputs
are not substitutable. Suppose one unit of output is produced
by each organization being analyzed with various combina-
tions of the two inputs (Fig. 1). If the two inputs used to
produce one unit of output are substitutable inputs, a
representation of the production frontier is shown by the
inner-most piecewise isoquant. That is, if less of one input is
used, some amount more of the other input must be used in
its place to hold output constant. Conventional DEA models
would report that the four DMUs defining the isoquant are
efficient, because, though having different mixes of the
inputs, they are all on the same inner-most isoquant.

If the two inputs are not substitutable, then an efficient
DMU must use them in a fixed proportion. Suppose that the
inputs are truly nonsubstitutable and one unit of output is
produced, as is shown in Fig. 2 (using the same data as
Fig. 1). The production frontier now consists of a single
point that is, a point frontier. This frontier is estimated by the
composite DMU in the south-west corner of the graph. The
frontiers of the reference set increase vertically and horizon-
tally from this point, forming a right-angle or L-shaped
reference set frontier. However, the only Pareto–Koopmans
efficient subset of the reference set frontier is the point
frontier, because only at that point is the requisite output
achieved without the overuse of one of the inputs [22].

For substitutable inputs, the minimum level of each input
is conditioned on the level of the other input. However, for
nonsubstitutable inputs, that is, fixed factor proportion
technologies, the minimum level of each input needed to
produce a given amount of output is not influenced by the
other input [12]. So, if all DMUs’ outputs are equal, when
inputs are nonsubstitutable it is only necessary to find the
minimum level of each input. As is true for conventional
DEA, this frontier estimation method envelops the data, and
assumes that a composite DMU can be used to identify a
point on the efficient frontier that is attainable by an actual
DMU. As also is true for DEA, this deterministic measure
estimates efficiency based on the most extreme observa-
tions, ignoring any stochastic variation that might exist.

Note that all DMUs’ reported efficiencies will be quite
different when the point frontier is used in place of the
isoquant frontier as the efficient reference. We return to the
issue of efficiency indices for the point frontier after
discussing methods for identifying whether or not inputs
(outputs) are substitutable.

Method for identifying the presence or absence
of substitutability

Because we know that the DMUs shown in Figs. 1 and 2
each produced one unit of output, it might appear that the
empirical evidence suggests that these two inputs are
substitutable for each other, as shown by the isoquant in
Fig. 1. But, substitutability is not necessarily present because
a DMU is unlikely to be equally efficient in its use of both
inputs [23]. In Fig. 1, for example, if inputs are truly
nonsubstitutable, the supposed piecewise isoquant frontier
may be the result of one DMU being the most efficient of
all DMUs in the use of the first input but less efficient in
the use of the second, and another DMU being the most
efficient of all DMUs in the use of the second input but less
efficient in the use of the first. Substitutability, or the lack
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thereof, can be identified by logic and statistical testing, but
cannot be identified by a deterministic estimation of an
alleged best-practice frontier.

One simple method for assessing whether or not inputs
are substitutable is to regress each input on the remaining
inputs and all outputs. If any two inputs are substitutes, then
the relationship between them must be negative (with
statistical significance). Because the remaining inputs and
all outputs are held constant, a decrease in any one input
would have to be compensated for by an increase in the other
input. If the two inputs are not substitutes, then there will be
no statistically significant relationship between them if their
inefficiencies are uncorrelated. There will be a statistically
significant positive relationship if there is a high degree of
correlation between the two inputs’ inefficiency levels.

Empirically estimating whether outputs are substitutable
or nonsubstitutable follows the same methodology used for
inputs. Each output is regressed on the remaining outputs
and all inputs. If any two outputs are substitutes, then the
relationship between them must be negative to a statistically
significant degree, because an increase in any one output
would have to be compensated for by a decrease in another
output. And, if two outputs are not substitutes, then, as with
inputs, there will be no statistically significant relationship
between them if their degree of inefficiencies are uncorre-
lated, and there will be a statistically significant positive
relationship if there is a high degree of correlation between
their inefficiency levels.

In truth, the inputs in Figs. 1 and 2 are not substitutable
for each other. One of the inputs is staffed beds and the
other is number of staff used for one unit of inpatient
output. Logically, it is not possible to serve a fixed number
of inpatients by decreasing one of these inputs and making
up for the decrease by increasing the other. Statistically,
because there is one unit of output and two inputs, we can
regress one of the inputs on the other to determine whether
there is a statistically significant negative relationship
(indicating the inputs are substitutable) or not. In fact, the
two inputs show a positive relationship, confirming that
they are nonsubstitutable.

The next task is to develop efficiency measures for cases
of nonsubstitutable inputs. Then, we can compare the new
efficiency measures with DEA efficiency estimates.

Additive efficiency measure when inputs
are nonsubstitutable

In order to estimate each DMU’s efficiency relative to the
point frontier in Fig. 2, one simple possibility would be a
variation on the DEA Additive (ADD) model [22]. With
DEA’s ADD model, the efficient point for an assessed DMU
is the furthest point on the piecewise isoquant frontier where
neither of its inputs has increased and its output has not

decreased. The rectilinear distance between the assessed
DMU and that point measures the DMU’s inefficiency.

We call the variation of the DEA Additive model the
“Fixed Proportion Additive” (FPA) model, because it
assumes that the inputs and outputs occur in fixed
proportions. Like the ADD model, the degree of inefficien-
cy is measured by the rectilinear distance between the target
DMU and the efficient point. But, for the FPA model, the
efficient point is the point frontier rather than a point on a
piecewise isoquant frontier.

Significantly, the only difference between the two
models is the location of the point from which inefficiency
is measured. This can be seen in Fig. 3. We can estimate the
point frontier for one unit of output when inputs are
nonsubstitutable from the DMUs using the minimum
amounts of each input, that is, from the DMUs establishing
the boundaries of the right-angle reference set frontier.
DMU A uses the least of input capital (1.16) and DMU E
uses the least of input labor 2 (0.13), so a fully efficient
composite DMU would use 1.16 units of capital and 0.13
units of labor, as shown by point F on the graph. Of course,
if a particular DMU were the most efficient in the use of
both inputs, then that one DMU alone would determine the
point frontier. For example, if point F represented an actual
DMU instead of a composite DMU, then that actual DMU
would reflect the point of maximum efficiency.

The FPA efficiency score for the assessed DMUk can be
obtained for each DMUk from a set of j=1,2,…, J DMUs
with one output yj1 and M inputs xjm for m=1,2,…M by the
use of Eq. 1.

FPAk ¼
XM
m¼1

xkm=yk1ð Þ �Min
j

xjm=yj1
� �����

����
� �

ð1Þ

So that the scores of the ADD and the FPA models will
be directly comparable, we divide each DMU’s inputs by its
output. Therefore, the input and output values used in the
FPA model (Eq. 1) and the ADD model (Eqs. 2–5) are
identical, so the resulting sums of the slacks for the target
DMU k are directly comparable.

ADDk ¼ max
XM
m¼1

s�m ð2Þ

Subject to

XJ
j¼1

lj xjm=yj1
� �þ s�m ¼ xkm=yk1 m ¼ 1; 2; . . . ;M ð3Þ

ŷj1 ¼ 1 ¼ yj1=yj1 j ¼ 1; 2; . . . ; J ð4Þ

lj � 0 ð5Þ

1396 J Med Syst (2011) 35:1393–1401



Ratio efficiency index when inputs are nonsubstitutable

The primary value of the two preceding additive models is
that because they use the same metric, their inefficiency
scores are directly comparable. However, because both
yield absolute measures of inefficiency rather than indices,
their inefficiency values have no intuitive meaning and they
are not units-invariant [24]. A more useful measure would
be an index in [0, 1], because it would identify the
proportional efficiency of target DMUs, as do conventional
DEA radial measures such as the Charnes–Cooper–Rhodes
(CCR) model. In this section, we develop such an index,
the Fixed Proportion Ratio (FPR) measure, to deal with
nonsubstitutability.

In order to measure a DMU’s relative degree of
inefficiency in the use of an input to produce an output,
the indicator needs to be normalized by some base. Thus,
for each output/input combination, we compute the
normalized output/input ratio by dividing the target
DMU’s output/input ratio by that of the DMU j that is
the most efficient for that particular output/input ratio.
Equation 6 illustrates the efficiency of DMU k’s input m
and output n. The input and output in the numerator are
from the assessed DMU k, and the input and output in the
denominator are from the DMU that has the maximum
output/input ratio for that specific output/input combina-
tion. The range of efficiency scores for each output/input

pair is [0, 1], and at least one DMU will achieve an
efficiency score of 1.

effkmn ¼ ykn=xkm
Max

j
yjn=xjm
� �

2
4

3
5 ð6Þ

Because a DMU’s efficiency would usually be different
for each output/input combination, its average efficiency
can be computed as the mean of its individual efficiencies.
Thus, for each of DMU k’s output/input ratios, Eq. 7 is used
to compute the normalized efficiency measure for that ratio.
If there are m inputs and n outputs, then there will be m×n
efficiency measures of the form effkmn. So, for each DMU k
in a set of J DMUs, the mean of its m×n efficiency
measures is computed, which yields a partially normalized
efficiency measure for that DMU. Then, each DMU k’s
partially normalized efficiency measure is divided by the
maximum partially normalized efficiency measure, which
yields a normalized efficiency measure in [0, 1]. This is the
Fixed Proportion Ratio (FPR) index:

FPRk ¼
1=MNð ÞPM

m¼1

PN
n¼1

effkmn

Max
j

1=MNð ÞPM
m¼1

PN
n¼1

effjmn

� � ð7Þ

A:1.16, 0.29

B:1.19, 0.22

C:1.28, 0.18

D:1.48, 0.14

E:1.79, 0.13F:1.16, 0.13
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Comparing DEA models with fixed proportion models

Now we have indicators for comparing the efficiency
estimates of the two additive models, DEA’s ADD model
that assumes substitutable inputs and the new FPA model
that assumes nonsubstitutable inputs. And, we can also
compare the efficiency estimates of the two proportional
indices, DEA’s Charnes–Cooper–Rhodes (CCR) model [22,
p. 94] that assumes substitutable inputs and outputs, and the
FPR model that assumes nonsubstitutable inputs and
outputs. All four of these models incorporate both technical
efficiency and any scale effects that may exist. (For our
hospital sample, the relationship between a weighted
patient dependent variable and labor and capital indepen-
dent variables was linear, so there were no scale effects
involved in this case.)

Materials: Sample, inputs and outputs

Our sample consisted of data from 87 community hospitals
in the United States that were members of a national group
purchasing organization. The data were collected for use in
an earlier study of community hospital pharmacy produc-
tivity [25], from an online questionnaire that was completed
by pharmacy directors at the hospitals. Herein, we used
hospital-wide data from the hospitals that included all of the
inputs and outputs that we needed for our computations.

For tests comparing the FPA and ADD additive models,
the one output was total inpatients, and the two inputs were
staffed beds and full-time-equivalent (FTE) employment. It
was only possible to use one output in comparisons of these
additive models, so we chose the output that had by far the
strongest impact on the levels of inputs needed.

For tests comparing the FPR and the CCR models,
multiple inputs and outputs are possible. We used the two

most common outputs, total inpatients and total outpatients,
and, as before, the two inputs were staffed beds and FTE
employment. Summary values for the 87 hospitals are
shown in Table 1.

Results

Input and output substitutability

One input was regressed on the other input, with the outputs
included as control variables. As Table 2 shows, the number
of employees was positively related to the number of beds
with statistical significance of 0.059, which, based on our
earlier logical argument, would be as hypothesized. More
important, there was not a negative relationship, statistically
significant or otherwise, and a negative relationship would
be necessary if the factors could be substituted for each
other. Using a different proxy for capital might result in a
different conclusion, but we used the proxy that has been
empirically validated and is common to most published
hospital DEA articles [26]. Therefore, a fixed factor
proportion technology was present.

One output was regressed on the other, with the inputs
included as control variables. As Table 3 shows, the
relationship between outpatients and inpatients was positive,
a somewhat surprising finding.

However, looking again at Table 2, it can be seen that
the number of outpatients had relatively minor influence on
the number of employees. This apparent lack of influence
may have resulted from the narrow range within which the
outpatient and inpatient proportions occurred for our
sample. Except for a very few hospitals, the proportion of
outpatients clustered between 90% and 97%, out of a
possible range from 0 to 100. So, this appears to be a case
of our community hospital sample all having about the

Input and output variables Mean Median Smallest Largest

FTE employees 1,231 892 85 4,973

Staffed beds 243 189 22 861

Annual inpatients 11,318 7,919 436 39,948

Annual outpatients 168,128 128,954 14,536 1,078,423

Table 1 Summary statistics for
87 community hospitals

Total FTE employees Coefficient Robust Std. Err. t P>t (1-tail)

Staffed beds 0.8950035 0.5668977 1.58 0.059

Annual inpatients 0.0817770 0.0115093 7.11 0.000

Annual outpatients 0.0007314 0.0004787 1.53 0.065

Constant −35.29337 62.81318 −0.56 0.576

Table 2 Regression of hospital
employees on beds, holding
inpatients and outpatients
constant

R-square=0.9106. One-tail
probabilities because we pre-
dicted outcomes

1398 J Med Syst (2011) 35:1393–1401



same ratio of inpatients to outpatients, rather than a case of
true technical nonsubstitutability. However, from the
viewpoint of modeling choice, the reason for the empirical
lack of substitutability does not matter and we have to
honor the data. Therefore, a fixed proportion efficiency
model was also applicable for these outputs as well as the
inputs. It may be worthwhile to note that substitutability or
lack thereof can be caused either by strict technical
constraints, by other constraints such as regulations or
norms, or simply by the environment. But, whatever the
reason, if outputs (inputs) are not substituted for each other,
then a de facto fixed proportion technology is present.

Efficiencies reported by the ADD and FPA models

Using the FPA scores as the base, the ADD model reported
efficiencies that were 42.4% greater on the average, ranging
from 3.6% greater to 100% greater. The two models

measure efficiency the same way and only differ on their
identification of efficient points based on whether or not the
inputs were substitutable. We know that the FPA model was
correct because the inputs are not substitutable. Thus, if the
ADD model were (inappropriately) applied to these data, it
would greatly overestimate mean efficiency. Moreover, the
efficiency of some DMUs would be only slightly over-
estimated and the overestimation would be substantial for
others. In short, in the presence of nonsubstitutable inputs, the
conventional DEA additive model efficiency estimates were
remarkably biased and showed strikingly low precision.

Efficiencies reported by the CCR and FPR models

Next, we compared scores of the FPR efficiency indicator
with those of the CCR measure. As can be seen in Fig. 4,
the CCR scores were much higher than the FPR scores, at
all of the reported efficiency levels except for the highest

Annual inpatients Coefficient Robust Std. Err. t P>t (2-tail)

Annual outpatients 0.0033999 0.0022096 1.54 0.128

Staffed beds 24.42506 5.547089 4.40 0.000

Total FTE employees 3.897101 1.088807 3.58 0.001

Constant 14.62555 345.3861 0.04 0.966

Table 3 Regression of inpa-
tients on outpatients, holding
beds and hospital employees
constant

R-square=0.9447. Two-tail
probabilities because we did not
predict outcomes

Fig. 4 Comparison of CCR and
FPR efficiency scores
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one. Moreover, the difference between the CCR estimate
and the FPR estimate varied substantially. The R-square
value of FPR and CCR was 0.83 for all 87 DMUs, but only
0.33 for the 24 DMUs with highest efficiencies. Also, for
the highest 24, the Spearman rank coefficients between
FPR and CRR was 0.63, with the Kendall rank coefficients
was 0.50. Further, the rank order of some DMUs’ FPR
scores was substantially different from their CRR scores.
The CCR ranks ranged from 29 higher to 24 lower than the
FPR ranks. Finally, six hospitals were reported efficient by
DEA but inefficient by FPR. So, using nonsubstitutable
inputs and nonsubstitutable outputs, the conventional DEA
radial model’s efficiency estimates had a very large upward
bias and low precision.

Summary of results

For our sample of 87 community hospitals, empirical
testing showed that staff and bed inputs were not
substitutable, nor were inpatient and outpatient outputs,
thus violating DEA’s substitutability requirements. Com-
parison of the DEA additive model with an additive model
that assumed nonsubstitutability showed the DEA efficiency
estimates to be highly biased upward on the average, but
some DMUs showed little bias while others showed huge
bias. Similar results occurred in a comparison of a DEA
radial model and a new ratio model that assumed non-
substitutability, with the DEA scores showing a large upward
bias and low precision.

Discussion

In some hospital efficiency studies, the effects of using
DEA with nonsubstitutable inputs (outputs) may be less
severe than they were with our sample. But, the effects in
other studies might be even worse than ours. Thus, if DEA
is used in hospital efficiency studies without having
addressed the issue of input and output substitutability,
then the efficiency estimates would be open to question.

Although inpatients and outpatients were not substitutable
for each other in our sample of community hospitals, this
lack of substitutability may not always be the case. However,
our sample shows that it should never be assumed that
inpatient and outpatient substitutability exists without
empirical testing to justify the assumption. In the case of
inputs, it seems unlikely that staffed beds and employment
could be substitutable under any circumstances.

Therefore, we suggest that conventional DEA hospital
efficiency applications should never include both employment
and beds as separate inputs, and DEA should include both
inpatients and outpatients as separate outputs only if it has
been shown that they are substitutes in the dataset being used.

If all inputs and all outputs are nonsubstitutable, then
one alternative efficiency measure would be the FPR
indicator that we presented in this paper. Using this
measure, employment and beds could be included as
separate inputs, as could inpatients and outpatients for
cases where they are not substitutes. However, use of the
FPR measure would not be appropriate if some of the
inputs (outputs) were substitutable and others were not, or
if all of the inputs and outputs were substitutable.

There are several methods that permit the use of
conventional DEA models without suffering the bias and
precision problems illustrated in this paper. One method is to
aggregate nonsubstitutable variables using their prices (or
some other logical choice) as weights. We believe that this
solution is a good one for inputs if prices are available and
can be adjusted for price differences over time and among
DMUs. For hospitals, this solution might lead to using total
operating costs (perhaps adding depreciation) as the sole
input variable, and using some reasonable weighting scheme
to aggregate inpatients and outpatients into one output
variable if the two are not substituted in the sample at hand.

A second solution is to use conventional DEA models
but utilize only one of the nonsubstitutable inputs and one
of the nonsubstitutable outputs. Because nonsubstitutable
variables occur in a fixed proportion for efficient DMUs,
they will increase and decrease together. So, one can serve
as a rough proxy for all. The problem with this approach is
that it does not account for differences in a DMU’s
efficiency in producing different outputs or in using
different inputs. But, in the absence of comparable prices
or other acceptable weighting schemes, it may be the best
choice available if one wishes to use conventional DEA
models. For hospitals, it would seem to us that the best
input variable would be FTE employment, and the best
output variable would be number of inpatients, because
employment seems to be driven primarily by the inpatient
load with other factor inputs seeming to have little effect.

A third way of using conventional DEA models is to
combine nonsubstitutable variables with methodologies such
as Factor Analysis or Principle Components Analysis, [27], or
a variation of two-stage regression analysis [28, 29]. There
undoubtedly are other applicable statistical methodologies.

Conclusions

This paper identified the effects on efficiency estimates
when conventional DEA models are applied to hospitals
that employ a fixed proportion technology. For our sample
of community hospital data, the inputs and outputs both
occurred in fixed proportions. As a result, the DEA
efficiency estimates were substantially biased and provided
little precision.
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We suggest that when DEA models are to be used, all
potential inputs (outputs) be empirically tested to assure
that substitutability exists. If any inputs (outputs) are not
substitutable for each other, then, before applying DEA, the
nonsubstitutable variables should be combined using an
appropriate weighting scheme or statistical methodology, or
only one of the nonsubstitutable inputs (outputs) should be
included. If the analyst wishes to include nonsubstitutable
variables, then efficiency models allowing nonsubstitut-
ability should be used.

References

1. Hollingsworth, B., The measurement of efficiency and productivity
of health care delivery. Health Econ. 17(10):1107–1128, 2008.

2. Chern, J. Y., and Wan, T. T. H., The impact of the prospective
payment system on the technical efficiency of hospitals. J. Med.
Syst. 24(3):159–172, 2000.

3. Sahin, I., and Ozcan, Y. A., Public sector hospital efficiency for
provincial markets in Turkey. J. Med. Syst. 24(6):307–320, 2000.

4. Kirigia, J. M., Emrouznejad, A., and Sambo, L. G., Measurement
of technical efficiency of public hospitals in Kenya: using data
envelopment analysis. J. Med. Syst. 26(1):39–45, 2002.

5. Wan, T. T. H., Lin, B. Y. -J., and Ma, A., Integration mechanisms
and hospital efficiency in integrated health care delivery systems.
J. Med. Syst. 26(2):127–143, 2002.

6. Harrison, J. P., Coppola, M. N., and Wakefield, M., Efficiency of
federal hospitals in the United States. J. Med. Syst. 28(5):411–422,
2004.

7. Hajialiafzali, H., Moss, J., and Mahmood, M., Efficiency
measurement for hospitals owned by the iranian social security
organisation. J. Med. Syst. 31(3):166–172, 2007.

8. Kirigia, J., Emrouznejad, A., Cassoma, B., Asbu, E., and Barry,
S., A performance assessment method for hospitals: the case of
municipal hospitals in Angola. J. Med. Syst. 32(6):509–519, 2008.

9. Nayar, P., and Ozcan, Y., Data envelopment analysis comparison
of hospital efficiency and quality. J. Med. Syst. 32(3):193–199,
2008.

10. Lee, K. H., Yang, S. B., and Choi, M., The association between
hospital ownership and technical efficiency in a managed care
environment. J. Med. Syst. 33:307–315, 2009. doi:10.1007/s10916-
008-9192-2.

11. Hollingsworth, B., and Street, A., The market for efficiency analysis
of health care organizations. Health Econ. 15:1055–1059, 2006.

12. Beattie, B. R., and Taylor, C. R., The economics of production.
Wiley, New York, 1985.

13. Farrell, M. J., The measurement of productive efficiency. J. R.
Stat. Soc., A. 120(3):253–290, 1957.

14. Charnes, A., Cooper, W. W., and Rhodes, E., Measuring the
efficiency of decision making units. Eur. J. Oper. Res. 2(6):429–
444, 1978.

15. Banker, R. D., Charnes, A., and Cooper, W. W., Some models for
estimating technical and scale inefficiencies in data envelopment
analysis. Manag. Sci. 30(9):1078–1092, 1984.

16. Färe, R., Grosskopf, S., and Lovell, C. A. K., Production
frontiers. Cambridge University Press, Cambridge, 1994.

17. Cooper, W. W., Seiford, L. M., Tone, K., and Zhu, J., Some
models and measures for evaluating performances with DEA: past
accomplishments and future prospects. J. Prod. Anal. 28(3):151,
2007.

18. Fried, H. O., Lovell, C. A. K., and Schmidt, S. S., The
measurement of productive efficiency and productivity growth.
Oxford University Press, Oxford, 2008.

19. Casu, B., and Thanassoulis, E., Evaluating cost efficiency in
central administrative services in UK universities. Omega. 34
(5):417–426, 2006.

20. Banker, R. D., Chang, H., Janakiraman, S. N., and Konstans, C.,
A balanced scorecard analysis of performance metrics. Eur. J.
Oper. Res. 154(2):423–436, 2004.

21. Holvad, T., Hougaard, J. L., Kronborg, D., and Kvist, H. K.,
Measuring inefficiency in the Norwegian bus industry using
multi-directional efficiency analysis. Transportation. 31(3):349–
369, 2004.

22. Cooper, W. W., Seiford, L. M., and Tone, K., Data envelopment
analysis: a comprehensive text with models, applications, refer-
ences and DEA-Solver software. Springer, New York, 2007.

23. Bogetoft, P., and Hougaard, J. L., Efficiency evaluations based on
potential (non-proportional) improvements. J. Prod. Anal. 12
(3):233–247, 1999.

24. Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. M.,
Data envelopment analysis: theory, methodology and application.
Kluwer Academic, Boston, 1994.

25. Gupta, S. R., Wojtynek, J. E., Walton, S. M., Botticelli, J. T.,
Shields, K. L., Quad, J. E., and Schumock, G. T., Pharmacy
staffing and productivity. Am. J. Health. Syst. Pharm. 64
(22):2323–2324, 2006.

26. Sikka, V., Luke, R. D., and Ozcan, Y. A., The efficiency of
hospital-based clusters: evaluating sustem performance using data
envelopment analysis. Health Care Manage. Rev. 34(3):251–261,
2009.

27. Pedhazur, E. J., and Schmelkin, L. P., Measurement, design, and
analysis: an integrated approach. Lawrence Erlbaum Associates,
Hillsdale, 1991.

28. Wooldridge, J. M., Econometric analysis of cross section and
panel data. MIT, Cambridge, 2002.

29. Greene, W. H., Econometric analysis, 6th edition. Prentice Hall,
Upper Saddle River, 2008.

J Med Syst (2011) 35:1393–1401 1401

http://dx.doi.org/10.1007/s10916-008-9192-2
http://dx.doi.org/10.1007/s10916-008-9192-2

	Measuring Hospital Efficiency with Data Envelopment Analysis: Nonsubstitutable vs. Substitutable Inputs and Outputs
	Abstract
	Introduction
	Input and output substitutability: Definitions and DEA theory
	Input and output substitutability in DEA applications
	DEA theory vs. DEA applications to hospitals

	Methods
	Location of the production frontier when inputs are substitutable and nonsubstitutable
	Method for identifying the presence or absence of substitutability
	Additive efficiency measure when inputs are nonsubstitutable
	Ratio efficiency index when inputs are nonsubstitutable
	Comparing DEA models with fixed proportion models

	Materials: Sample, inputs and outputs
	Results
	Input and output substitutability
	Efficiencies reported by the ADD and FPA models
	Efficiencies reported by the CCR and FPR models
	Summary of results

	Discussion
	Conclusions
	References


